blob: a0cd33b4d00a4ba285e14c707450a83459655e3d [file] [log] [blame]
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Utilities for testing exception-safety
#ifndef ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_
#define ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_
#include <cstddef>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <iosfwd>
#include <string>
#include <unordered_map>
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/internal/pretty_function.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#include "absl/strings/substitute.h"
#include "absl/types/optional.h"
namespace absl {
struct InternalAbslNamespaceFinder {};
struct ConstructorTracker;
// A configuration enum for Throwing*. Operations whose flags are set will
// throw, everything else won't. This isn't meant to be exhaustive, more flags
// can always be made in the future.
enum class NoThrow : uint8_t {
kNone = 0,
kMoveCtor = 1,
kMoveAssign = 1 << 1,
kAllocation = 1 << 2,
kIntCtor = 1 << 3,
kNoThrow = static_cast<uint8_t>(-1)
};
constexpr NoThrow operator|(NoThrow a, NoThrow b) {
using T = absl::underlying_type_t<NoThrow>;
return static_cast<NoThrow>(static_cast<T>(a) | static_cast<T>(b));
}
constexpr NoThrow operator&(NoThrow a, NoThrow b) {
using T = absl::underlying_type_t<NoThrow>;
return static_cast<NoThrow>(static_cast<T>(a) & static_cast<T>(b));
}
namespace exceptions_internal {
struct NoThrowTag {};
constexpr bool ThrowingAllowed(NoThrow flags, NoThrow flag) {
return !static_cast<bool>(flags & flag);
}
// A simple exception class. We throw this so that test code can catch
// exceptions specifically thrown by ThrowingValue.
class TestException {
public:
explicit TestException(absl::string_view msg) : msg_(msg) {}
virtual ~TestException() {}
virtual const char* what() const noexcept { return msg_.c_str(); }
private:
std::string msg_;
};
// TestBadAllocException exists because allocation functions must throw an
// exception which can be caught by a handler of std::bad_alloc. We use a child
// class of std::bad_alloc so we can customise the error message, and also
// derive from TestException so we don't accidentally end up catching an actual
// bad_alloc exception in TestExceptionSafety.
class TestBadAllocException : public std::bad_alloc, public TestException {
public:
explicit TestBadAllocException(absl::string_view msg)
: TestException(msg) {}
using TestException::what;
};
extern int countdown;
void MaybeThrow(absl::string_view msg, bool throw_bad_alloc = false);
testing::AssertionResult FailureMessage(const TestException& e,
int countdown) noexcept;
class TrackedObject {
public:
TrackedObject(const TrackedObject&) = delete;
TrackedObject(TrackedObject&&) = delete;
protected:
explicit TrackedObject(const char* child_ctor) {
if (!GetAllocs().emplace(this, child_ctor).second) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
<< " re-constructed in ctor " << child_ctor;
}
}
static std::unordered_map<TrackedObject*, absl::string_view>& GetAllocs() {
static auto* m =
new std::unordered_map<TrackedObject*, absl::string_view>();
return *m;
}
~TrackedObject() noexcept {
if (GetAllocs().erase(this) == 0) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
<< " destroyed improperly";
}
}
friend struct ::absl::ConstructorTracker;
};
template <typename Factory>
using FactoryType = typename absl::result_of_t<Factory()>::element_type;
// Returns an optional with the result of the check if op fails, or an empty
// optional if op passes
template <typename Factory, typename Op, typename Checker>
absl::optional<testing::AssertionResult> TestCheckerAtCountdown(
Factory factory, const Op& op, int count, const Checker& check) {
auto t_ptr = factory();
absl::optional<testing::AssertionResult> out;
try {
exceptions_internal::countdown = count;
op(t_ptr.get());
} catch (const exceptions_internal::TestException& e) {
out.emplace(check(t_ptr.get()));
if (!*out) {
*out << " caused by exception thrown by " << e.what();
}
}
return out;
}
template <typename Factory, typename Op, typename Checker>
int UpdateOut(Factory factory, const Op& op, int count, const Checker& checker,
testing::AssertionResult* out) {
if (*out) *out = *TestCheckerAtCountdown(factory, op, count, checker);
return 0;
}
// Declare AbslCheckInvariants so that it can be found eventually via ADL.
// Taking `...` gives it the lowest possible precedence.
void AbslCheckInvariants(...);
// Returns an optional with the result of the check if op fails, or an empty
// optional if op passes
template <typename Factory, typename Op, typename... Checkers>
absl::optional<testing::AssertionResult> TestAtCountdown(
Factory factory, const Op& op, int count, const Checkers&... checkers) {
// Don't bother with the checkers if the class invariants are already broken.
auto out = TestCheckerAtCountdown(
factory, op, count, [](FactoryType<Factory>* t_ptr) {
return AbslCheckInvariants(t_ptr, InternalAbslNamespaceFinder());
});
if (!out.has_value()) return out;
// Run each checker, short circuiting after the first failure
int dummy[] = {0, (UpdateOut(factory, op, count, checkers, &*out))...};
static_cast<void>(dummy);
return out;
}
template <typename T, typename EqualTo>
class StrongGuaranteeTester {
public:
explicit StrongGuaranteeTester(std::unique_ptr<T> t_ptr, EqualTo eq) noexcept
: val_(std::move(t_ptr)), eq_(eq) {}
testing::AssertionResult operator()(T* other) const {
return eq_(*val_, *other) ? testing::AssertionSuccess()
: testing::AssertionFailure() << "State changed";
}
private:
std::unique_ptr<T> val_;
EqualTo eq_;
};
} // namespace exceptions_internal
extern exceptions_internal::NoThrowTag no_throw_ctor;
// These are useful for tests which just construct objects and make sure there
// are no leaks.
inline void SetCountdown() { exceptions_internal::countdown = 0; }
inline void UnsetCountdown() { exceptions_internal::countdown = -1; }
// A test class which is convertible to bool. The conversion can be
// instrumented to throw at a controlled time.
class ThrowingBool {
public:
ThrowingBool(bool b) noexcept : b_(b) {} // NOLINT(runtime/explicit)
operator bool() const { // NOLINT(runtime/explicit)
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return b_;
}
private:
bool b_;
};
// A testing class instrumented to throw an exception at a controlled time.
//
// ThrowingValue implements a slightly relaxed version of the Regular concept --
// that is it's a value type with the expected semantics. It also implements
// arithmetic operations. It doesn't implement member and pointer operators
// like operator-> or operator[].
//
// ThrowingValue can be instrumented to have certain operations be noexcept by
// using compile-time bitfield flag template arguments. That is, to make an
// ThrowingValue which has a noexcept move constructor and noexcept move
// assignment, use
// ThrowingValue<absl::NoThrow::kMoveCtor | absl::NoThrow::kMoveAssign>.
template <NoThrow Flags = NoThrow::kNone>
class ThrowingValue : private exceptions_internal::TrackedObject {
public:
ThrowingValue() : TrackedObject(ABSL_PRETTY_FUNCTION) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = 0;
}
ThrowingValue(const ThrowingValue& other)
: TrackedObject(ABSL_PRETTY_FUNCTION) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = other.dummy_;
}
ThrowingValue(ThrowingValue&& other) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kMoveCtor))
: TrackedObject(ABSL_PRETTY_FUNCTION) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kMoveCtor)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
}
explicit ThrowingValue(int i) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kIntCtor))
: TrackedObject(ABSL_PRETTY_FUNCTION) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kIntCtor)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = i;
}
ThrowingValue(int i, exceptions_internal::NoThrowTag) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(i) {}
// absl expects nothrow destructors
~ThrowingValue() noexcept = default;
ThrowingValue& operator=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = other.dummy_;
return *this;
}
ThrowingValue& operator=(ThrowingValue&& other) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kMoveAssign)) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kMoveAssign)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
return *this;
}
// Arithmetic Operators
ThrowingValue operator+(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ + other.dummy_, no_throw_ctor);
}
ThrowingValue operator+() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_, no_throw_ctor);
}
ThrowingValue operator-(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ - other.dummy_, no_throw_ctor);
}
ThrowingValue operator-() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(-dummy_, no_throw_ctor);
}
ThrowingValue& operator++() {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
++dummy_;
return *this;
}
ThrowingValue operator++(int) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
auto out = ThrowingValue(dummy_, no_throw_ctor);
++dummy_;
return out;
}
ThrowingValue& operator--() {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
--dummy_;
return *this;
}
ThrowingValue operator--(int) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
auto out = ThrowingValue(dummy_, no_throw_ctor);
--dummy_;
return out;
}
ThrowingValue operator*(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ * other.dummy_, no_throw_ctor);
}
ThrowingValue operator/(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ / other.dummy_, no_throw_ctor);
}
ThrowingValue operator%(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ % other.dummy_, no_throw_ctor);
}
ThrowingValue operator<<(int shift) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ << shift, no_throw_ctor);
}
ThrowingValue operator>>(int shift) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ >> shift, no_throw_ctor);
}
// Comparison Operators
// NOTE: We use `ThrowingBool` instead of `bool` because most STL
// types/containers requires T to be convertible to bool.
friend ThrowingBool operator==(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ == b.dummy_;
}
friend ThrowingBool operator!=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ != b.dummy_;
}
friend ThrowingBool operator<(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ < b.dummy_;
}
friend ThrowingBool operator<=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ <= b.dummy_;
}
friend ThrowingBool operator>(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ > b.dummy_;
}
friend ThrowingBool operator>=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ >= b.dummy_;
}
// Logical Operators
ThrowingBool operator!() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return !dummy_;
}
ThrowingBool operator&&(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return dummy_ && other.dummy_;
}
ThrowingBool operator||(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return dummy_ || other.dummy_;
}
// Bitwise Logical Operators
ThrowingValue operator~() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(~dummy_, no_throw_ctor);
}
ThrowingValue operator&(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ & other.dummy_, no_throw_ctor);
}
ThrowingValue operator|(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ | other.dummy_, no_throw_ctor);
}
ThrowingValue operator^(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ ^ other.dummy_, no_throw_ctor);
}
// Compound Assignment operators
ThrowingValue& operator+=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ += other.dummy_;
return *this;
}
ThrowingValue& operator-=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ -= other.dummy_;
return *this;
}
ThrowingValue& operator*=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ *= other.dummy_;
return *this;
}
ThrowingValue& operator/=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ /= other.dummy_;
return *this;
}
ThrowingValue& operator%=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ %= other.dummy_;
return *this;
}
ThrowingValue& operator&=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ &= other.dummy_;
return *this;
}
ThrowingValue& operator|=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ |= other.dummy_;
return *this;
}
ThrowingValue& operator^=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ ^= other.dummy_;
return *this;
}
ThrowingValue& operator<<=(int shift) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ <<= shift;
return *this;
}
ThrowingValue& operator>>=(int shift) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ >>= shift;
return *this;
}
// Pointer operators
void operator&() const = delete; // NOLINT(runtime/operator)
// Stream operators
friend std::ostream& operator<<(std::ostream& os, const ThrowingValue&) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return os;
}
friend std::istream& operator>>(std::istream& is, const ThrowingValue&) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return is;
}
// Memory management operators
// Args.. allows us to overload regular and placement new in one shot
template <typename... Args>
static void* operator new(size_t s, Args&&... args) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kAllocation)) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kAllocation)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
}
return ::operator new(s, std::forward<Args>(args)...);
}
template <typename... Args>
static void* operator new[](size_t s, Args&&... args) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kAllocation)) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kAllocation)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
}
return ::operator new[](s, std::forward<Args>(args)...);
}
// Abseil doesn't support throwing overloaded operator delete. These are
// provided so a throwing operator-new can clean up after itself.
//
// We provide both regular and templated operator delete because if only the
// templated version is provided as we did with operator new, the compiler has
// no way of knowing which overload of operator delete to call. See
// http://en.cppreference.com/w/cpp/memory/new/operator_delete and
// http://en.cppreference.com/w/cpp/language/delete for the gory details.
void operator delete(void* p) noexcept { ::operator delete(p); }
template <typename... Args>
void operator delete(void* p, Args&&... args) noexcept {
::operator delete(p, std::forward<Args>(args)...);
}
void operator delete[](void* p) noexcept { return ::operator delete[](p); }
template <typename... Args>
void operator delete[](void* p, Args&&... args) noexcept {
return ::operator delete[](p, std::forward<Args>(args)...);
}
// Non-standard access to the actual contained value. No need for this to
// throw.
int& Get() noexcept { return dummy_; }
const int& Get() const noexcept { return dummy_; }
private:
int dummy_;
};
// While not having to do with exceptions, explicitly delete comma operator, to
// make sure we don't use it on user-supplied types.
template <NoThrow N, typename T>
void operator,(const ThrowingValue<N>& ef, T&& t) = delete;
template <NoThrow N, typename T>
void operator,(T&& t, const ThrowingValue<N>& ef) = delete;
// An allocator type which is instrumented to throw at a controlled time, or not
// to throw, using NoThrow. The supported settings are the default of every
// function which is allowed to throw in a conforming allocator possibly
// throwing, or nothing throws, in line with the ABSL_ALLOCATOR_THROWS
// configuration macro.
template <typename T, NoThrow Flags = NoThrow::kNone>
class ThrowingAllocator : private exceptions_internal::TrackedObject {
static_assert(Flags == NoThrow::kNone || Flags == NoThrow::kNoThrow,
"Invalid flag");
public:
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using void_pointer = void*;
using const_void_pointer = const void*;
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using is_nothrow = std::integral_constant<bool, Flags == NoThrow::kNoThrow>;
using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;
using is_always_equal = std::false_type;
ThrowingAllocator() : TrackedObject(ABSL_PRETTY_FUNCTION) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = std::make_shared<const int>(next_id_++);
}
template <typename U>
ThrowingAllocator( // NOLINT
const ThrowingAllocator<U, Flags>& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {}
// According to C++11 standard [17.6.3.5], Table 28, the move/copy ctors of
// allocator shall not exit via an exception, thus they are marked noexcept.
ThrowingAllocator(const ThrowingAllocator& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {}
template <typename U>
ThrowingAllocator( // NOLINT
ThrowingAllocator<U, Flags>&& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {}
ThrowingAllocator(ThrowingAllocator&& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {}
~ThrowingAllocator() noexcept = default;
ThrowingAllocator& operator=(const ThrowingAllocator& other) noexcept {
dummy_ = other.State();
return *this;
}
template <typename U>
ThrowingAllocator& operator=(
const ThrowingAllocator<U, Flags>& other) noexcept {
dummy_ = other.State();
return *this;
}
template <typename U>
ThrowingAllocator& operator=(ThrowingAllocator<U, Flags>&& other) noexcept {
dummy_ = std::move(other.State());
return *this;
}
template <typename U>
struct rebind {
using other = ThrowingAllocator<U, Flags>;
};
pointer allocate(size_type n) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
return static_cast<pointer>(::operator new(n * sizeof(T)));
}
pointer allocate(size_type n, const_void_pointer) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
return allocate(n);
}
void deallocate(pointer ptr, size_type) noexcept {
ReadState();
::operator delete(static_cast<void*>(ptr));
}
template <typename U, typename... Args>
void construct(U* ptr, Args&&... args) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
::new (static_cast<void*>(ptr)) U(std::forward<Args>(args)...);
}
template <typename U>
void destroy(U* p) noexcept {
ReadState();
p->~U();
}
size_type max_size() const noexcept {
return std::numeric_limits<difference_type>::max() / sizeof(value_type);
}
ThrowingAllocator select_on_container_copy_construction() noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
auto& out = *this;
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
return out;
}
template <typename U>
bool operator==(const ThrowingAllocator<U, Flags>& other) const noexcept {
return dummy_ == other.dummy_;
}
template <typename U>
bool operator!=(const ThrowingAllocator<U, Flags>& other) const noexcept {
return dummy_ != other.dummy_;
}
template <typename U, NoThrow B>
friend class ThrowingAllocator;
private:
const std::shared_ptr<const int>& State() const { return dummy_; }
std::shared_ptr<const int>& State() { return dummy_; }
void ReadState() {
// we know that this will never be true, but the compiler doesn't, so this
// should safely force a read of the value.
if (*dummy_ < 0) std::abort();
}
void ReadStateAndMaybeThrow(absl::string_view msg) const {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
exceptions_internal::MaybeThrow(
absl::Substitute("Allocator id $0 threw from $1", *dummy_, msg));
}
}
static int next_id_;
std::shared_ptr<const int> dummy_;
};
template <typename T, NoThrow Throws>
int ThrowingAllocator<T, Throws>::next_id_ = 0;
// Inspects the constructions and destructions of anything inheriting from
// TrackedObject. Place this as a member variable in a test fixture to ensure
// that every ThrowingValue was constructed and destroyed correctly. This also
// allows us to safely "leak" TrackedObjects, as ConstructorTracker will destroy
// everything left over in its destructor.
struct ConstructorTracker {
ConstructorTracker() = default;
~ConstructorTracker() {
auto& allocs = exceptions_internal::TrackedObject::GetAllocs();
for (const auto& kv : allocs) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(kv.first)
<< " constructed from " << kv.second << " not destroyed";
}
allocs.clear();
}
};
// Tests for resource leaks by attempting to construct a T using args repeatedly
// until successful, using the countdown method. Side effects can then be
// tested for resource leaks. If a ConstructorTracker is present in the test
// fixture, then this will also test that memory resources are not leaked as
// long as T allocates TrackedObjects.
template <typename T, typename... Args>
T TestThrowingCtor(Args&&... args) {
struct Cleanup {
~Cleanup() { UnsetCountdown(); }
};
Cleanup c;
for (int countdown = 0;; ++countdown) {
exceptions_internal::countdown = countdown;
try {
return T(std::forward<Args>(args)...);
} catch (const exceptions_internal::TestException&) {
}
}
}
// Tests that performing operation Op on a T follows exception safety
// guarantees. By default only tests the basic guarantee. There must be a
// function, AbslCheckInvariants(T*, absl::InternalAbslNamespaceFinder) which
// returns anything convertible to bool and which makes sure the invariants of
// the type are upheld. This is called before any of the checkers. The
// InternalAbslNamespaceFinder is unused, and just helps find
// AbslCheckInvariants for absl types which become aliases to std::types in
// C++17.
//
// Parameters:
// * TFactory: operator() returns a unique_ptr to the type under test (T). It
// should always return pointers to values which compare equal.
// * FunctionFromTPtrToVoid: A functor exercising the function under test. It
// should take a T* and return void.
// * Checkers: Any number of functions taking a T* and returning
// anything contextually convertible to bool. If a testing::AssertionResult
// is used then the error message is kept. These test invariants related to
// the operation. To test the strong guarantee, pass
// absl::StrongGuarantee(factory). A checker may freely modify the passed-in
// T, for example to make sure the T can be set to a known state.
template <typename TFactory, typename FunctionFromTPtrToVoid,
typename... Checkers>
testing::AssertionResult TestExceptionSafety(TFactory factory,
FunctionFromTPtrToVoid&& op,
const Checkers&... checkers) {
struct Cleanup {
~Cleanup() { UnsetCountdown(); }
} c;
for (int countdown = 0;; ++countdown) {
auto out = exceptions_internal::TestAtCountdown(factory, op, countdown,
checkers...);
if (!out.has_value()) {
return testing::AssertionSuccess();
}
if (!*out) return *out;
}
}
// Returns a functor to test for the strong exception-safety guarantee.
// Equality comparisons are made against the T provided by the factory and
// default to using operator==.
//
// Parameters:
// * TFactory: operator() returns a unique_ptr to the type under test. It
// should always return pointers to values which compare equal.
template <typename TFactory, typename EqualTo = std::equal_to<
exceptions_internal::FactoryType<TFactory>>>
exceptions_internal::StrongGuaranteeTester<
exceptions_internal::FactoryType<TFactory>, EqualTo>
StrongGuarantee(TFactory factory, EqualTo eq = EqualTo()) {
return exceptions_internal::StrongGuaranteeTester<
exceptions_internal::FactoryType<TFactory>, EqualTo>(factory(), eq);
}
} // namespace absl
#endif // ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_