| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // The implementation of the absl::Duration class, which is declared in |
| // //absl/time.h. This class behaves like a numeric type; it has no public |
| // methods and is used only through the operators defined here. |
| // |
| // Implementation notes: |
| // |
| // An absl::Duration is represented as |
| // |
| // rep_hi_ : (int64_t) Whole seconds |
| // rep_lo_ : (uint32_t) Fractions of a second |
| // |
| // The seconds value (rep_hi_) may be positive or negative as appropriate. |
| // The fractional seconds (rep_lo_) is always a positive offset from rep_hi_. |
| // The API for Duration guarantees at least nanosecond resolution, which |
| // means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds. |
| // However, to utilize more of the available 32 bits of space in rep_lo_, |
| // we instead store quarters of a nanosecond in rep_lo_ resulting in a max |
| // value of 4B - 1. This allows us to correctly handle calculations like |
| // 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual |
| // Duration rep using quarters of a nanosecond. |
| // |
| // 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000 |
| // -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000} |
| // |
| // Infinite durations are represented as Durations with the rep_lo_ field set |
| // to all 1s. |
| // |
| // +InfiniteDuration: |
| // rep_hi_ : kint64max |
| // rep_lo_ : ~0U |
| // |
| // -InfiniteDuration: |
| // rep_hi_ : kint64min |
| // rep_lo_ : ~0U |
| // |
| // Arithmetic overflows/underflows to +/- infinity and saturates. |
| |
| #if defined(_MSC_VER) |
| #include <winsock2.h> // for timeval |
| #endif |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cctype> |
| #include <cerrno> |
| #include <cmath> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <cstring> |
| #include <ctime> |
| #include <functional> |
| #include <limits> |
| #include <string> |
| |
| #include "absl/base/casts.h" |
| #include "absl/base/macros.h" |
| #include "absl/numeric/int128.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/strings/strip.h" |
| #include "absl/time/time.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| namespace { |
| |
| using time_internal::kTicksPerNanosecond; |
| using time_internal::kTicksPerSecond; |
| |
| constexpr int64_t kint64max = std::numeric_limits<int64_t>::max(); |
| constexpr int64_t kint64min = std::numeric_limits<int64_t>::min(); |
| |
| // Can't use std::isinfinite() because it doesn't exist on windows. |
| inline bool IsFinite(double d) { |
| if (std::isnan(d)) return false; |
| return d != std::numeric_limits<double>::infinity() && |
| d != -std::numeric_limits<double>::infinity(); |
| } |
| |
| inline bool IsValidDivisor(double d) { |
| if (std::isnan(d)) return false; |
| return d != 0.0; |
| } |
| |
| // Can't use std::round() because it is only available in C++11. |
| // Note that we ignore the possibility of floating-point over/underflow. |
| template <typename Double> |
| inline double Round(Double d) { |
| return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5); |
| } |
| |
| // *sec may be positive or negative. *ticks must be in the range |
| // -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it |
| // will be normalized to a positive value by adjusting *sec accordingly. |
| inline void NormalizeTicks(int64_t* sec, int64_t* ticks) { |
| if (*ticks < 0) { |
| --*sec; |
| *ticks += kTicksPerSecond; |
| } |
| } |
| |
| // Makes a uint128 from the absolute value of the given scalar. |
| inline uint128 MakeU128(int64_t a) { |
| uint128 u128 = 0; |
| if (a < 0) { |
| ++u128; |
| ++a; // Makes it safe to negate 'a' |
| a = -a; |
| } |
| u128 += static_cast<uint64_t>(a); |
| return u128; |
| } |
| |
| // Makes a uint128 count of ticks out of the absolute value of the Duration. |
| inline uint128 MakeU128Ticks(Duration d) { |
| int64_t rep_hi = time_internal::GetRepHi(d); |
| uint32_t rep_lo = time_internal::GetRepLo(d); |
| if (rep_hi < 0) { |
| ++rep_hi; |
| rep_hi = -rep_hi; |
| rep_lo = kTicksPerSecond - rep_lo; |
| } |
| uint128 u128 = static_cast<uint64_t>(rep_hi); |
| u128 *= static_cast<uint64_t>(kTicksPerSecond); |
| u128 += rep_lo; |
| return u128; |
| } |
| |
| // Breaks a uint128 of ticks into a Duration. |
| inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) { |
| int64_t rep_hi; |
| uint32_t rep_lo; |
| const uint64_t h64 = Uint128High64(u128); |
| const uint64_t l64 = Uint128Low64(u128); |
| if (h64 == 0) { // fastpath |
| const uint64_t hi = l64 / kTicksPerSecond; |
| rep_hi = static_cast<int64_t>(hi); |
| rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond); |
| } else { |
| // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond). |
| // Any positive tick count whose high 64 bits are >= kMaxRepHi64 |
| // is not representable as a Duration. A negative tick count can |
| // have its high 64 bits == kMaxRepHi64 but only when the low 64 |
| // bits are all zero, otherwise it is not representable either. |
| const uint64_t kMaxRepHi64 = 0x77359400UL; |
| if (h64 >= kMaxRepHi64) { |
| if (is_neg && h64 == kMaxRepHi64 && l64 == 0) { |
| // Avoid trying to represent -kint64min below. |
| return time_internal::MakeDuration(kint64min); |
| } |
| return is_neg ? -InfiniteDuration() : InfiniteDuration(); |
| } |
| const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond); |
| const uint128 hi = u128 / kTicksPerSecond128; |
| rep_hi = static_cast<int64_t>(Uint128Low64(hi)); |
| rep_lo = |
| static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128)); |
| } |
| if (is_neg) { |
| rep_hi = -rep_hi; |
| if (rep_lo != 0) { |
| --rep_hi; |
| rep_lo = kTicksPerSecond - rep_lo; |
| } |
| } |
| return time_internal::MakeDuration(rep_hi, rep_lo); |
| } |
| |
| // Convert between int64_t and uint64_t, preserving representation. This |
| // allows us to do arithmetic in the unsigned domain, where overflow has |
| // well-defined behavior. See operator+=() and operator-=(). |
| // |
| // C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef |
| // name intN_t designates a signed integer type with width N, no padding |
| // bits, and a two's complement representation." So, we can convert to |
| // and from the corresponding uint64_t value using a bit cast. |
| inline uint64_t EncodeTwosComp(int64_t v) { |
| return absl::bit_cast<uint64_t>(v); |
| } |
| inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); } |
| |
| // Note: The overflow detection in this function is done using greater/less *or |
| // equal* because kint64max/min is too large to be represented exactly in a |
| // double (which only has 53 bits of precision). In order to avoid assigning to |
| // rep->hi a double value that is too large for an int64_t (and therefore is |
| // undefined), we must consider computations that equal kint64max/min as a |
| // double as overflow cases. |
| inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) { |
| double c = a_hi + b_hi; |
| if (c >= static_cast<double>(kint64max)) { |
| *d = InfiniteDuration(); |
| return false; |
| } |
| if (c <= static_cast<double>(kint64min)) { |
| *d = -InfiniteDuration(); |
| return false; |
| } |
| *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d)); |
| return true; |
| } |
| |
| // A functor that's similar to std::multiplies<T>, except this returns the max |
| // T value instead of overflowing. This is only defined for uint128. |
| template <typename Ignored> |
| struct SafeMultiply { |
| uint128 operator()(uint128 a, uint128 b) const { |
| // b hi is always zero because it originated as an int64_t. |
| assert(Uint128High64(b) == 0); |
| // Fastpath to avoid the expensive overflow check with division. |
| if (Uint128High64(a) == 0) { |
| return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0) |
| ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b)) |
| : a * b; |
| } |
| return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b; |
| } |
| }; |
| |
| // Scales (i.e., multiplies or divides, depending on the Operation template) |
| // the Duration d by the int64_t r. |
| template <template <typename> class Operation> |
| inline Duration ScaleFixed(Duration d, int64_t r) { |
| const uint128 a = MakeU128Ticks(d); |
| const uint128 b = MakeU128(r); |
| const uint128 q = Operation<uint128>()(a, b); |
| const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0); |
| return MakeDurationFromU128(q, is_neg); |
| } |
| |
| // Scales (i.e., multiplies or divides, depending on the Operation template) |
| // the Duration d by the double r. |
| template <template <typename> class Operation> |
| inline Duration ScaleDouble(Duration d, double r) { |
| Operation<double> op; |
| double hi_doub = op(time_internal::GetRepHi(d), r); |
| double lo_doub = op(time_internal::GetRepLo(d), r); |
| |
| double hi_int = 0; |
| double hi_frac = std::modf(hi_doub, &hi_int); |
| |
| // Moves hi's fractional bits to lo. |
| lo_doub /= kTicksPerSecond; |
| lo_doub += hi_frac; |
| |
| double lo_int = 0; |
| double lo_frac = std::modf(lo_doub, &lo_int); |
| |
| // Rolls lo into hi if necessary. |
| int64_t lo64 = Round(lo_frac * kTicksPerSecond); |
| |
| Duration ans; |
| if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans; |
| int64_t hi64 = time_internal::GetRepHi(ans); |
| if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans; |
| hi64 = time_internal::GetRepHi(ans); |
| lo64 %= kTicksPerSecond; |
| NormalizeTicks(&hi64, &lo64); |
| return time_internal::MakeDuration(hi64, lo64); |
| } |
| |
| // Tries to divide num by den as fast as possible by looking for common, easy |
| // cases. If the division was done, the quotient is in *q and the remainder is |
| // in *rem and true will be returned. |
| inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q, |
| Duration* rem) { |
| // Bail if num or den is an infinity. |
| if (time_internal::IsInfiniteDuration(num) || |
| time_internal::IsInfiniteDuration(den)) |
| return false; |
| |
| int64_t num_hi = time_internal::GetRepHi(num); |
| uint32_t num_lo = time_internal::GetRepLo(num); |
| int64_t den_hi = time_internal::GetRepHi(den); |
| uint32_t den_lo = time_internal::GetRepLo(den); |
| |
| if (den_hi == 0 && den_lo == kTicksPerNanosecond) { |
| // Dividing by 1ns |
| if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) { |
| *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond; |
| *rem = time_internal::MakeDuration(0, num_lo % den_lo); |
| return true; |
| } |
| } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) { |
| // Dividing by 100ns (common when converting to Universal time) |
| if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) { |
| *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond); |
| *rem = time_internal::MakeDuration(0, num_lo % den_lo); |
| return true; |
| } |
| } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) { |
| // Dividing by 1us |
| if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) { |
| *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond); |
| *rem = time_internal::MakeDuration(0, num_lo % den_lo); |
| return true; |
| } |
| } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) { |
| // Dividing by 1ms |
| if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) { |
| *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond); |
| *rem = time_internal::MakeDuration(0, num_lo % den_lo); |
| return true; |
| } |
| } else if (den_hi > 0 && den_lo == 0) { |
| // Dividing by positive multiple of 1s |
| if (num_hi >= 0) { |
| if (den_hi == 1) { |
| *q = num_hi; |
| *rem = time_internal::MakeDuration(0, num_lo); |
| return true; |
| } |
| *q = num_hi / den_hi; |
| *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo); |
| return true; |
| } |
| if (num_lo != 0) { |
| num_hi += 1; |
| } |
| int64_t quotient = num_hi / den_hi; |
| int64_t rem_sec = num_hi % den_hi; |
| if (rem_sec > 0) { |
| rem_sec -= den_hi; |
| quotient += 1; |
| } |
| if (num_lo != 0) { |
| rem_sec -= 1; |
| } |
| *q = quotient; |
| *rem = time_internal::MakeDuration(rem_sec, num_lo); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| } // namespace |
| |
| namespace time_internal { |
| |
| // The 'satq' argument indicates whether the quotient should saturate at the |
| // bounds of int64_t. If it does saturate, the difference will spill over to |
| // the remainder. If it does not saturate, the remainder remain accurate, |
| // but the returned quotient will over/underflow int64_t and should not be used. |
| int64_t IDivDuration(bool satq, const Duration num, const Duration den, |
| Duration* rem) { |
| int64_t q = 0; |
| if (IDivFastPath(num, den, &q, rem)) { |
| return q; |
| } |
| |
| const bool num_neg = num < ZeroDuration(); |
| const bool den_neg = den < ZeroDuration(); |
| const bool quotient_neg = num_neg != den_neg; |
| |
| if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { |
| *rem = num_neg ? -InfiniteDuration() : InfiniteDuration(); |
| return quotient_neg ? kint64min : kint64max; |
| } |
| if (time_internal::IsInfiniteDuration(den)) { |
| *rem = num; |
| return 0; |
| } |
| |
| const uint128 a = MakeU128Ticks(num); |
| const uint128 b = MakeU128Ticks(den); |
| uint128 quotient128 = a / b; |
| |
| if (satq) { |
| // Limits the quotient to the range of int64_t. |
| if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) { |
| quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min)) |
| : uint128(static_cast<uint64_t>(kint64max)); |
| } |
| } |
| |
| const uint128 remainder128 = a - quotient128 * b; |
| *rem = MakeDurationFromU128(remainder128, num_neg); |
| |
| if (!quotient_neg || quotient128 == 0) { |
| return Uint128Low64(quotient128) & kint64max; |
| } |
| // The quotient needs to be negated, but we need to carefully handle |
| // quotient128s with the top bit on. |
| return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1; |
| } |
| |
| } // namespace time_internal |
| |
| // |
| // Additive operators. |
| // |
| |
| Duration& Duration::operator+=(Duration rhs) { |
| if (time_internal::IsInfiniteDuration(*this)) return *this; |
| if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs; |
| const int64_t orig_rep_hi = rep_hi_; |
| rep_hi_ = |
| DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_)); |
| if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) { |
| rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1); |
| rep_lo_ -= kTicksPerSecond; |
| } |
| rep_lo_ += rhs.rep_lo_; |
| if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) { |
| return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration(); |
| } |
| return *this; |
| } |
| |
| Duration& Duration::operator-=(Duration rhs) { |
| if (time_internal::IsInfiniteDuration(*this)) return *this; |
| if (time_internal::IsInfiniteDuration(rhs)) { |
| return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); |
| } |
| const int64_t orig_rep_hi = rep_hi_; |
| rep_hi_ = |
| DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_)); |
| if (rep_lo_ < rhs.rep_lo_) { |
| rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1); |
| rep_lo_ += kTicksPerSecond; |
| } |
| rep_lo_ -= rhs.rep_lo_; |
| if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) { |
| return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); |
| } |
| return *this; |
| } |
| |
| // |
| // Multiplicative operators. |
| // |
| |
| Duration& Duration::operator*=(int64_t r) { |
| if (time_internal::IsInfiniteDuration(*this)) { |
| const bool is_neg = (r < 0) != (rep_hi_ < 0); |
| return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
| } |
| return *this = ScaleFixed<SafeMultiply>(*this, r); |
| } |
| |
| Duration& Duration::operator*=(double r) { |
| if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) { |
| const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); |
| return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
| } |
| return *this = ScaleDouble<std::multiplies>(*this, r); |
| } |
| |
| Duration& Duration::operator/=(int64_t r) { |
| if (time_internal::IsInfiniteDuration(*this) || r == 0) { |
| const bool is_neg = (r < 0) != (rep_hi_ < 0); |
| return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
| } |
| return *this = ScaleFixed<std::divides>(*this, r); |
| } |
| |
| Duration& Duration::operator/=(double r) { |
| if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) { |
| const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); |
| return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
| } |
| return *this = ScaleDouble<std::divides>(*this, r); |
| } |
| |
| Duration& Duration::operator%=(Duration rhs) { |
| time_internal::IDivDuration(false, *this, rhs, this); |
| return *this; |
| } |
| |
| double FDivDuration(Duration num, Duration den) { |
| // Arithmetic with infinity is sticky. |
| if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { |
| return (num < ZeroDuration()) == (den < ZeroDuration()) |
| ? std::numeric_limits<double>::infinity() |
| : -std::numeric_limits<double>::infinity(); |
| } |
| if (time_internal::IsInfiniteDuration(den)) return 0.0; |
| |
| double a = |
| static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond + |
| time_internal::GetRepLo(num); |
| double b = |
| static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond + |
| time_internal::GetRepLo(den); |
| return a / b; |
| } |
| |
| // |
| // Trunc/Floor/Ceil. |
| // |
| |
| Duration Trunc(Duration d, Duration unit) { |
| return d - (d % unit); |
| } |
| |
| Duration Floor(const Duration d, const Duration unit) { |
| const absl::Duration td = Trunc(d, unit); |
| return td <= d ? td : td - AbsDuration(unit); |
| } |
| |
| Duration Ceil(const Duration d, const Duration unit) { |
| const absl::Duration td = Trunc(d, unit); |
| return td >= d ? td : td + AbsDuration(unit); |
| } |
| |
| // |
| // Factory functions. |
| // |
| |
| Duration DurationFromTimespec(timespec ts) { |
| if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) { |
| int64_t ticks = ts.tv_nsec * kTicksPerNanosecond; |
| return time_internal::MakeDuration(ts.tv_sec, ticks); |
| } |
| return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec); |
| } |
| |
| Duration DurationFromTimeval(timeval tv) { |
| if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) { |
| int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond; |
| return time_internal::MakeDuration(tv.tv_sec, ticks); |
| } |
| return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec); |
| } |
| |
| // |
| // Conversion to other duration types. |
| // |
| |
| int64_t ToInt64Nanoseconds(Duration d) { |
| if (time_internal::GetRepHi(d) >= 0 && |
| time_internal::GetRepHi(d) >> 33 == 0) { |
| return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) + |
| (time_internal::GetRepLo(d) / kTicksPerNanosecond); |
| } |
| return d / Nanoseconds(1); |
| } |
| int64_t ToInt64Microseconds(Duration d) { |
| if (time_internal::GetRepHi(d) >= 0 && |
| time_internal::GetRepHi(d) >> 43 == 0) { |
| return (time_internal::GetRepHi(d) * 1000 * 1000) + |
| (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000)); |
| } |
| return d / Microseconds(1); |
| } |
| int64_t ToInt64Milliseconds(Duration d) { |
| if (time_internal::GetRepHi(d) >= 0 && |
| time_internal::GetRepHi(d) >> 53 == 0) { |
| return (time_internal::GetRepHi(d) * 1000) + |
| (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000)); |
| } |
| return d / Milliseconds(1); |
| } |
| int64_t ToInt64Seconds(Duration d) { |
| int64_t hi = time_internal::GetRepHi(d); |
| if (time_internal::IsInfiniteDuration(d)) return hi; |
| if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
| return hi; |
| } |
| int64_t ToInt64Minutes(Duration d) { |
| int64_t hi = time_internal::GetRepHi(d); |
| if (time_internal::IsInfiniteDuration(d)) return hi; |
| if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
| return hi / 60; |
| } |
| int64_t ToInt64Hours(Duration d) { |
| int64_t hi = time_internal::GetRepHi(d); |
| if (time_internal::IsInfiniteDuration(d)) return hi; |
| if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
| return hi / (60 * 60); |
| } |
| |
| double ToDoubleNanoseconds(Duration d) { |
| return FDivDuration(d, Nanoseconds(1)); |
| } |
| double ToDoubleMicroseconds(Duration d) { |
| return FDivDuration(d, Microseconds(1)); |
| } |
| double ToDoubleMilliseconds(Duration d) { |
| return FDivDuration(d, Milliseconds(1)); |
| } |
| double ToDoubleSeconds(Duration d) { |
| return FDivDuration(d, Seconds(1)); |
| } |
| double ToDoubleMinutes(Duration d) { |
| return FDivDuration(d, Minutes(1)); |
| } |
| double ToDoubleHours(Duration d) { |
| return FDivDuration(d, Hours(1)); |
| } |
| |
| timespec ToTimespec(Duration d) { |
| timespec ts; |
| if (!time_internal::IsInfiniteDuration(d)) { |
| int64_t rep_hi = time_internal::GetRepHi(d); |
| uint32_t rep_lo = time_internal::GetRepLo(d); |
| if (rep_hi < 0) { |
| // Tweak the fields so that unsigned division of rep_lo |
| // maps to truncation (towards zero) for the timespec. |
| rep_lo += kTicksPerNanosecond - 1; |
| if (rep_lo >= kTicksPerSecond) { |
| rep_hi += 1; |
| rep_lo -= kTicksPerSecond; |
| } |
| } |
| ts.tv_sec = rep_hi; |
| if (ts.tv_sec == rep_hi) { // no time_t narrowing |
| ts.tv_nsec = rep_lo / kTicksPerNanosecond; |
| return ts; |
| } |
| } |
| if (d >= ZeroDuration()) { |
| ts.tv_sec = std::numeric_limits<time_t>::max(); |
| ts.tv_nsec = 1000 * 1000 * 1000 - 1; |
| } else { |
| ts.tv_sec = std::numeric_limits<time_t>::min(); |
| ts.tv_nsec = 0; |
| } |
| return ts; |
| } |
| |
| timeval ToTimeval(Duration d) { |
| timeval tv; |
| timespec ts = ToTimespec(d); |
| if (ts.tv_sec < 0) { |
| // Tweak the fields so that positive division of tv_nsec |
| // maps to truncation (towards zero) for the timeval. |
| ts.tv_nsec += 1000 - 1; |
| if (ts.tv_nsec >= 1000 * 1000 * 1000) { |
| ts.tv_sec += 1; |
| ts.tv_nsec -= 1000 * 1000 * 1000; |
| } |
| } |
| tv.tv_sec = ts.tv_sec; |
| if (tv.tv_sec != ts.tv_sec) { // narrowing |
| if (ts.tv_sec < 0) { |
| tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min(); |
| tv.tv_usec = 0; |
| } else { |
| tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max(); |
| tv.tv_usec = 1000 * 1000 - 1; |
| } |
| return tv; |
| } |
| tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t |
| return tv; |
| } |
| |
| std::chrono::nanoseconds ToChronoNanoseconds(Duration d) { |
| return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d); |
| } |
| std::chrono::microseconds ToChronoMicroseconds(Duration d) { |
| return time_internal::ToChronoDuration<std::chrono::microseconds>(d); |
| } |
| std::chrono::milliseconds ToChronoMilliseconds(Duration d) { |
| return time_internal::ToChronoDuration<std::chrono::milliseconds>(d); |
| } |
| std::chrono::seconds ToChronoSeconds(Duration d) { |
| return time_internal::ToChronoDuration<std::chrono::seconds>(d); |
| } |
| std::chrono::minutes ToChronoMinutes(Duration d) { |
| return time_internal::ToChronoDuration<std::chrono::minutes>(d); |
| } |
| std::chrono::hours ToChronoHours(Duration d) { |
| return time_internal::ToChronoDuration<std::chrono::hours>(d); |
| } |
| |
| // |
| // To/From string formatting. |
| // |
| |
| namespace { |
| |
| // Formats a positive 64-bit integer in the given field width. Note that |
| // it is up to the caller of Format64() to ensure that there is sufficient |
| // space before ep to hold the conversion. |
| char* Format64(char* ep, int width, int64_t v) { |
| do { |
| --width; |
| *--ep = '0' + (v % 10); // contiguous digits |
| } while (v /= 10); |
| while (--width >= 0) *--ep = '0'; // zero pad |
| return ep; |
| } |
| |
| // Helpers for FormatDuration() that format 'n' and append it to 'out' |
| // followed by the given 'unit'. If 'n' formats to "0", nothing is |
| // appended (not even the unit). |
| |
| // A type that encapsulates how to display a value of a particular unit. For |
| // values that are displayed with fractional parts, the precision indicates |
| // where to round the value. The precision varies with the display unit because |
| // a Duration can hold only quarters of a nanosecond, so displaying information |
| // beyond that is just noise. |
| // |
| // For example, a microsecond value of 42.00025xxxxx should not display beyond 5 |
| // fractional digits, because it is in the noise of what a Duration can |
| // represent. |
| struct DisplayUnit { |
| absl::string_view abbr; |
| int prec; |
| double pow10; |
| }; |
| ABSL_CONST_INIT const DisplayUnit kDisplayNano = {"ns", 2, 1e2}; |
| ABSL_CONST_INIT const DisplayUnit kDisplayMicro = {"us", 5, 1e5}; |
| ABSL_CONST_INIT const DisplayUnit kDisplayMilli = {"ms", 8, 1e8}; |
| ABSL_CONST_INIT const DisplayUnit kDisplaySec = {"s", 11, 1e11}; |
| ABSL_CONST_INIT const DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored |
| ABSL_CONST_INIT const DisplayUnit kDisplayHour = {"h", -1, |
| 0.0}; // prec ignored |
| |
| void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) { |
| char buf[sizeof("2562047788015216")]; // hours in max duration |
| char* const ep = buf + sizeof(buf); |
| char* bp = Format64(ep, 0, n); |
| if (*bp != '0' || bp + 1 != ep) { |
| out->append(bp, ep - bp); |
| out->append(unit.abbr.data(), unit.abbr.size()); |
| } |
| } |
| |
| // Note: unit.prec is limited to double's digits10 value (typically 15) so it |
| // always fits in buf[]. |
| void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) { |
| constexpr int kBufferSize = std::numeric_limits<double>::digits10; |
| const int prec = std::min(kBufferSize, unit.prec); |
| char buf[kBufferSize]; // also large enough to hold integer part |
| char* ep = buf + sizeof(buf); |
| double d = 0; |
| int64_t frac_part = Round(std::modf(n, &d) * unit.pow10); |
| int64_t int_part = d; |
| if (int_part != 0 || frac_part != 0) { |
| char* bp = Format64(ep, 0, int_part); // always < 1000 |
| out->append(bp, ep - bp); |
| if (frac_part != 0) { |
| out->push_back('.'); |
| bp = Format64(ep, prec, frac_part); |
| while (ep[-1] == '0') --ep; |
| out->append(bp, ep - bp); |
| } |
| out->append(unit.abbr.data(), unit.abbr.size()); |
| } |
| } |
| |
| } // namespace |
| |
| // From Go's doc at https://golang.org/pkg/time/#Duration.String |
| // [FormatDuration] returns a string representing the duration in the |
| // form "72h3m0.5s". Leading zero units are omitted. As a special |
| // case, durations less than one second format use a smaller unit |
| // (milli-, micro-, or nanoseconds) to ensure that the leading digit |
| // is non-zero. |
| // Unlike Go, we format the zero duration as 0, with no unit. |
| std::string FormatDuration(Duration d) { |
| const Duration min_duration = Seconds(kint64min); |
| if (d == min_duration) { |
| // Avoid needing to negate kint64min by directly returning what the |
| // following code should produce in that case. |
| return "-2562047788015215h30m8s"; |
| } |
| std::string s; |
| if (d < ZeroDuration()) { |
| s.append("-"); |
| d = -d; |
| } |
| if (d == InfiniteDuration()) { |
| s.append("inf"); |
| } else if (d < Seconds(1)) { |
| // Special case for durations with a magnitude < 1 second. The duration |
| // is printed as a fraction of a single unit, e.g., "1.2ms". |
| if (d < Microseconds(1)) { |
| AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano); |
| } else if (d < Milliseconds(1)) { |
| AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro); |
| } else { |
| AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli); |
| } |
| } else { |
| AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour); |
| AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin); |
| AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec); |
| } |
| if (s.empty() || s == "-") { |
| s = "0"; |
| } |
| return s; |
| } |
| |
| namespace { |
| |
| // A helper for ParseDuration() that parses a leading number from the given |
| // string and stores the result in *int_part/*frac_part/*frac_scale. The |
| // given string pointer is modified to point to the first unconsumed char. |
| bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part, |
| int64_t* frac_part, int64_t* frac_scale) { |
| *int_part = 0; |
| *frac_part = 0; |
| *frac_scale = 1; // invariant: *frac_part < *frac_scale |
| const char* start = *dpp; |
| for (; *dpp != ep; *dpp += 1) { |
| const int d = **dpp - '0'; // contiguous digits |
| if (d < 0 || 10 <= d) break; |
| |
| if (*int_part > kint64max / 10) return false; |
| *int_part *= 10; |
| if (*int_part > kint64max - d) return false; |
| *int_part += d; |
| } |
| const bool int_part_empty = (*dpp == start); |
| if (*dpp == ep || **dpp != '.') return !int_part_empty; |
| |
| for (*dpp += 1; *dpp != ep; *dpp += 1) { |
| const int d = **dpp - '0'; // contiguous digits |
| if (d < 0 || 10 <= d) break; |
| if (*frac_scale <= kint64max / 10) { |
| *frac_part *= 10; |
| *frac_part += d; |
| *frac_scale *= 10; |
| } |
| } |
| return !int_part_empty || *frac_scale != 1; |
| } |
| |
| // A helper for ParseDuration() that parses a leading unit designator (e.g., |
| // ns, us, ms, s, m, h) from the given string and stores the resulting unit |
| // in "*unit". The given string pointer is modified to point to the first |
| // unconsumed char. |
| bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) { |
| size_t size = end - *start; |
| switch (size) { |
| case 0: |
| return false; |
| default: |
| switch (**start) { |
| case 'n': |
| if (*(*start + 1) == 's') { |
| *start += 2; |
| *unit = Nanoseconds(1); |
| return true; |
| } |
| break; |
| case 'u': |
| if (*(*start + 1) == 's') { |
| *start += 2; |
| *unit = Microseconds(1); |
| return true; |
| } |
| break; |
| case 'm': |
| if (*(*start + 1) == 's') { |
| *start += 2; |
| *unit = Milliseconds(1); |
| return true; |
| } |
| break; |
| default: |
| break; |
| } |
| ABSL_FALLTHROUGH_INTENDED; |
| case 1: |
| switch (**start) { |
| case 's': |
| *unit = Seconds(1); |
| *start += 1; |
| return true; |
| case 'm': |
| *unit = Minutes(1); |
| *start += 1; |
| return true; |
| case 'h': |
| *unit = Hours(1); |
| *start += 1; |
| return true; |
| default: |
| return false; |
| } |
| } |
| } |
| |
| } // namespace |
| |
| // From Go's doc at https://golang.org/pkg/time/#ParseDuration |
| // [ParseDuration] parses a duration string. A duration string is |
| // a possibly signed sequence of decimal numbers, each with optional |
| // fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". |
| // Valid time units are "ns", "us" "ms", "s", "m", "h". |
| bool ParseDuration(absl::string_view dur_sv, Duration* d) { |
| int sign = 1; |
| if (absl::ConsumePrefix(&dur_sv, "-")) { |
| sign = -1; |
| } else { |
| absl::ConsumePrefix(&dur_sv, "+"); |
| } |
| if (dur_sv.empty()) return false; |
| |
| // Special case for a string of "0". |
| if (dur_sv == "0") { |
| *d = ZeroDuration(); |
| return true; |
| } |
| |
| if (dur_sv == "inf") { |
| *d = sign * InfiniteDuration(); |
| return true; |
| } |
| |
| const char* start = dur_sv.data(); |
| const char* end = start + dur_sv.size(); |
| |
| Duration dur; |
| while (start != end) { |
| int64_t int_part; |
| int64_t frac_part; |
| int64_t frac_scale; |
| Duration unit; |
| if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part, |
| &frac_scale) || |
| !ConsumeDurationUnit(&start, end, &unit)) { |
| return false; |
| } |
| if (int_part != 0) dur += sign * int_part * unit; |
| if (frac_part != 0) dur += sign * frac_part * unit / frac_scale; |
| } |
| *d = dur; |
| return true; |
| } |
| |
| bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) { |
| return ParseDuration(text, dst); |
| } |
| |
| std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); } |
| bool ParseFlag(const std::string& text, Duration* dst, std::string* ) { |
| return ParseDuration(text, dst); |
| } |
| |
| std::string UnparseFlag(Duration d) { return FormatDuration(d); } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |