| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: time.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file defines abstractions for computing with absolute points |
| // in time, durations of time, and formatting and parsing time within a given |
| // time zone. The following abstractions are defined: |
| // |
| // * `absl::Time` defines an absolute, specific instance in time |
| // * `absl::Duration` defines a signed, fixed-length span of time |
| // * `absl::TimeZone` defines geopolitical time zone regions (as collected |
| // within the IANA Time Zone database (https://www.iana.org/time-zones)). |
| // |
| // Note: Absolute times are distinct from civil times, which refer to the |
| // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping |
| // between absolute and civil times can be specified by use of time zones |
| // (`absl::TimeZone` within this API). That is: |
| // |
| // Civil Time = F(Absolute Time, Time Zone) |
| // Absolute Time = G(Civil Time, Time Zone) |
| // |
| // See civil_time.h for abstractions related to constructing and manipulating |
| // civil time. |
| // |
| // Example: |
| // |
| // absl::TimeZone nyc; |
| // // LoadTimeZone() may fail so it's always better to check for success. |
| // if (!absl::LoadTimeZone("America/New_York", &nyc)) { |
| // // handle error case |
| // } |
| // |
| // // My flight leaves NYC on Jan 2, 2017 at 03:04:05 |
| // absl::CivilSecond cs(2017, 1, 2, 3, 4, 5); |
| // absl::Time takeoff = absl::FromCivil(cs, nyc); |
| // |
| // absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35); |
| // absl::Time landing = takeoff + flight_duration; |
| // |
| // absl::TimeZone syd; |
| // if (!absl::LoadTimeZone("Australia/Sydney", &syd)) { |
| // // handle error case |
| // } |
| // std::string s = absl::FormatTime( |
| // "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S", |
| // landing, syd); |
| |
| #ifndef ABSL_TIME_TIME_H_ |
| #define ABSL_TIME_TIME_H_ |
| |
| #if !defined(_MSC_VER) |
| #include <sys/time.h> |
| #else |
| // We don't include `winsock2.h` because it drags in `windows.h` and friends, |
| // and they define conflicting macros like OPAQUE, ERROR, and more. This has the |
| // potential to break Abseil users. |
| // |
| // Instead we only forward declare `timeval` and require Windows users include |
| // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is |
| // including 'windows.h' so we are picking the lesser of two evils here. |
| struct timeval; |
| #endif |
| #include <chrono> // NOLINT(build/c++11) |
| #include <cmath> |
| #include <cstdint> |
| #include <ctime> |
| #include <ostream> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/macros.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/time/civil_time.h" |
| #include "absl/time/internal/cctz/include/cctz/time_zone.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| class Duration; // Defined below |
| class Time; // Defined below |
| class TimeZone; // Defined below |
| |
| namespace time_internal { |
| int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem); |
| constexpr Time FromUnixDuration(Duration d); |
| constexpr Duration ToUnixDuration(Time t); |
| constexpr int64_t GetRepHi(Duration d); |
| constexpr uint32_t GetRepLo(Duration d); |
| constexpr Duration MakeDuration(int64_t hi, uint32_t lo); |
| constexpr Duration MakeDuration(int64_t hi, int64_t lo); |
| inline Duration MakePosDoubleDuration(double n); |
| constexpr int64_t kTicksPerNanosecond = 4; |
| constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond; |
| template <std::intmax_t N> |
| constexpr Duration FromInt64(int64_t v, std::ratio<1, N>); |
| constexpr Duration FromInt64(int64_t v, std::ratio<60>); |
| constexpr Duration FromInt64(int64_t v, std::ratio<3600>); |
| template <typename T> |
| using EnableIfIntegral = typename std::enable_if< |
| std::is_integral<T>::value || std::is_enum<T>::value, int>::type; |
| template <typename T> |
| using EnableIfFloat = |
| typename std::enable_if<std::is_floating_point<T>::value, int>::type; |
| } // namespace time_internal |
| |
| // Duration |
| // |
| // The `absl::Duration` class represents a signed, fixed-length span of time. |
| // A `Duration` is generated using a unit-specific factory function, or is |
| // the result of subtracting one `absl::Time` from another. Durations behave |
| // like unit-safe integers and they support all the natural integer-like |
| // arithmetic operations. Arithmetic overflows and saturates at +/- infinity. |
| // `Duration` should be passed by value rather than const reference. |
| // |
| // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`, |
| // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for |
| // creation of constexpr `Duration` values |
| // |
| // Examples: |
| // |
| // constexpr absl::Duration ten_ns = absl::Nanoseconds(10); |
| // constexpr absl::Duration min = absl::Minutes(1); |
| // constexpr absl::Duration hour = absl::Hours(1); |
| // absl::Duration dur = 60 * min; // dur == hour |
| // absl::Duration half_sec = absl::Milliseconds(500); |
| // absl::Duration quarter_sec = 0.25 * absl::Seconds(1); |
| // |
| // `Duration` values can be easily converted to an integral number of units |
| // using the division operator. |
| // |
| // Example: |
| // |
| // constexpr absl::Duration dur = absl::Milliseconds(1500); |
| // int64_t ns = dur / absl::Nanoseconds(1); // ns == 1500000000 |
| // int64_t ms = dur / absl::Milliseconds(1); // ms == 1500 |
| // int64_t sec = dur / absl::Seconds(1); // sec == 1 (subseconds truncated) |
| // int64_t min = dur / absl::Minutes(1); // min == 0 |
| // |
| // See the `IDivDuration()` and `FDivDuration()` functions below for details on |
| // how to access the fractional parts of the quotient. |
| // |
| // Alternatively, conversions can be performed using helpers such as |
| // `ToInt64Microseconds()` and `ToDoubleSeconds()`. |
| class Duration { |
| public: |
| // Value semantics. |
| constexpr Duration() : rep_hi_(0), rep_lo_(0) {} // zero-length duration |
| |
| // Copyable. |
| #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1910 |
| // Explicitly defining the constexpr copy constructor avoids an MSVC bug. |
| constexpr Duration(const Duration& d) |
| : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {} |
| #else |
| constexpr Duration(const Duration& d) = default; |
| #endif |
| Duration& operator=(const Duration& d) = default; |
| |
| // Compound assignment operators. |
| Duration& operator+=(Duration d); |
| Duration& operator-=(Duration d); |
| Duration& operator*=(int64_t r); |
| Duration& operator*=(double r); |
| Duration& operator/=(int64_t r); |
| Duration& operator/=(double r); |
| Duration& operator%=(Duration rhs); |
| |
| // Overloads that forward to either the int64_t or double overloads above. |
| // Integer operands must be representable as int64_t. |
| template <typename T, time_internal::EnableIfIntegral<T> = 0> |
| Duration& operator*=(T r) { |
| int64_t x = r; |
| return *this *= x; |
| } |
| |
| template <typename T, time_internal::EnableIfIntegral<T> = 0> |
| Duration& operator/=(T r) { |
| int64_t x = r; |
| return *this /= x; |
| } |
| |
| template <typename T, time_internal::EnableIfFloat<T> = 0> |
| Duration& operator*=(T r) { |
| double x = r; |
| return *this *= x; |
| } |
| |
| template <typename T, time_internal::EnableIfFloat<T> = 0> |
| Duration& operator/=(T r) { |
| double x = r; |
| return *this /= x; |
| } |
| |
| template <typename H> |
| friend H AbslHashValue(H h, Duration d) { |
| return H::combine(std::move(h), d.rep_hi_, d.rep_lo_); |
| } |
| |
| private: |
| friend constexpr int64_t time_internal::GetRepHi(Duration d); |
| friend constexpr uint32_t time_internal::GetRepLo(Duration d); |
| friend constexpr Duration time_internal::MakeDuration(int64_t hi, |
| uint32_t lo); |
| constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {} |
| int64_t rep_hi_; |
| uint32_t rep_lo_; |
| }; |
| |
| // Relational Operators |
| constexpr bool operator<(Duration lhs, Duration rhs); |
| constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; } |
| constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); } |
| constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); } |
| constexpr bool operator==(Duration lhs, Duration rhs); |
| constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); } |
| |
| // Additive Operators |
| constexpr Duration operator-(Duration d); |
| inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; } |
| inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; } |
| |
| // Multiplicative Operators |
| // Integer operands must be representable as int64_t. |
| template <typename T> |
| Duration operator*(Duration lhs, T rhs) { |
| return lhs *= rhs; |
| } |
| template <typename T> |
| Duration operator*(T lhs, Duration rhs) { |
| return rhs *= lhs; |
| } |
| template <typename T> |
| Duration operator/(Duration lhs, T rhs) { |
| return lhs /= rhs; |
| } |
| inline int64_t operator/(Duration lhs, Duration rhs) { |
| return time_internal::IDivDuration(true, lhs, rhs, |
| &lhs); // trunc towards zero |
| } |
| inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; } |
| |
| // IDivDuration() |
| // |
| // Divides a numerator `Duration` by a denominator `Duration`, returning the |
| // quotient and remainder. The remainder always has the same sign as the |
| // numerator. The returned quotient and remainder respect the identity: |
| // |
| // numerator = denominator * quotient + remainder |
| // |
| // Returned quotients are capped to the range of `int64_t`, with the difference |
| // spilling into the remainder to uphold the above identity. This means that the |
| // remainder returned could differ from the remainder returned by |
| // `Duration::operator%` for huge quotients. |
| // |
| // See also the notes on `InfiniteDuration()` below regarding the behavior of |
| // division involving zero and infinite durations. |
| // |
| // Example: |
| // |
| // constexpr absl::Duration a = |
| // absl::Seconds(std::numeric_limits<int64_t>::max()); // big |
| // constexpr absl::Duration b = absl::Nanoseconds(1); // small |
| // |
| // absl::Duration rem = a % b; |
| // // rem == absl::ZeroDuration() |
| // |
| // // Here, q would overflow int64_t, so rem accounts for the difference. |
| // int64_t q = absl::IDivDuration(a, b, &rem); |
| // // q == std::numeric_limits<int64_t>::max(), rem == a - b * q |
| inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) { |
| return time_internal::IDivDuration(true, num, den, |
| rem); // trunc towards zero |
| } |
| |
| // FDivDuration() |
| // |
| // Divides a `Duration` numerator into a fractional number of units of a |
| // `Duration` denominator. |
| // |
| // See also the notes on `InfiniteDuration()` below regarding the behavior of |
| // division involving zero and infinite durations. |
| // |
| // Example: |
| // |
| // double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1)); |
| // // d == 1.5 |
| double FDivDuration(Duration num, Duration den); |
| |
| // ZeroDuration() |
| // |
| // Returns a zero-length duration. This function behaves just like the default |
| // constructor, but the name helps make the semantics clear at call sites. |
| constexpr Duration ZeroDuration() { return Duration(); } |
| |
| // AbsDuration() |
| // |
| // Returns the absolute value of a duration. |
| inline Duration AbsDuration(Duration d) { |
| return (d < ZeroDuration()) ? -d : d; |
| } |
| |
| // Trunc() |
| // |
| // Truncates a duration (toward zero) to a multiple of a non-zero unit. |
| // |
| // Example: |
| // |
| // absl::Duration d = absl::Nanoseconds(123456789); |
| // absl::Duration a = absl::Trunc(d, absl::Microseconds(1)); // 123456us |
| Duration Trunc(Duration d, Duration unit); |
| |
| // Floor() |
| // |
| // Floors a duration using the passed duration unit to its largest value not |
| // greater than the duration. |
| // |
| // Example: |
| // |
| // absl::Duration d = absl::Nanoseconds(123456789); |
| // absl::Duration b = absl::Floor(d, absl::Microseconds(1)); // 123456us |
| Duration Floor(Duration d, Duration unit); |
| |
| // Ceil() |
| // |
| // Returns the ceiling of a duration using the passed duration unit to its |
| // smallest value not less than the duration. |
| // |
| // Example: |
| // |
| // absl::Duration d = absl::Nanoseconds(123456789); |
| // absl::Duration c = absl::Ceil(d, absl::Microseconds(1)); // 123457us |
| Duration Ceil(Duration d, Duration unit); |
| |
| // InfiniteDuration() |
| // |
| // Returns an infinite `Duration`. To get a `Duration` representing negative |
| // infinity, use `-InfiniteDuration()`. |
| // |
| // Duration arithmetic overflows to +/- infinity and saturates. In general, |
| // arithmetic with `Duration` infinities is similar to IEEE 754 infinities |
| // except where IEEE 754 NaN would be involved, in which case +/- |
| // `InfiniteDuration()` is used in place of a "nan" Duration. |
| // |
| // Examples: |
| // |
| // constexpr absl::Duration inf = absl::InfiniteDuration(); |
| // const absl::Duration d = ... any finite duration ... |
| // |
| // inf == inf + inf |
| // inf == inf + d |
| // inf == inf - inf |
| // -inf == d - inf |
| // |
| // inf == d * 1e100 |
| // inf == inf / 2 |
| // 0 == d / inf |
| // INT64_MAX == inf / d |
| // |
| // d < inf |
| // -inf < d |
| // |
| // // Division by zero returns infinity, or INT64_MIN/MAX where appropriate. |
| // inf == d / 0 |
| // INT64_MAX == d / absl::ZeroDuration() |
| // |
| // The examples involving the `/` operator above also apply to `IDivDuration()` |
| // and `FDivDuration()`. |
| constexpr Duration InfiniteDuration(); |
| |
| // Nanoseconds() |
| // Microseconds() |
| // Milliseconds() |
| // Seconds() |
| // Minutes() |
| // Hours() |
| // |
| // Factory functions for constructing `Duration` values from an integral number |
| // of the unit indicated by the factory function's name. The number must be |
| // representable as int64_t. |
| // |
| // NOTE: no "Days()" factory function exists because "a day" is ambiguous. |
| // Civil days are not always 24 hours long, and a 24-hour duration often does |
| // not correspond with a civil day. If a 24-hour duration is needed, use |
| // `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay |
| // from civil_time.h. |
| // |
| // Example: |
| // |
| // absl::Duration a = absl::Seconds(60); |
| // absl::Duration b = absl::Minutes(1); // b == a |
| template <typename T, time_internal::EnableIfIntegral<T> = 0> |
| constexpr Duration Nanoseconds(T n) { |
| return time_internal::FromInt64(n, std::nano{}); |
| } |
| template <typename T, time_internal::EnableIfIntegral<T> = 0> |
| constexpr Duration Microseconds(T n) { |
| return time_internal::FromInt64(n, std::micro{}); |
| } |
| template <typename T, time_internal::EnableIfIntegral<T> = 0> |
| constexpr Duration Milliseconds(T n) { |
| return time_internal::FromInt64(n, std::milli{}); |
| } |
| template <typename T, time_internal::EnableIfIntegral<T> = 0> |
| constexpr Duration Seconds(T n) { |
| return time_internal::FromInt64(n, std::ratio<1>{}); |
| } |
| template <typename T, time_internal::EnableIfIntegral<T> = 0> |
| constexpr Duration Minutes(T n) { |
| return time_internal::FromInt64(n, std::ratio<60>{}); |
| } |
| template <typename T, time_internal::EnableIfIntegral<T> = 0> |
| constexpr Duration Hours(T n) { |
| return time_internal::FromInt64(n, std::ratio<3600>{}); |
| } |
| |
| // Factory overloads for constructing `Duration` values from a floating-point |
| // number of the unit indicated by the factory function's name. These functions |
| // exist for convenience, but they are not as efficient as the integral |
| // factories, which should be preferred. |
| // |
| // Example: |
| // |
| // auto a = absl::Seconds(1.5); // OK |
| // auto b = absl::Milliseconds(1500); // BETTER |
| template <typename T, time_internal::EnableIfFloat<T> = 0> |
| Duration Nanoseconds(T n) { |
| return n * Nanoseconds(1); |
| } |
| template <typename T, time_internal::EnableIfFloat<T> = 0> |
| Duration Microseconds(T n) { |
| return n * Microseconds(1); |
| } |
| template <typename T, time_internal::EnableIfFloat<T> = 0> |
| Duration Milliseconds(T n) { |
| return n * Milliseconds(1); |
| } |
| template <typename T, time_internal::EnableIfFloat<T> = 0> |
| Duration Seconds(T n) { |
| if (n >= 0) { // Note: `NaN >= 0` is false. |
| if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) { |
| return InfiniteDuration(); |
| } |
| return time_internal::MakePosDoubleDuration(n); |
| } else { |
| if (std::isnan(n)) |
| return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration(); |
| if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration(); |
| return -time_internal::MakePosDoubleDuration(-n); |
| } |
| } |
| template <typename T, time_internal::EnableIfFloat<T> = 0> |
| Duration Minutes(T n) { |
| return n * Minutes(1); |
| } |
| template <typename T, time_internal::EnableIfFloat<T> = 0> |
| Duration Hours(T n) { |
| return n * Hours(1); |
| } |
| |
| // ToInt64Nanoseconds() |
| // ToInt64Microseconds() |
| // ToInt64Milliseconds() |
| // ToInt64Seconds() |
| // ToInt64Minutes() |
| // ToInt64Hours() |
| // |
| // Helper functions that convert a Duration to an integral count of the |
| // indicated unit. These return the same results as the `IDivDuration()` |
| // function, though they usually do so more efficiently; see the |
| // documentation of `IDivDuration()` for details about overflow, etc. |
| // |
| // Example: |
| // |
| // absl::Duration d = absl::Milliseconds(1500); |
| // int64_t isec = absl::ToInt64Seconds(d); // isec == 1 |
| ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Nanoseconds(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Microseconds(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Milliseconds(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Seconds(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Minutes(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION int64_t ToInt64Hours(Duration d); |
| |
| // ToDoubleNanoSeconds() |
| // ToDoubleMicroseconds() |
| // ToDoubleMilliseconds() |
| // ToDoubleSeconds() |
| // ToDoubleMinutes() |
| // ToDoubleHours() |
| // |
| // Helper functions that convert a Duration to a floating point count of the |
| // indicated unit. These functions are shorthand for the `FDivDuration()` |
| // function above; see its documentation for details about overflow, etc. |
| // |
| // Example: |
| // |
| // absl::Duration d = absl::Milliseconds(1500); |
| // double dsec = absl::ToDoubleSeconds(d); // dsec == 1.5 |
| ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleNanoseconds(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleMicroseconds(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleMilliseconds(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleSeconds(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleMinutes(Duration d); |
| ABSL_ATTRIBUTE_PURE_FUNCTION double ToDoubleHours(Duration d); |
| |
| // FromChrono() |
| // |
| // Converts any of the pre-defined std::chrono durations to an absl::Duration. |
| // |
| // Example: |
| // |
| // std::chrono::milliseconds ms(123); |
| // absl::Duration d = absl::FromChrono(ms); |
| constexpr Duration FromChrono(const std::chrono::nanoseconds& d); |
| constexpr Duration FromChrono(const std::chrono::microseconds& d); |
| constexpr Duration FromChrono(const std::chrono::milliseconds& d); |
| constexpr Duration FromChrono(const std::chrono::seconds& d); |
| constexpr Duration FromChrono(const std::chrono::minutes& d); |
| constexpr Duration FromChrono(const std::chrono::hours& d); |
| |
| // ToChronoNanoseconds() |
| // ToChronoMicroseconds() |
| // ToChronoMilliseconds() |
| // ToChronoSeconds() |
| // ToChronoMinutes() |
| // ToChronoHours() |
| // |
| // Converts an absl::Duration to any of the pre-defined std::chrono durations. |
| // If overflow would occur, the returned value will saturate at the min/max |
| // chrono duration value instead. |
| // |
| // Example: |
| // |
| // absl::Duration d = absl::Microseconds(123); |
| // auto x = absl::ToChronoMicroseconds(d); |
| // auto y = absl::ToChronoNanoseconds(d); // x == y |
| // auto z = absl::ToChronoSeconds(absl::InfiniteDuration()); |
| // // z == std::chrono::seconds::max() |
| std::chrono::nanoseconds ToChronoNanoseconds(Duration d); |
| std::chrono::microseconds ToChronoMicroseconds(Duration d); |
| std::chrono::milliseconds ToChronoMilliseconds(Duration d); |
| std::chrono::seconds ToChronoSeconds(Duration d); |
| std::chrono::minutes ToChronoMinutes(Duration d); |
| std::chrono::hours ToChronoHours(Duration d); |
| |
| // FormatDuration() |
| // |
| // Returns a string representing the duration in the form "72h3m0.5s". |
| // Returns "inf" or "-inf" for +/- `InfiniteDuration()`. |
| std::string FormatDuration(Duration d); |
| |
| // Output stream operator. |
| inline std::ostream& operator<<(std::ostream& os, Duration d) { |
| return os << FormatDuration(d); |
| } |
| |
| // ParseDuration() |
| // |
| // Parses a duration string consisting of a possibly signed sequence of |
| // decimal numbers, each with an optional fractional part and a unit |
| // suffix. The valid suffixes are "ns", "us" "ms", "s", "m", and "h". |
| // Simple examples include "300ms", "-1.5h", and "2h45m". Parses "0" as |
| // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`. |
| bool ParseDuration(absl::string_view dur_string, Duration* d); |
| |
| // AbslParseFlag() |
| // |
| // Parses a command-line flag string representation `text` into a a Duration |
| // value. Duration flags must be specified in a format that is valid input for |
| // `absl::ParseDuration()`. |
| bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error); |
| |
| |
| // AbslUnparseFlag() |
| // |
| // Unparses a Duration value into a command-line string representation using |
| // the format specified by `absl::ParseDuration()`. |
| std::string AbslUnparseFlag(Duration d); |
| |
| ABSL_DEPRECATED("Use AbslParseFlag() instead.") |
| bool ParseFlag(const std::string& text, Duration* dst, std::string* error); |
| ABSL_DEPRECATED("Use AbslUnparseFlag() instead.") |
| std::string UnparseFlag(Duration d); |
| |
| // Time |
| // |
| // An `absl::Time` represents a specific instant in time. Arithmetic operators |
| // are provided for naturally expressing time calculations. Instances are |
| // created using `absl::Now()` and the `absl::From*()` factory functions that |
| // accept the gamut of other time representations. Formatting and parsing |
| // functions are provided for conversion to and from strings. `absl::Time` |
| // should be passed by value rather than const reference. |
| // |
| // `absl::Time` assumes there are 60 seconds in a minute, which means the |
| // underlying time scales must be "smeared" to eliminate leap seconds. |
| // See https://developers.google.com/time/smear. |
| // |
| // Even though `absl::Time` supports a wide range of timestamps, exercise |
| // caution when using values in the distant past. `absl::Time` uses the |
| // Proleptic Gregorian calendar, which extends the Gregorian calendar backward |
| // to dates before its introduction in 1582. |
| // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar |
| // for more information. Use the ICU calendar classes to convert a date in |
| // some other calendar (http://userguide.icu-project.org/datetime/calendar). |
| // |
| // Similarly, standardized time zones are a reasonably recent innovation, with |
| // the Greenwich prime meridian being established in 1884. The TZ database |
| // itself does not profess accurate offsets for timestamps prior to 1970. The |
| // breakdown of future timestamps is subject to the whim of regional |
| // governments. |
| // |
| // The `absl::Time` class represents an instant in time as a count of clock |
| // ticks of some granularity (resolution) from some starting point (epoch). |
| // |
| // `absl::Time` uses a resolution that is high enough to avoid loss in |
| // precision, and a range that is wide enough to avoid overflow, when |
| // converting between tick counts in most Google time scales (i.e., resolution |
| // of at least one nanosecond, and range +/-100 billion years). Conversions |
| // between the time scales are performed by truncating (towards negative |
| // infinity) to the nearest representable point. |
| // |
| // Examples: |
| // |
| // absl::Time t1 = ...; |
| // absl::Time t2 = t1 + absl::Minutes(2); |
| // absl::Duration d = t2 - t1; // == absl::Minutes(2) |
| // |
| class Time { |
| public: |
| // Value semantics. |
| |
| // Returns the Unix epoch. However, those reading your code may not know |
| // or expect the Unix epoch as the default value, so make your code more |
| // readable by explicitly initializing all instances before use. |
| // |
| // Example: |
| // absl::Time t = absl::UnixEpoch(); |
| // absl::Time t = absl::Now(); |
| // absl::Time t = absl::TimeFromTimeval(tv); |
| // absl::Time t = absl::InfinitePast(); |
| constexpr Time() = default; |
| |
| // Copyable. |
| constexpr Time(const Time& t) = default; |
| Time& operator=(const Time& t) = default; |
| |
| // Assignment operators. |
| Time& operator+=(Duration d) { |
| rep_ += d; |
| return *this; |
| } |
| Time& operator-=(Duration d) { |
| rep_ -= d; |
| return *this; |
| } |
| |
| // Time::Breakdown |
| // |
| // The calendar and wall-clock (aka "civil time") components of an |
| // `absl::Time` in a certain `absl::TimeZone`. This struct is not |
| // intended to represent an instant in time. So, rather than passing |
| // a `Time::Breakdown` to a function, pass an `absl::Time` and an |
| // `absl::TimeZone`. |
| // |
| // Deprecated. Use `absl::TimeZone::CivilInfo`. |
| struct |
| Breakdown { |
| int64_t year; // year (e.g., 2013) |
| int month; // month of year [1:12] |
| int day; // day of month [1:31] |
| int hour; // hour of day [0:23] |
| int minute; // minute of hour [0:59] |
| int second; // second of minute [0:59] |
| Duration subsecond; // [Seconds(0):Seconds(1)) if finite |
| int weekday; // 1==Mon, ..., 7=Sun |
| int yearday; // day of year [1:366] |
| |
| // Note: The following fields exist for backward compatibility |
| // with older APIs. Accessing these fields directly is a sign of |
| // imprudent logic in the calling code. Modern time-related code |
| // should only access this data indirectly by way of FormatTime(). |
| // These fields are undefined for InfiniteFuture() and InfinitePast(). |
| int offset; // seconds east of UTC |
| bool is_dst; // is offset non-standard? |
| const char* zone_abbr; // time-zone abbreviation (e.g., "PST") |
| }; |
| |
| // Time::In() |
| // |
| // Returns the breakdown of this instant in the given TimeZone. |
| // |
| // Deprecated. Use `absl::TimeZone::At(Time)`. |
| Breakdown In(TimeZone tz) const; |
| |
| template <typename H> |
| friend H AbslHashValue(H h, Time t) { |
| return H::combine(std::move(h), t.rep_); |
| } |
| |
| private: |
| friend constexpr Time time_internal::FromUnixDuration(Duration d); |
| friend constexpr Duration time_internal::ToUnixDuration(Time t); |
| friend constexpr bool operator<(Time lhs, Time rhs); |
| friend constexpr bool operator==(Time lhs, Time rhs); |
| friend Duration operator-(Time lhs, Time rhs); |
| friend constexpr Time UniversalEpoch(); |
| friend constexpr Time InfiniteFuture(); |
| friend constexpr Time InfinitePast(); |
| constexpr explicit Time(Duration rep) : rep_(rep) {} |
| Duration rep_; |
| }; |
| |
| // Relational Operators |
| constexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; } |
| constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; } |
| constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); } |
| constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); } |
| constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; } |
| constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); } |
| |
| // Additive Operators |
| inline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; } |
| inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; } |
| inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; } |
| inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; } |
| |
| // UnixEpoch() |
| // |
| // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000". |
| constexpr Time UnixEpoch() { return Time(); } |
| |
| // UniversalEpoch() |
| // |
| // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the |
| // epoch of the ICU Universal Time Scale. |
| constexpr Time UniversalEpoch() { |
| // 719162 is the number of days from 0001-01-01 to 1970-01-01, |
| // assuming the Gregorian calendar. |
| return Time(time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, 0U)); |
| } |
| |
| // InfiniteFuture() |
| // |
| // Returns an `absl::Time` that is infinitely far in the future. |
| constexpr Time InfiniteFuture() { |
| return Time( |
| time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U)); |
| } |
| |
| // InfinitePast() |
| // |
| // Returns an `absl::Time` that is infinitely far in the past. |
| constexpr Time InfinitePast() { |
| return Time( |
| time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U)); |
| } |
| |
| // FromUnixNanos() |
| // FromUnixMicros() |
| // FromUnixMillis() |
| // FromUnixSeconds() |
| // FromTimeT() |
| // FromUDate() |
| // FromUniversal() |
| // |
| // Creates an `absl::Time` from a variety of other representations. |
| constexpr Time FromUnixNanos(int64_t ns); |
| constexpr Time FromUnixMicros(int64_t us); |
| constexpr Time FromUnixMillis(int64_t ms); |
| constexpr Time FromUnixSeconds(int64_t s); |
| constexpr Time FromTimeT(time_t t); |
| Time FromUDate(double udate); |
| Time FromUniversal(int64_t universal); |
| |
| // ToUnixNanos() |
| // ToUnixMicros() |
| // ToUnixMillis() |
| // ToUnixSeconds() |
| // ToTimeT() |
| // ToUDate() |
| // ToUniversal() |
| // |
| // Converts an `absl::Time` to a variety of other representations. Note that |
| // these operations round down toward negative infinity where necessary to |
| // adjust to the resolution of the result type. Beware of possible time_t |
| // over/underflow in ToTime{T,val,spec}() on 32-bit platforms. |
| int64_t ToUnixNanos(Time t); |
| int64_t ToUnixMicros(Time t); |
| int64_t ToUnixMillis(Time t); |
| int64_t ToUnixSeconds(Time t); |
| time_t ToTimeT(Time t); |
| double ToUDate(Time t); |
| int64_t ToUniversal(Time t); |
| |
| // DurationFromTimespec() |
| // DurationFromTimeval() |
| // ToTimespec() |
| // ToTimeval() |
| // TimeFromTimespec() |
| // TimeFromTimeval() |
| // ToTimespec() |
| // ToTimeval() |
| // |
| // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2) |
| // and select(2)), while others use them as a Time (e.g. clock_gettime(2) |
| // and gettimeofday(2)), so conversion functions are provided for both cases. |
| // The "to timespec/val" direction is easily handled via overloading, but |
| // for "from timespec/val" the desired type is part of the function name. |
| Duration DurationFromTimespec(timespec ts); |
| Duration DurationFromTimeval(timeval tv); |
| timespec ToTimespec(Duration d); |
| timeval ToTimeval(Duration d); |
| Time TimeFromTimespec(timespec ts); |
| Time TimeFromTimeval(timeval tv); |
| timespec ToTimespec(Time t); |
| timeval ToTimeval(Time t); |
| |
| // FromChrono() |
| // |
| // Converts a std::chrono::system_clock::time_point to an absl::Time. |
| // |
| // Example: |
| // |
| // auto tp = std::chrono::system_clock::from_time_t(123); |
| // absl::Time t = absl::FromChrono(tp); |
| // // t == absl::FromTimeT(123) |
| Time FromChrono(const std::chrono::system_clock::time_point& tp); |
| |
| // ToChronoTime() |
| // |
| // Converts an absl::Time to a std::chrono::system_clock::time_point. If |
| // overflow would occur, the returned value will saturate at the min/max time |
| // point value instead. |
| // |
| // Example: |
| // |
| // absl::Time t = absl::FromTimeT(123); |
| // auto tp = absl::ToChronoTime(t); |
| // // tp == std::chrono::system_clock::from_time_t(123); |
| std::chrono::system_clock::time_point ToChronoTime(Time); |
| |
| // AbslParseFlag() |
| // |
| // Parses the command-line flag string representation `text` into a Time value. |
| // Time flags must be specified in a format that matches absl::RFC3339_full. |
| // |
| // For example: |
| // |
| // --start_time=2016-01-02T03:04:05.678+08:00 |
| // |
| // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required. |
| // |
| // Additionally, if you'd like to specify a time as a count of |
| // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag |
| // and add that duration to absl::UnixEpoch() to get an absl::Time. |
| bool AbslParseFlag(absl::string_view text, Time* t, std::string* error); |
| |
| // AbslUnparseFlag() |
| // |
| // Unparses a Time value into a command-line string representation using |
| // the format specified by `absl::ParseTime()`. |
| std::string AbslUnparseFlag(Time t); |
| |
| ABSL_DEPRECATED("Use AbslParseFlag() instead.") |
| bool ParseFlag(const std::string& text, Time* t, std::string* error); |
| ABSL_DEPRECATED("Use AbslUnparseFlag() instead.") |
| std::string UnparseFlag(Time t); |
| |
| // TimeZone |
| // |
| // The `absl::TimeZone` is an opaque, small, value-type class representing a |
| // geo-political region within which particular rules are used for converting |
| // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone` |
| // values are named using the TZ identifiers from the IANA Time Zone Database, |
| // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values |
| // are created from factory functions such as `absl::LoadTimeZone()`. Note: |
| // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by |
| // value rather than const reference. |
| // |
| // For more on the fundamental concepts of time zones, absolute times, and civil |
| // times, see https://github.com/google/cctz#fundamental-concepts |
| // |
| // Examples: |
| // |
| // absl::TimeZone utc = absl::UTCTimeZone(); |
| // absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60); |
| // absl::TimeZone loc = absl::LocalTimeZone(); |
| // absl::TimeZone lax; |
| // if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { |
| // // handle error case |
| // } |
| // |
| // See also: |
| // - https://github.com/google/cctz |
| // - https://www.iana.org/time-zones |
| // - https://en.wikipedia.org/wiki/Zoneinfo |
| class TimeZone { |
| public: |
| explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {} |
| TimeZone() = default; // UTC, but prefer UTCTimeZone() to be explicit. |
| |
| // Copyable. |
| TimeZone(const TimeZone&) = default; |
| TimeZone& operator=(const TimeZone&) = default; |
| |
| explicit operator time_internal::cctz::time_zone() const { return cz_; } |
| |
| std::string name() const { return cz_.name(); } |
| |
| // TimeZone::CivilInfo |
| // |
| // Information about the civil time corresponding to an absolute time. |
| // This struct is not intended to represent an instant in time. So, rather |
| // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time` |
| // and an `absl::TimeZone`. |
| struct CivilInfo { |
| CivilSecond cs; |
| Duration subsecond; |
| |
| // Note: The following fields exist for backward compatibility |
| // with older APIs. Accessing these fields directly is a sign of |
| // imprudent logic in the calling code. Modern time-related code |
| // should only access this data indirectly by way of FormatTime(). |
| // These fields are undefined for InfiniteFuture() and InfinitePast(). |
| int offset; // seconds east of UTC |
| bool is_dst; // is offset non-standard? |
| const char* zone_abbr; // time-zone abbreviation (e.g., "PST") |
| }; |
| |
| // TimeZone::At(Time) |
| // |
| // Returns the civil time for this TimeZone at a certain `absl::Time`. |
| // If the input time is infinite, the output civil second will be set to |
| // CivilSecond::max() or min(), and the subsecond will be infinite. |
| // |
| // Example: |
| // |
| // const auto epoch = lax.At(absl::UnixEpoch()); |
| // // epoch.cs == 1969-12-31 16:00:00 |
| // // epoch.subsecond == absl::ZeroDuration() |
| // // epoch.offset == -28800 |
| // // epoch.is_dst == false |
| // // epoch.abbr == "PST" |
| CivilInfo At(Time t) const; |
| |
| // TimeZone::TimeInfo |
| // |
| // Information about the absolute times corresponding to a civil time. |
| // (Subseconds must be handled separately.) |
| // |
| // It is possible for a caller to pass a civil-time value that does |
| // not represent an actual or unique instant in time (due to a shift |
| // in UTC offset in the TimeZone, which results in a discontinuity in |
| // the civil-time components). For example, a daylight-saving-time |
| // transition skips or repeats civil times---in the United States, |
| // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15 |
| // occurred twice---so requests for such times are not well-defined. |
| // To account for these possibilities, `absl::TimeZone::TimeInfo` is |
| // richer than just a single `absl::Time`. |
| struct TimeInfo { |
| enum CivilKind { |
| UNIQUE, // the civil time was singular (pre == trans == post) |
| SKIPPED, // the civil time did not exist (pre >= trans > post) |
| REPEATED, // the civil time was ambiguous (pre < trans <= post) |
| } kind; |
| Time pre; // time calculated using the pre-transition offset |
| Time trans; // when the civil-time discontinuity occurred |
| Time post; // time calculated using the post-transition offset |
| }; |
| |
| // TimeZone::At(CivilSecond) |
| // |
| // Returns an `absl::TimeInfo` containing the absolute time(s) for this |
| // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or |
| // repeated, returns times calculated using the pre-transition and post- |
| // transition UTC offsets, plus the transition time itself. |
| // |
| // Examples: |
| // |
| // // A unique civil time |
| // const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0)); |
| // // jan01.kind == TimeZone::TimeInfo::UNIQUE |
| // // jan01.pre is 2011-01-01 00:00:00 -0800 |
| // // jan01.trans is 2011-01-01 00:00:00 -0800 |
| // // jan01.post is 2011-01-01 00:00:00 -0800 |
| // |
| // // A Spring DST transition, when there is a gap in civil time |
| // const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0)); |
| // // mar13.kind == TimeZone::TimeInfo::SKIPPED |
| // // mar13.pre is 2011-03-13 03:15:00 -0700 |
| // // mar13.trans is 2011-03-13 03:00:00 -0700 |
| // // mar13.post is 2011-03-13 01:15:00 -0800 |
| // |
| // // A Fall DST transition, when civil times are repeated |
| // const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0)); |
| // // nov06.kind == TimeZone::TimeInfo::REPEATED |
| // // nov06.pre is 2011-11-06 01:15:00 -0700 |
| // // nov06.trans is 2011-11-06 01:00:00 -0800 |
| // // nov06.post is 2011-11-06 01:15:00 -0800 |
| TimeInfo At(CivilSecond ct) const; |
| |
| // TimeZone::NextTransition() |
| // TimeZone::PrevTransition() |
| // |
| // Finds the time of the next/previous offset change in this time zone. |
| // |
| // By definition, `NextTransition(t, &trans)` returns false when `t` is |
| // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false |
| // when `t` is `InfinitePast()`. If the zone has no transitions, the |
| // result will also be false no matter what the argument. |
| // |
| // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)` |
| // returns true and sets `trans` to the first recorded transition. Chains |
| // of calls to `NextTransition()/PrevTransition()` will eventually return |
| // false, but it is unspecified exactly when `NextTransition(t, &trans)` |
| // jumps to false, or what time is set by `PrevTransition(t, &trans)` for |
| // a very distant `t`. |
| // |
| // Note: Enumeration of time-zone transitions is for informational purposes |
| // only. Modern time-related code should not care about when offset changes |
| // occur. |
| // |
| // Example: |
| // absl::TimeZone nyc; |
| // if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... } |
| // const auto now = absl::Now(); |
| // auto t = absl::InfinitePast(); |
| // absl::TimeZone::CivilTransition trans; |
| // while (t <= now && nyc.NextTransition(t, &trans)) { |
| // // transition: trans.from -> trans.to |
| // t = nyc.At(trans.to).trans; |
| // } |
| struct CivilTransition { |
| CivilSecond from; // the civil time we jump from |
| CivilSecond to; // the civil time we jump to |
| }; |
| bool NextTransition(Time t, CivilTransition* trans) const; |
| bool PrevTransition(Time t, CivilTransition* trans) const; |
| |
| template <typename H> |
| friend H AbslHashValue(H h, TimeZone tz) { |
| return H::combine(std::move(h), tz.cz_); |
| } |
| |
| private: |
| friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; } |
| friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; } |
| friend std::ostream& operator<<(std::ostream& os, TimeZone tz) { |
| return os << tz.name(); |
| } |
| |
| time_internal::cctz::time_zone cz_; |
| }; |
| |
| // LoadTimeZone() |
| // |
| // Loads the named zone. May perform I/O on the initial load of the named |
| // zone. If the name is invalid, or some other kind of error occurs, returns |
| // `false` and `*tz` is set to the UTC time zone. |
| inline bool LoadTimeZone(absl::string_view name, TimeZone* tz) { |
| if (name == "localtime") { |
| *tz = TimeZone(time_internal::cctz::local_time_zone()); |
| return true; |
| } |
| time_internal::cctz::time_zone cz; |
| const bool b = time_internal::cctz::load_time_zone(std::string(name), &cz); |
| *tz = TimeZone(cz); |
| return b; |
| } |
| |
| // FixedTimeZone() |
| // |
| // Returns a TimeZone that is a fixed offset (seconds east) from UTC. |
| // Note: If the absolute value of the offset is greater than 24 hours |
| // you'll get UTC (i.e., no offset) instead. |
| inline TimeZone FixedTimeZone(int seconds) { |
| return TimeZone( |
| time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds))); |
| } |
| |
| // UTCTimeZone() |
| // |
| // Convenience method returning the UTC time zone. |
| inline TimeZone UTCTimeZone() { |
| return TimeZone(time_internal::cctz::utc_time_zone()); |
| } |
| |
| // LocalTimeZone() |
| // |
| // Convenience method returning the local time zone, or UTC if there is |
| // no configured local zone. Warning: Be wary of using LocalTimeZone(), |
| // and particularly so in a server process, as the zone configured for the |
| // local machine should be irrelevant. Prefer an explicit zone name. |
| inline TimeZone LocalTimeZone() { |
| return TimeZone(time_internal::cctz::local_time_zone()); |
| } |
| |
| // ToCivilSecond() |
| // ToCivilMinute() |
| // ToCivilHour() |
| // ToCivilDay() |
| // ToCivilMonth() |
| // ToCivilYear() |
| // |
| // Helpers for TimeZone::At(Time) to return particularly aligned civil times. |
| // |
| // Example: |
| // |
| // absl::Time t = ...; |
| // absl::TimeZone tz = ...; |
| // const auto cd = absl::ToCivilDay(t, tz); |
| inline CivilSecond ToCivilSecond(Time t, TimeZone tz) { |
| return tz.At(t).cs; // already a CivilSecond |
| } |
| inline CivilMinute ToCivilMinute(Time t, TimeZone tz) { |
| return CivilMinute(tz.At(t).cs); |
| } |
| inline CivilHour ToCivilHour(Time t, TimeZone tz) { |
| return CivilHour(tz.At(t).cs); |
| } |
| inline CivilDay ToCivilDay(Time t, TimeZone tz) { |
| return CivilDay(tz.At(t).cs); |
| } |
| inline CivilMonth ToCivilMonth(Time t, TimeZone tz) { |
| return CivilMonth(tz.At(t).cs); |
| } |
| inline CivilYear ToCivilYear(Time t, TimeZone tz) { |
| return CivilYear(tz.At(t).cs); |
| } |
| |
| // FromCivil() |
| // |
| // Helper for TimeZone::At(CivilSecond) that provides "order-preserving |
| // semantics." If the civil time maps to a unique time, that time is |
| // returned. If the civil time is repeated in the given time zone, the |
| // time using the pre-transition offset is returned. Otherwise, the |
| // civil time is skipped in the given time zone, and the transition time |
| // is returned. This means that for any two civil times, ct1 and ct2, |
| // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case |
| // being when two non-existent civil times map to the same transition time. |
| // |
| // Note: Accepts civil times of any alignment. |
| inline Time FromCivil(CivilSecond ct, TimeZone tz) { |
| const auto ti = tz.At(ct); |
| if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans; |
| return ti.pre; |
| } |
| |
| // TimeConversion |
| // |
| // An `absl::TimeConversion` represents the conversion of year, month, day, |
| // hour, minute, and second values (i.e., a civil time), in a particular |
| // `absl::TimeZone`, to a time instant (an absolute time), as returned by |
| // `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`. |
| // |
| // Deprecated. Use `absl::TimeZone::TimeInfo`. |
| struct |
| TimeConversion { |
| Time pre; // time calculated using the pre-transition offset |
| Time trans; // when the civil-time discontinuity occurred |
| Time post; // time calculated using the post-transition offset |
| |
| enum Kind { |
| UNIQUE, // the civil time was singular (pre == trans == post) |
| SKIPPED, // the civil time did not exist |
| REPEATED, // the civil time was ambiguous |
| }; |
| Kind kind; |
| |
| bool normalized; // input values were outside their valid ranges |
| }; |
| |
| // ConvertDateTime() |
| // |
| // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes |
| // the civil time as six, separate values (YMDHMS). |
| // |
| // The input month, day, hour, minute, and second values can be outside |
| // of their valid ranges, in which case they will be "normalized" during |
| // the conversion. |
| // |
| // Example: |
| // |
| // // "October 32" normalizes to "November 1". |
| // absl::TimeConversion tc = |
| // absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax); |
| // // tc.kind == TimeConversion::UNIQUE && tc.normalized == true |
| // // absl::ToCivilDay(tc.pre, tz).month() == 11 |
| // // absl::ToCivilDay(tc.pre, tz).day() == 1 |
| // |
| // Deprecated. Use `absl::TimeZone::At(CivilSecond)`. |
| TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, |
| int min, int sec, TimeZone tz); |
| |
| // FromDateTime() |
| // |
| // A convenience wrapper for `absl::ConvertDateTime()` that simply returns |
| // the "pre" `absl::Time`. That is, the unique result, or the instant that |
| // is correct using the pre-transition offset (as if the transition never |
| // happened). |
| // |
| // Example: |
| // |
| // absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax); |
| // // t = 2017-09-26 09:30:00 -0700 |
| // |
| // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the |
| // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil |
| // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`. |
| inline Time FromDateTime(int64_t year, int mon, int day, int hour, |
| int min, int sec, TimeZone tz) { |
| return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre; |
| } |
| |
| // FromTM() |
| // |
| // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and |
| // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3) |
| // for a description of the expected values of the tm fields. If the civil time |
| // is unique (see `absl::TimeZone::At(absl::CivilSecond)` above), the matching |
| // time instant is returned. Otherwise, the `tm_isdst` field is consulted to |
| // choose between the possible results. For a repeated civil time, `tm_isdst != |
| // 0` returns the matching DST instant, while `tm_isdst == 0` returns the |
| // matching non-DST instant. For a skipped civil time there is no matching |
| // instant, so `tm_isdst != 0` returns the DST instant, and `tm_isdst == 0` |
| // returns the non-DST instant, that would have matched if the transition never |
| // happened. |
| Time FromTM(const struct tm& tm, TimeZone tz); |
| |
| // ToTM() |
| // |
| // Converts the given `absl::Time` to a struct tm using the given time zone. |
| // See ctime(3) for a description of the values of the tm fields. |
| struct tm ToTM(Time t, TimeZone tz); |
| |
| // RFC3339_full |
| // RFC3339_sec |
| // |
| // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings, |
| // with trailing zeros trimmed or with fractional seconds omitted altogether. |
| // |
| // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and |
| // time with UTC offset. Also note the use of "%Y": RFC3339 mandates that |
| // years have exactly four digits, but we allow them to take their natural |
| // width. |
| ABSL_DLL extern const char RFC3339_full[]; // %Y-%m-%d%ET%H:%M:%E*S%Ez |
| ABSL_DLL extern const char RFC3339_sec[]; // %Y-%m-%d%ET%H:%M:%S%Ez |
| |
| // RFC1123_full |
| // RFC1123_no_wday |
| // |
| // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings. |
| ABSL_DLL extern const char RFC1123_full[]; // %a, %d %b %E4Y %H:%M:%S %z |
| ABSL_DLL extern const char RFC1123_no_wday[]; // %d %b %E4Y %H:%M:%S %z |
| |
| // FormatTime() |
| // |
| // Formats the given `absl::Time` in the `absl::TimeZone` according to the |
| // provided format string. Uses strftime()-like formatting options, with |
| // the following extensions: |
| // |
| // - %Ez - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm) |
| // - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss) |
| // - %E#S - Seconds with # digits of fractional precision |
| // - %E*S - Seconds with full fractional precision (a literal '*') |
| // - %E#f - Fractional seconds with # digits of precision |
| // - %E*f - Fractional seconds with full precision (a literal '*') |
| // - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999) |
| // - %ET - The RFC3339 "date-time" separator "T" |
| // |
| // Note that %E0S behaves like %S, and %E0f produces no characters. In |
| // contrast %E*f always produces at least one digit, which may be '0'. |
| // |
| // Note that %Y produces as many characters as it takes to fully render the |
| // year. A year outside of [-999:9999] when formatted with %E4Y will produce |
| // more than four characters, just like %Y. |
| // |
| // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z) |
| // so that the result uniquely identifies a time instant. |
| // |
| // Example: |
| // |
| // absl::CivilSecond cs(2013, 1, 2, 3, 4, 5); |
| // absl::Time t = absl::FromCivil(cs, lax); |
| // std::string f = absl::FormatTime("%H:%M:%S", t, lax); // "03:04:05" |
| // f = absl::FormatTime("%H:%M:%E3S", t, lax); // "03:04:05.000" |
| // |
| // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned |
| // string will be exactly "infinite-future". If the given `absl::Time` is |
| // `absl::InfinitePast()`, the returned string will be exactly "infinite-past". |
| // In both cases the given format string and `absl::TimeZone` are ignored. |
| // |
| std::string FormatTime(absl::string_view format, Time t, TimeZone tz); |
| |
| // Convenience functions that format the given time using the RFC3339_full |
| // format. The first overload uses the provided TimeZone, while the second |
| // uses LocalTimeZone(). |
| std::string FormatTime(Time t, TimeZone tz); |
| std::string FormatTime(Time t); |
| |
| // Output stream operator. |
| inline std::ostream& operator<<(std::ostream& os, Time t) { |
| return os << FormatTime(t); |
| } |
| |
| // ParseTime() |
| // |
| // Parses an input string according to the provided format string and |
| // returns the corresponding `absl::Time`. Uses strftime()-like formatting |
| // options, with the same extensions as FormatTime(), but with the |
| // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f. %Ez |
| // and %E*z also accept the same inputs, which (along with %z) includes |
| // 'z' and 'Z' as synonyms for +00:00. %ET accepts either 'T' or 't'. |
| // |
| // %Y consumes as many numeric characters as it can, so the matching data |
| // should always be terminated with a non-numeric. %E4Y always consumes |
| // exactly four characters, including any sign. |
| // |
| // Unspecified fields are taken from the default date and time of ... |
| // |
| // "1970-01-01 00:00:00.0 +0000" |
| // |
| // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time |
| // that represents "1970-01-01 15:45:00.0 +0000". |
| // |
| // Note that since ParseTime() returns time instants, it makes the most sense |
| // to parse fully-specified date/time strings that include a UTC offset (%z, |
| // %Ez, or %E*z). |
| // |
| // Note also that `absl::ParseTime()` only heeds the fields year, month, day, |
| // hour, minute, (fractional) second, and UTC offset. Other fields, like |
| // weekday (%a or %A), while parsed for syntactic validity, are ignored |
| // in the conversion. |
| // |
| // Date and time fields that are out-of-range will be treated as errors |
| // rather than normalizing them like `absl::CivilSecond` does. For example, |
| // it is an error to parse the date "Oct 32, 2013" because 32 is out of range. |
| // |
| // A leap second of ":60" is normalized to ":00" of the following minute |
| // with fractional seconds discarded. The following table shows how the |
| // given seconds and subseconds will be parsed: |
| // |
| // "59.x" -> 59.x // exact |
| // "60.x" -> 00.0 // normalized |
| // "00.x" -> 00.x // exact |
| // |
| // Errors are indicated by returning false and assigning an error message |
| // to the "err" out param if it is non-null. |
| // |
| // Note: If the input string is exactly "infinite-future", the returned |
| // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned. |
| // If the input string is "infinite-past", the returned `absl::Time` will be |
| // `absl::InfinitePast()` and `true` will be returned. |
| // |
| bool ParseTime(absl::string_view format, absl::string_view input, Time* time, |
| std::string* err); |
| |
| // Like ParseTime() above, but if the format string does not contain a UTC |
| // offset specification (%z/%Ez/%E*z) then the input is interpreted in the |
| // given TimeZone. This means that the input, by itself, does not identify a |
| // unique instant. Being time-zone dependent, it also admits the possibility |
| // of ambiguity or non-existence, in which case the "pre" time (as defined |
| // by TimeZone::TimeInfo) is returned. For these reasons we recommend that |
| // all date/time strings include a UTC offset so they're context independent. |
| bool ParseTime(absl::string_view format, absl::string_view input, TimeZone tz, |
| Time* time, std::string* err); |
| |
| // ============================================================================ |
| // Implementation Details Follow |
| // ============================================================================ |
| |
| namespace time_internal { |
| |
| // Creates a Duration with a given representation. |
| // REQUIRES: hi,lo is a valid representation of a Duration as specified |
| // in time/duration.cc. |
| constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) { |
| return Duration(hi, lo); |
| } |
| |
| constexpr Duration MakeDuration(int64_t hi, int64_t lo) { |
| return MakeDuration(hi, static_cast<uint32_t>(lo)); |
| } |
| |
| // Make a Duration value from a floating-point number, as long as that number |
| // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as |
| // it's positive and can be converted to int64_t without risk of UB. |
| inline Duration MakePosDoubleDuration(double n) { |
| const int64_t int_secs = static_cast<int64_t>(n); |
| const uint32_t ticks = static_cast<uint32_t>( |
| std::round((n - static_cast<double>(int_secs)) * kTicksPerSecond)); |
| return ticks < kTicksPerSecond |
| ? MakeDuration(int_secs, ticks) |
| : MakeDuration(int_secs + 1, ticks - kTicksPerSecond); |
| } |
| |
| // Creates a normalized Duration from an almost-normalized (sec,ticks) |
| // pair. sec may be positive or negative. ticks must be in the range |
| // -kTicksPerSecond < *ticks < kTicksPerSecond. If ticks is negative it |
| // will be normalized to a positive value in the resulting Duration. |
| constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) { |
| return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond) |
| : MakeDuration(sec, ticks); |
| } |
| |
| // Provide access to the Duration representation. |
| constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; } |
| constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; } |
| |
| // Returns true iff d is positive or negative infinity. |
| constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; } |
| |
| // Returns an infinite Duration with the opposite sign. |
| // REQUIRES: IsInfiniteDuration(d) |
| constexpr Duration OppositeInfinity(Duration d) { |
| return GetRepHi(d) < 0 |
| ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U) |
| : MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U); |
| } |
| |
| // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow. |
| constexpr int64_t NegateAndSubtractOne(int64_t n) { |
| // Note: Good compilers will optimize this expression to ~n when using |
| // a two's-complement representation (which is required for int64_t). |
| return (n < 0) ? -(n + 1) : (-n) - 1; |
| } |
| |
| // Map between a Time and a Duration since the Unix epoch. Note that these |
| // functions depend on the above mentioned choice of the Unix epoch for the |
| // Time representation (and both need to be Time friends). Without this |
| // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively. |
| constexpr Time FromUnixDuration(Duration d) { return Time(d); } |
| constexpr Duration ToUnixDuration(Time t) { return t.rep_; } |
| |
| template <std::intmax_t N> |
| constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) { |
| static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio"); |
| // Subsecond ratios cannot overflow. |
| return MakeNormalizedDuration( |
| v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N); |
| } |
| constexpr Duration FromInt64(int64_t v, std::ratio<60>) { |
| return (v <= (std::numeric_limits<int64_t>::max)() / 60 && |
| v >= (std::numeric_limits<int64_t>::min)() / 60) |
| ? MakeDuration(v * 60) |
| : v > 0 ? InfiniteDuration() : -InfiniteDuration(); |
| } |
| constexpr Duration FromInt64(int64_t v, std::ratio<3600>) { |
| return (v <= (std::numeric_limits<int64_t>::max)() / 3600 && |
| v >= (std::numeric_limits<int64_t>::min)() / 3600) |
| ? MakeDuration(v * 3600) |
| : v > 0 ? InfiniteDuration() : -InfiniteDuration(); |
| } |
| |
| // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is |
| // valid. That is, if a T can be assigned to an int64_t without narrowing. |
| template <typename T> |
| constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) { |
| return true; |
| } |
| template <typename T> |
| constexpr auto IsValidRep64(char) -> bool { |
| return false; |
| } |
| |
| // Converts a std::chrono::duration to an absl::Duration. |
| template <typename Rep, typename Period> |
| constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) { |
| static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); |
| return FromInt64(int64_t{d.count()}, Period{}); |
| } |
| |
| template <typename Ratio> |
| int64_t ToInt64(Duration d, Ratio) { |
| // Note: This may be used on MSVC, which may have a system_clock period of |
| // std::ratio<1, 10 * 1000 * 1000> |
| return ToInt64Seconds(d * Ratio::den / Ratio::num); |
| } |
| // Fastpath implementations for the 6 common duration units. |
| inline int64_t ToInt64(Duration d, std::nano) { |
| return ToInt64Nanoseconds(d); |
| } |
| inline int64_t ToInt64(Duration d, std::micro) { |
| return ToInt64Microseconds(d); |
| } |
| inline int64_t ToInt64(Duration d, std::milli) { |
| return ToInt64Milliseconds(d); |
| } |
| inline int64_t ToInt64(Duration d, std::ratio<1>) { |
| return ToInt64Seconds(d); |
| } |
| inline int64_t ToInt64(Duration d, std::ratio<60>) { |
| return ToInt64Minutes(d); |
| } |
| inline int64_t ToInt64(Duration d, std::ratio<3600>) { |
| return ToInt64Hours(d); |
| } |
| |
| // Converts an absl::Duration to a chrono duration of type T. |
| template <typename T> |
| T ToChronoDuration(Duration d) { |
| using Rep = typename T::rep; |
| using Period = typename T::period; |
| static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); |
| if (time_internal::IsInfiniteDuration(d)) |
| return d < ZeroDuration() ? (T::min)() : (T::max)(); |
| const auto v = ToInt64(d, Period{}); |
| if (v > (std::numeric_limits<Rep>::max)()) return (T::max)(); |
| if (v < (std::numeric_limits<Rep>::min)()) return (T::min)(); |
| return T{v}; |
| } |
| |
| } // namespace time_internal |
| |
| constexpr bool operator<(Duration lhs, Duration rhs) { |
| return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs) |
| ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs) |
| : time_internal::GetRepHi(lhs) == (std::numeric_limits<int64_t>::min)() |
| ? time_internal::GetRepLo(lhs) + 1 < |
| time_internal::GetRepLo(rhs) + 1 |
| : time_internal::GetRepLo(lhs) < time_internal::GetRepLo(rhs); |
| } |
| |
| constexpr bool operator==(Duration lhs, Duration rhs) { |
| return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) && |
| time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs); |
| } |
| |
| constexpr Duration operator-(Duration d) { |
| // This is a little interesting because of the special cases. |
| // |
| // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're |
| // dealing with an integral number of seconds, and the only special case is |
| // the maximum negative finite duration, which can't be negated. |
| // |
| // Infinities stay infinite, and just change direction. |
| // |
| // Finally we're in the case where rep_lo_ is non-zero, and we can borrow |
| // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1 |
| // is safe). |
| return time_internal::GetRepLo(d) == 0 |
| ? time_internal::GetRepHi(d) == |
| (std::numeric_limits<int64_t>::min)() |
| ? InfiniteDuration() |
| : time_internal::MakeDuration(-time_internal::GetRepHi(d)) |
| : time_internal::IsInfiniteDuration(d) |
| ? time_internal::OppositeInfinity(d) |
| : time_internal::MakeDuration( |
| time_internal::NegateAndSubtractOne( |
| time_internal::GetRepHi(d)), |
| time_internal::kTicksPerSecond - |
| time_internal::GetRepLo(d)); |
| } |
| |
| constexpr Duration InfiniteDuration() { |
| return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), |
| ~0U); |
| } |
| |
| constexpr Duration FromChrono(const std::chrono::nanoseconds& d) { |
| return time_internal::FromChrono(d); |
| } |
| constexpr Duration FromChrono(const std::chrono::microseconds& d) { |
| return time_internal::FromChrono(d); |
| } |
| constexpr Duration FromChrono(const std::chrono::milliseconds& d) { |
| return time_internal::FromChrono(d); |
| } |
| constexpr Duration FromChrono(const std::chrono::seconds& d) { |
| return time_internal::FromChrono(d); |
| } |
| constexpr Duration FromChrono(const std::chrono::minutes& d) { |
| return time_internal::FromChrono(d); |
| } |
| constexpr Duration FromChrono(const std::chrono::hours& d) { |
| return time_internal::FromChrono(d); |
| } |
| |
| constexpr Time FromUnixNanos(int64_t ns) { |
| return time_internal::FromUnixDuration(Nanoseconds(ns)); |
| } |
| |
| constexpr Time FromUnixMicros(int64_t us) { |
| return time_internal::FromUnixDuration(Microseconds(us)); |
| } |
| |
| constexpr Time FromUnixMillis(int64_t ms) { |
| return time_internal::FromUnixDuration(Milliseconds(ms)); |
| } |
| |
| constexpr Time FromUnixSeconds(int64_t s) { |
| return time_internal::FromUnixDuration(Seconds(s)); |
| } |
| |
| constexpr Time FromTimeT(time_t t) { |
| return time_internal::FromUnixDuration(Seconds(t)); |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_TIME_TIME_H_ |