blob: f67326fdef3dbb8b5ecfa63f52ca290ab16216c6 [file] [log] [blame]
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/cord.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <memory>
#include <ostream>
#include <sstream>
#include <string>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/base/nullability.h"
#include "absl/container/inlined_vector.h"
#include "absl/crc/crc32c.h"
#include "absl/crc/internal/crc_cord_state.h"
#include "absl/functional/function_ref.h"
#include "absl/strings/cord_buffer.h"
#include "absl/strings/escaping.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_crc.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
using ::absl::cord_internal::CordRep;
using ::absl::cord_internal::CordRepBtree;
using ::absl::cord_internal::CordRepCrc;
using ::absl::cord_internal::CordRepExternal;
using ::absl::cord_internal::CordRepFlat;
using ::absl::cord_internal::CordRepSubstring;
using ::absl::cord_internal::CordzUpdateTracker;
using ::absl::cord_internal::InlineData;
using ::absl::cord_internal::kMaxFlatLength;
using ::absl::cord_internal::kMinFlatLength;
using ::absl::cord_internal::kInlinedVectorSize;
using ::absl::cord_internal::kMaxBytesToCopy;
static void DumpNode(absl::Nonnull<CordRep*> rep, bool include_data,
absl::Nonnull<std::ostream*> os, int indent = 0);
static bool VerifyNode(absl::Nonnull<CordRep*> root,
absl::Nonnull<CordRep*> start_node);
static inline absl::Nullable<CordRep*> VerifyTree(
absl::Nullable<CordRep*> node) {
assert(node == nullptr || VerifyNode(node, node));
static_cast<void>(&VerifyNode);
return node;
}
static absl::Nonnull<CordRepFlat*> CreateFlat(absl::Nonnull<const char*> data,
size_t length,
size_t alloc_hint) {
CordRepFlat* flat = CordRepFlat::New(length + alloc_hint);
flat->length = length;
memcpy(flat->Data(), data, length);
return flat;
}
// Creates a new flat or Btree out of the specified array.
// The returned node has a refcount of 1.
static absl::Nonnull<CordRep*> NewBtree(absl::Nonnull<const char*> data,
size_t length, size_t alloc_hint) {
if (length <= kMaxFlatLength) {
return CreateFlat(data, length, alloc_hint);
}
CordRepFlat* flat = CreateFlat(data, kMaxFlatLength, 0);
data += kMaxFlatLength;
length -= kMaxFlatLength;
auto* root = CordRepBtree::Create(flat);
return CordRepBtree::Append(root, {data, length}, alloc_hint);
}
// Create a new tree out of the specified array.
// The returned node has a refcount of 1.
static absl::Nullable<CordRep*> NewTree(absl::Nullable<const char*> data,
size_t length, size_t alloc_hint) {
if (length == 0) return nullptr;
return NewBtree(data, length, alloc_hint);
}
namespace cord_internal {
void InitializeCordRepExternal(absl::string_view data,
absl::Nonnull<CordRepExternal*> rep) {
assert(!data.empty());
rep->length = data.size();
rep->tag = EXTERNAL;
rep->base = data.data();
VerifyTree(rep);
}
} // namespace cord_internal
// Creates a CordRep from the provided string. If the string is large enough,
// and not wasteful, we move the string into an external cord rep, preserving
// the already allocated string contents.
// Requires the provided string length to be larger than `kMaxInline`.
static absl::Nonnull<CordRep*> CordRepFromString(std::string&& src) {
assert(src.length() > cord_internal::kMaxInline);
if (
// String is short: copy data to avoid external block overhead.
src.size() <= kMaxBytesToCopy ||
// String is wasteful: copy data to avoid pinning too much unused memory.
src.size() < src.capacity() / 2
) {
return NewTree(src.data(), src.size(), 0);
}
struct StringReleaser {
void operator()(absl::string_view /* data */) {}
std::string data;
};
const absl::string_view original_data = src;
auto* rep =
static_cast<::absl::cord_internal::CordRepExternalImpl<StringReleaser>*>(
absl::cord_internal::NewExternalRep(original_data,
StringReleaser{std::move(src)}));
// Moving src may have invalidated its data pointer, so adjust it.
rep->base = rep->template get<0>().data.data();
return rep;
}
// --------------------------------------------------------------------
// Cord::InlineRep functions
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr unsigned char Cord::InlineRep::kMaxInline;
#endif
inline void Cord::InlineRep::set_data(absl::Nonnull<const char*> data,
size_t n) {
static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
data_.set_inline_data(data, n);
}
inline absl::Nonnull<char*> Cord::InlineRep::set_data(size_t n) {
assert(n <= kMaxInline);
ResetToEmpty();
set_inline_size(n);
return data_.as_chars();
}
inline void Cord::InlineRep::reduce_size(size_t n) {
size_t tag = inline_size();
assert(tag <= kMaxInline);
assert(tag >= n);
tag -= n;
memset(data_.as_chars() + tag, 0, n);
set_inline_size(tag);
}
inline void Cord::InlineRep::remove_prefix(size_t n) {
cord_internal::SmallMemmove(data_.as_chars(), data_.as_chars() + n,
inline_size() - n);
reduce_size(n);
}
// Returns `rep` converted into a CordRepBtree.
// Directly returns `rep` if `rep` is already a CordRepBtree.
static absl::Nonnull<CordRepBtree*> ForceBtree(CordRep* rep) {
return rep->IsBtree()
? rep->btree()
: CordRepBtree::Create(cord_internal::RemoveCrcNode(rep));
}
void Cord::InlineRep::AppendTreeToInlined(absl::Nonnull<CordRep*> tree,
MethodIdentifier method) {
assert(!is_tree());
if (!data_.is_empty()) {
CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
tree = CordRepBtree::Append(CordRepBtree::Create(flat), tree);
}
EmplaceTree(tree, method);
}
void Cord::InlineRep::AppendTreeToTree(absl::Nonnull<CordRep*> tree,
MethodIdentifier method) {
assert(is_tree());
const CordzUpdateScope scope(data_.cordz_info(), method);
tree = CordRepBtree::Append(ForceBtree(data_.as_tree()), tree);
SetTree(tree, scope);
}
void Cord::InlineRep::AppendTree(absl::Nonnull<CordRep*> tree,
MethodIdentifier method) {
assert(tree != nullptr);
assert(tree->length != 0);
assert(!tree->IsCrc());
if (data_.is_tree()) {
AppendTreeToTree(tree, method);
} else {
AppendTreeToInlined(tree, method);
}
}
void Cord::InlineRep::PrependTreeToInlined(absl::Nonnull<CordRep*> tree,
MethodIdentifier method) {
assert(!is_tree());
if (!data_.is_empty()) {
CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
tree = CordRepBtree::Prepend(CordRepBtree::Create(flat), tree);
}
EmplaceTree(tree, method);
}
void Cord::InlineRep::PrependTreeToTree(absl::Nonnull<CordRep*> tree,
MethodIdentifier method) {
assert(is_tree());
const CordzUpdateScope scope(data_.cordz_info(), method);
tree = CordRepBtree::Prepend(ForceBtree(data_.as_tree()), tree);
SetTree(tree, scope);
}
void Cord::InlineRep::PrependTree(absl::Nonnull<CordRep*> tree,
MethodIdentifier method) {
assert(tree != nullptr);
assert(tree->length != 0);
assert(!tree->IsCrc());
if (data_.is_tree()) {
PrependTreeToTree(tree, method);
} else {
PrependTreeToInlined(tree, method);
}
}
// Searches for a non-full flat node at the rightmost leaf of the tree. If a
// suitable leaf is found, the function will update the length field for all
// nodes to account for the size increase. The append region address will be
// written to region and the actual size increase will be written to size.
static inline bool PrepareAppendRegion(
absl::Nonnull<CordRep*> root, absl::Nonnull<absl::Nullable<char*>*> region,
absl::Nonnull<size_t*> size, size_t max_length) {
if (root->IsBtree() && root->refcount.IsOne()) {
Span<char> span = root->btree()->GetAppendBuffer(max_length);
if (!span.empty()) {
*region = span.data();
*size = span.size();
return true;
}
}
CordRep* dst = root;
if (!dst->IsFlat() || !dst->refcount.IsOne()) {
*region = nullptr;
*size = 0;
return false;
}
const size_t in_use = dst->length;
const size_t capacity = dst->flat()->Capacity();
if (in_use == capacity) {
*region = nullptr;
*size = 0;
return false;
}
const size_t size_increase = std::min(capacity - in_use, max_length);
dst->length += size_increase;
*region = dst->flat()->Data() + in_use;
*size = size_increase;
return true;
}
void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
assert(&src != this);
assert(is_tree() || src.is_tree());
auto constexpr method = CordzUpdateTracker::kAssignCord;
if (ABSL_PREDICT_TRUE(!is_tree())) {
EmplaceTree(CordRep::Ref(src.as_tree()), src.data_, method);
return;
}
CordRep* tree = as_tree();
if (CordRep* src_tree = src.tree()) {
// Leave any existing `cordz_info` in place, and let MaybeTrackCord()
// decide if this cord should be (or remains to be) sampled or not.
data_.set_tree(CordRep::Ref(src_tree));
CordzInfo::MaybeTrackCord(data_, src.data_, method);
} else {
CordzInfo::MaybeUntrackCord(data_.cordz_info());
data_ = src.data_;
}
CordRep::Unref(tree);
}
void Cord::InlineRep::UnrefTree() {
if (is_tree()) {
CordzInfo::MaybeUntrackCord(data_.cordz_info());
CordRep::Unref(tree());
}
}
// --------------------------------------------------------------------
// Constructors and destructors
Cord::Cord(absl::string_view src, MethodIdentifier method)
: contents_(InlineData::kDefaultInit) {
const size_t n = src.size();
if (n <= InlineRep::kMaxInline) {
contents_.set_data(src.data(), n);
} else {
CordRep* rep = NewTree(src.data(), n, 0);
contents_.EmplaceTree(rep, method);
}
}
template <typename T, Cord::EnableIfString<T>>
Cord::Cord(T&& src) : contents_(InlineData::kDefaultInit) {
if (src.size() <= InlineRep::kMaxInline) {
contents_.set_data(src.data(), src.size());
} else {
CordRep* rep = CordRepFromString(std::forward<T>(src));
contents_.EmplaceTree(rep, CordzUpdateTracker::kConstructorString);
}
}
template Cord::Cord(std::string&& src);
// The destruction code is separate so that the compiler can determine
// that it does not need to call the destructor on a moved-from Cord.
void Cord::DestroyCordSlow() {
assert(contents_.is_tree());
CordzInfo::MaybeUntrackCord(contents_.cordz_info());
CordRep::Unref(VerifyTree(contents_.as_tree()));
}
// --------------------------------------------------------------------
// Mutators
void Cord::Clear() {
if (CordRep* tree = contents_.clear()) {
CordRep::Unref(tree);
}
}
Cord& Cord::AssignLargeString(std::string&& src) {
auto constexpr method = CordzUpdateTracker::kAssignString;
assert(src.size() > kMaxBytesToCopy);
CordRep* rep = CordRepFromString(std::move(src));
if (CordRep* tree = contents_.tree()) {
CordzUpdateScope scope(contents_.cordz_info(), method);
contents_.SetTree(rep, scope);
CordRep::Unref(tree);
} else {
contents_.EmplaceTree(rep, method);
}
return *this;
}
Cord& Cord::operator=(absl::string_view src) {
auto constexpr method = CordzUpdateTracker::kAssignString;
const char* data = src.data();
size_t length = src.size();
CordRep* tree = contents_.tree();
if (length <= InlineRep::kMaxInline) {
// Embed into this->contents_, which is somewhat subtle:
// - MaybeUntrackCord must be called before Unref(tree).
// - MaybeUntrackCord must be called before set_data() clobbers cordz_info.
// - set_data() must be called before Unref(tree) as it may reference tree.
if (tree != nullptr) CordzInfo::MaybeUntrackCord(contents_.cordz_info());
contents_.set_data(data, length);
if (tree != nullptr) CordRep::Unref(tree);
return *this;
}
if (tree != nullptr) {
CordzUpdateScope scope(contents_.cordz_info(), method);
if (tree->IsFlat() && tree->flat()->Capacity() >= length &&
tree->refcount.IsOne()) {
// Copy in place if the existing FLAT node is reusable.
memmove(tree->flat()->Data(), data, length);
tree->length = length;
VerifyTree(tree);
return *this;
}
contents_.SetTree(NewTree(data, length, 0), scope);
CordRep::Unref(tree);
} else {
contents_.EmplaceTree(NewTree(data, length, 0), method);
}
return *this;
}
// TODO(sanjay): Move to Cord::InlineRep section of file. For now,
// we keep it here to make diffs easier.
void Cord::InlineRep::AppendArray(absl::string_view src,
MethodIdentifier method) {
MaybeRemoveEmptyCrcNode();
if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined.
size_t appended = 0;
CordRep* rep = tree();
const CordRep* const root = rep;
CordzUpdateScope scope(root ? cordz_info() : nullptr, method);
if (root != nullptr) {
rep = cord_internal::RemoveCrcNode(rep);
char* region;
if (PrepareAppendRegion(rep, &region, &appended, src.size())) {
memcpy(region, src.data(), appended);
}
} else {
// Try to fit in the inline buffer if possible.
size_t inline_length = inline_size();
if (src.size() <= kMaxInline - inline_length) {
// Append new data to embedded array
set_inline_size(inline_length + src.size());
memcpy(data_.as_chars() + inline_length, src.data(), src.size());
return;
}
// Allocate flat to be a perfect fit on first append exceeding inlined size.
// Subsequent growth will use amortized growth until we reach maximum flat
// size.
rep = CordRepFlat::New(inline_length + src.size());
appended = std::min(src.size(), rep->flat()->Capacity() - inline_length);
memcpy(rep->flat()->Data(), data_.as_chars(), inline_length);
memcpy(rep->flat()->Data() + inline_length, src.data(), appended);
rep->length = inline_length + appended;
}
src.remove_prefix(appended);
if (src.empty()) {
CommitTree(root, rep, scope, method);
return;
}
// TODO(b/192061034): keep legacy 10% growth rate: consider other rates.
rep = ForceBtree(rep);
const size_t min_growth = std::max<size_t>(rep->length / 10, src.size());
rep = CordRepBtree::Append(rep->btree(), src, min_growth - src.size());
CommitTree(root, rep, scope, method);
}
inline absl::Nonnull<CordRep*> Cord::TakeRep() const& {
return CordRep::Ref(contents_.tree());
}
inline absl::Nonnull<CordRep*> Cord::TakeRep() && {
CordRep* rep = contents_.tree();
contents_.clear();
return rep;
}
template <typename C>
inline void Cord::AppendImpl(C&& src) {
auto constexpr method = CordzUpdateTracker::kAppendCord;
contents_.MaybeRemoveEmptyCrcNode();
if (src.empty()) return;
if (empty()) {
// Since destination is empty, we can avoid allocating a node,
if (src.contents_.is_tree()) {
// by taking the tree directly
CordRep* rep =
cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
contents_.EmplaceTree(rep, method);
} else {
// or copying over inline data
contents_.data_ = src.contents_.data_;
}
return;
}
// For short cords, it is faster to copy data if there is room in dst.
const size_t src_size = src.contents_.size();
if (src_size <= kMaxBytesToCopy) {
CordRep* src_tree = src.contents_.tree();
if (src_tree == nullptr) {
// src has embedded data.
contents_.AppendArray({src.contents_.data(), src_size}, method);
return;
}
if (src_tree->IsFlat()) {
// src tree just has one flat node.
contents_.AppendArray({src_tree->flat()->Data(), src_size}, method);
return;
}
if (&src == this) {
// ChunkIterator below assumes that src is not modified during traversal.
Append(Cord(src));
return;
}
// TODO(mec): Should we only do this if "dst" has space?
for (absl::string_view chunk : src.Chunks()) {
Append(chunk);
}
return;
}
// Guaranteed to be a tree (kMaxBytesToCopy > kInlinedSize)
CordRep* rep = cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
contents_.AppendTree(rep, CordzUpdateTracker::kAppendCord);
}
static CordRep::ExtractResult ExtractAppendBuffer(absl::Nonnull<CordRep*> rep,
size_t min_capacity) {
switch (rep->tag) {
case cord_internal::BTREE:
return CordRepBtree::ExtractAppendBuffer(rep->btree(), min_capacity);
default:
if (rep->IsFlat() && rep->refcount.IsOne() &&
rep->flat()->Capacity() - rep->length >= min_capacity) {
return {nullptr, rep};
}
return {rep, nullptr};
}
}
static CordBuffer CreateAppendBuffer(InlineData& data, size_t block_size,
size_t capacity) {
// Watch out for overflow, people can ask for size_t::max().
const size_t size = data.inline_size();
const size_t max_capacity = std::numeric_limits<size_t>::max() - size;
capacity = (std::min)(max_capacity, capacity) + size;
CordBuffer buffer =
block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity)
: CordBuffer::CreateWithDefaultLimit(capacity);
cord_internal::SmallMemmove(buffer.data(), data.as_chars(), size);
buffer.SetLength(size);
data = {};
return buffer;
}
CordBuffer Cord::GetAppendBufferSlowPath(size_t block_size, size_t capacity,
size_t min_capacity) {
auto constexpr method = CordzUpdateTracker::kGetAppendBuffer;
CordRep* tree = contents_.tree();
if (tree != nullptr) {
CordzUpdateScope scope(contents_.cordz_info(), method);
CordRep::ExtractResult result = ExtractAppendBuffer(tree, min_capacity);
if (result.extracted != nullptr) {
contents_.SetTreeOrEmpty(result.tree, scope);
return CordBuffer(result.extracted->flat());
}
return block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity)
: CordBuffer::CreateWithDefaultLimit(capacity);
}
return CreateAppendBuffer(contents_.data_, block_size, capacity);
}
void Cord::Append(const Cord& src) { AppendImpl(src); }
void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); }
template <typename T, Cord::EnableIfString<T>>
void Cord::Append(T&& src) {
if (src.size() <= kMaxBytesToCopy) {
Append(absl::string_view(src));
} else {
CordRep* rep = CordRepFromString(std::forward<T>(src));
contents_.AppendTree(rep, CordzUpdateTracker::kAppendString);
}
}
template void Cord::Append(std::string&& src);
void Cord::Prepend(const Cord& src) {
contents_.MaybeRemoveEmptyCrcNode();
if (src.empty()) return;
CordRep* src_tree = src.contents_.tree();
if (src_tree != nullptr) {
CordRep::Ref(src_tree);
contents_.PrependTree(cord_internal::RemoveCrcNode(src_tree),
CordzUpdateTracker::kPrependCord);
return;
}
// `src` cord is inlined.
absl::string_view src_contents(src.contents_.data(), src.contents_.size());
return Prepend(src_contents);
}
void Cord::PrependArray(absl::string_view src, MethodIdentifier method) {
contents_.MaybeRemoveEmptyCrcNode();
if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined.
if (!contents_.is_tree()) {
size_t cur_size = contents_.inline_size();
if (cur_size + src.size() <= InlineRep::kMaxInline) {
// Use embedded storage.
InlineData data;
data.set_inline_size(cur_size + src.size());
memcpy(data.as_chars(), src.data(), src.size());
memcpy(data.as_chars() + src.size(), contents_.data(), cur_size);
contents_.data_ = data;
return;
}
}
CordRep* rep = NewTree(src.data(), src.size(), 0);
contents_.PrependTree(rep, method);
}
void Cord::AppendPrecise(absl::string_view src, MethodIdentifier method) {
assert(!src.empty());
assert(src.size() <= cord_internal::kMaxFlatLength);
if (contents_.remaining_inline_capacity() >= src.size()) {
const size_t inline_length = contents_.inline_size();
contents_.set_inline_size(inline_length + src.size());
memcpy(contents_.data_.as_chars() + inline_length, src.data(), src.size());
} else {
contents_.AppendTree(CordRepFlat::Create(src), method);
}
}
void Cord::PrependPrecise(absl::string_view src, MethodIdentifier method) {
assert(!src.empty());
assert(src.size() <= cord_internal::kMaxFlatLength);
if (contents_.remaining_inline_capacity() >= src.size()) {
const size_t cur_size = contents_.inline_size();
InlineData data;
data.set_inline_size(cur_size + src.size());
memcpy(data.as_chars(), src.data(), src.size());
memcpy(data.as_chars() + src.size(), contents_.data(), cur_size);
contents_.data_ = data;
} else {
contents_.PrependTree(CordRepFlat::Create(src), method);
}
}
template <typename T, Cord::EnableIfString<T>>
inline void Cord::Prepend(T&& src) {
if (src.size() <= kMaxBytesToCopy) {
Prepend(absl::string_view(src));
} else {
CordRep* rep = CordRepFromString(std::forward<T>(src));
contents_.PrependTree(rep, CordzUpdateTracker::kPrependString);
}
}
template void Cord::Prepend(std::string&& src);
void Cord::RemovePrefix(size_t n) {
ABSL_INTERNAL_CHECK(n <= size(),
absl::StrCat("Requested prefix size ", n,
" exceeds Cord's size ", size()));
contents_.MaybeRemoveEmptyCrcNode();
CordRep* tree = contents_.tree();
if (tree == nullptr) {
contents_.remove_prefix(n);
} else {
auto constexpr method = CordzUpdateTracker::kRemovePrefix;
CordzUpdateScope scope(contents_.cordz_info(), method);
tree = cord_internal::RemoveCrcNode(tree);
if (n >= tree->length) {
CordRep::Unref(tree);
tree = nullptr;
} else if (tree->IsBtree()) {
CordRep* old = tree;
tree = tree->btree()->SubTree(n, tree->length - n);
CordRep::Unref(old);
} else if (tree->IsSubstring() && tree->refcount.IsOne()) {
tree->substring()->start += n;
tree->length -= n;
} else {
CordRep* rep = CordRepSubstring::Substring(tree, n, tree->length - n);
CordRep::Unref(tree);
tree = rep;
}
contents_.SetTreeOrEmpty(tree, scope);
}
}
void Cord::RemoveSuffix(size_t n) {
ABSL_INTERNAL_CHECK(n <= size(),
absl::StrCat("Requested suffix size ", n,
" exceeds Cord's size ", size()));
contents_.MaybeRemoveEmptyCrcNode();
CordRep* tree = contents_.tree();
if (tree == nullptr) {
contents_.reduce_size(n);
} else {
auto constexpr method = CordzUpdateTracker::kRemoveSuffix;
CordzUpdateScope scope(contents_.cordz_info(), method);
tree = cord_internal::RemoveCrcNode(tree);
if (n >= tree->length) {
CordRep::Unref(tree);
tree = nullptr;
} else if (tree->IsBtree()) {
tree = CordRepBtree::RemoveSuffix(tree->btree(), n);
} else if (!tree->IsExternal() && tree->refcount.IsOne()) {
assert(tree->IsFlat() || tree->IsSubstring());
tree->length -= n;
} else {
CordRep* rep = CordRepSubstring::Substring(tree, 0, tree->length - n);
CordRep::Unref(tree);
tree = rep;
}
contents_.SetTreeOrEmpty(tree, scope);
}
}
Cord Cord::Subcord(size_t pos, size_t new_size) const {
Cord sub_cord;
size_t length = size();
if (pos > length) pos = length;
if (new_size > length - pos) new_size = length - pos;
if (new_size == 0) return sub_cord;
CordRep* tree = contents_.tree();
if (tree == nullptr) {
sub_cord.contents_.set_data(contents_.data() + pos, new_size);
return sub_cord;
}
if (new_size <= InlineRep::kMaxInline) {
sub_cord.contents_.set_inline_size(new_size);
char* dest = sub_cord.contents_.data_.as_chars();
Cord::ChunkIterator it = chunk_begin();
it.AdvanceBytes(pos);
size_t remaining_size = new_size;
while (remaining_size > it->size()) {
cord_internal::SmallMemmove(dest, it->data(), it->size());
remaining_size -= it->size();
dest += it->size();
++it;
}
cord_internal::SmallMemmove(dest, it->data(), remaining_size);
return sub_cord;
}
tree = cord_internal::SkipCrcNode(tree);
if (tree->IsBtree()) {
tree = tree->btree()->SubTree(pos, new_size);
} else {
tree = CordRepSubstring::Substring(tree, pos, new_size);
}
sub_cord.contents_.EmplaceTree(tree, contents_.data_,
CordzUpdateTracker::kSubCord);
return sub_cord;
}
// --------------------------------------------------------------------
// Comparators
namespace {
int ClampResult(int memcmp_res) {
return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
}
int CompareChunks(absl::Nonnull<absl::string_view*> lhs,
absl::Nonnull<absl::string_view*> rhs,
absl::Nonnull<size_t*> size_to_compare) {
size_t compared_size = std::min(lhs->size(), rhs->size());
assert(*size_to_compare >= compared_size);
*size_to_compare -= compared_size;
int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
if (memcmp_res != 0) return memcmp_res;
lhs->remove_prefix(compared_size);
rhs->remove_prefix(compared_size);
return 0;
}
// This overload set computes comparison results from memcmp result. This
// interface is used inside GenericCompare below. Different implementations
// are specialized for int and bool. For int we clamp result to {-1, 0, 1}
// set. For bool we just interested in "value == 0".
template <typename ResultType>
ResultType ComputeCompareResult(int memcmp_res) {
return ClampResult(memcmp_res);
}
template <>
bool ComputeCompareResult<bool>(int memcmp_res) {
return memcmp_res == 0;
}
} // namespace
// Helper routine. Locates the first flat or external chunk of the Cord without
// initializing the iterator, and returns a string_view referencing the data.
inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
if (!is_tree()) {
return absl::string_view(data_.as_chars(), data_.inline_size());
}
CordRep* node = cord_internal::SkipCrcNode(tree());
if (node->IsFlat()) {
return absl::string_view(node->flat()->Data(), node->length);
}
if (node->IsExternal()) {
return absl::string_view(node->external()->base, node->length);
}
if (node->IsBtree()) {
CordRepBtree* tree = node->btree();
int height = tree->height();
while (--height >= 0) {
tree = tree->Edge(CordRepBtree::kFront)->btree();
}
return tree->Data(tree->begin());
}
// Get the child node if we encounter a SUBSTRING.
size_t offset = 0;
size_t length = node->length;
assert(length != 0);
if (node->IsSubstring()) {
offset = node->substring()->start;
node = node->substring()->child;
}
if (node->IsFlat()) {
return absl::string_view(node->flat()->Data() + offset, length);
}
assert(node->IsExternal() && "Expect FLAT or EXTERNAL node here");
return absl::string_view(node->external()->base + offset, length);
}
void Cord::SetCrcCordState(crc_internal::CrcCordState state) {
auto constexpr method = CordzUpdateTracker::kSetExpectedChecksum;
if (empty()) {
contents_.MaybeRemoveEmptyCrcNode();
CordRep* rep = CordRepCrc::New(nullptr, std::move(state));
contents_.EmplaceTree(rep, method);
} else if (!contents_.is_tree()) {
CordRep* rep = contents_.MakeFlatWithExtraCapacity(0);
rep = CordRepCrc::New(rep, std::move(state));
contents_.EmplaceTree(rep, method);
} else {
const CordzUpdateScope scope(contents_.data_.cordz_info(), method);
CordRep* rep = CordRepCrc::New(contents_.data_.as_tree(), std::move(state));
contents_.SetTree(rep, scope);
}
}
void Cord::SetExpectedChecksum(uint32_t crc) {
// Construct a CrcCordState with a single chunk.
crc_internal::CrcCordState state;
state.mutable_rep()->prefix_crc.push_back(
crc_internal::CrcCordState::PrefixCrc(size(), absl::crc32c_t{crc}));
SetCrcCordState(std::move(state));
}
absl::Nullable<const crc_internal::CrcCordState*> Cord::MaybeGetCrcCordState()
const {
if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
return nullptr;
}
return &contents_.tree()->crc()->crc_cord_state;
}
absl::optional<uint32_t> Cord::ExpectedChecksum() const {
if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
return absl::nullopt;
}
return static_cast<uint32_t>(
contents_.tree()->crc()->crc_cord_state.Checksum());
}
inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
size_t size_to_compare) const {
auto advance = [](absl::Nonnull<Cord::ChunkIterator*> it,
absl::Nonnull<absl::string_view*> chunk) {
if (!chunk->empty()) return true;
++*it;
if (it->bytes_remaining_ == 0) return false;
*chunk = **it;
return true;
};
Cord::ChunkIterator lhs_it = chunk_begin();
// compared_size is inside first chunk.
absl::string_view lhs_chunk =
(lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
assert(compared_size <= lhs_chunk.size());
assert(compared_size <= rhs.size());
lhs_chunk.remove_prefix(compared_size);
rhs.remove_prefix(compared_size);
size_to_compare -= compared_size; // skip already compared size.
while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
if (comparison_result != 0) return comparison_result;
if (size_to_compare == 0) return 0;
}
return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
}
inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
size_t size_to_compare) const {
auto advance = [](absl::Nonnull<Cord::ChunkIterator*> it,
absl::Nonnull<absl::string_view*> chunk) {
if (!chunk->empty()) return true;
++*it;
if (it->bytes_remaining_ == 0) return false;
*chunk = **it;
return true;
};
Cord::ChunkIterator lhs_it = chunk_begin();
Cord::ChunkIterator rhs_it = rhs.chunk_begin();
// compared_size is inside both first chunks.
absl::string_view lhs_chunk =
(lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
absl::string_view rhs_chunk =
(rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
assert(compared_size <= lhs_chunk.size());
assert(compared_size <= rhs_chunk.size());
lhs_chunk.remove_prefix(compared_size);
rhs_chunk.remove_prefix(compared_size);
size_to_compare -= compared_size; // skip already compared size.
while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
if (memcmp_res != 0) return memcmp_res;
if (size_to_compare == 0) return 0;
}
return static_cast<int>(rhs_chunk.empty()) -
static_cast<int>(lhs_chunk.empty());
}
inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
if (c.empty()) return {};
return c.contents_.FindFlatStartPiece();
}
inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
return sv;
}
// Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
// that 'size_to_compare' is greater that size of smallest of first chunks.
template <typename ResultType, typename RHS>
ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
size_t size_to_compare) {
absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);
size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
assert(size_to_compare >= compared_size);
int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
if (compared_size == size_to_compare || memcmp_res != 0) {
return ComputeCompareResult<ResultType>(memcmp_res);
}
return ComputeCompareResult<ResultType>(
lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
}
bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
return GenericCompare<bool>(*this, rhs, size_to_compare);
}
bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
return GenericCompare<bool>(*this, rhs, size_to_compare);
}
template <typename RHS>
inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
size_t lhs_size = lhs.size();
size_t rhs_size = rhs.size();
if (lhs_size == rhs_size) {
return GenericCompare<int>(lhs, rhs, lhs_size);
}
if (lhs_size < rhs_size) {
auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
return data_comp_res == 0 ? -1 : data_comp_res;
}
auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
return data_comp_res == 0 ? +1 : data_comp_res;
}
int Cord::Compare(absl::string_view rhs) const {
return SharedCompareImpl(*this, rhs);
}
int Cord::CompareImpl(const Cord& rhs) const {
return SharedCompareImpl(*this, rhs);
}
bool Cord::EndsWith(absl::string_view rhs) const {
size_t my_size = size();
size_t rhs_size = rhs.size();
if (my_size < rhs_size) return false;
Cord tmp(*this);
tmp.RemovePrefix(my_size - rhs_size);
return tmp.EqualsImpl(rhs, rhs_size);
}
bool Cord::EndsWith(const Cord& rhs) const {
size_t my_size = size();
size_t rhs_size = rhs.size();
if (my_size < rhs_size) return false;
Cord tmp(*this);
tmp.RemovePrefix(my_size - rhs_size);
return tmp.EqualsImpl(rhs, rhs_size);
}
// --------------------------------------------------------------------
// Misc.
Cord::operator std::string() const {
std::string s;
absl::CopyCordToString(*this, &s);
return s;
}
void CopyCordToString(const Cord& src, absl::Nonnull<std::string*> dst) {
if (!src.contents_.is_tree()) {
src.contents_.CopyTo(dst);
} else {
absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
src.CopyToArraySlowPath(&(*dst)[0]);
}
}
void Cord::CopyToArraySlowPath(absl::Nonnull<char*> dst) const {
assert(contents_.is_tree());
absl::string_view fragment;
if (GetFlatAux(contents_.tree(), &fragment)) {
memcpy(dst, fragment.data(), fragment.size());
return;
}
for (absl::string_view chunk : Chunks()) {
memcpy(dst, chunk.data(), chunk.size());
dst += chunk.size();
}
}
Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
"Attempted to iterate past `end()`");
Cord subcord;
auto constexpr method = CordzUpdateTracker::kCordReader;
if (n <= InlineRep::kMaxInline) {
// Range to read fits in inline data. Flatten it.
char* data = subcord.contents_.set_data(n);
while (n > current_chunk_.size()) {
memcpy(data, current_chunk_.data(), current_chunk_.size());
data += current_chunk_.size();
n -= current_chunk_.size();
++*this;
}
memcpy(data, current_chunk_.data(), n);
if (n < current_chunk_.size()) {
RemoveChunkPrefix(n);
} else if (n > 0) {
++*this;
}
return subcord;
}
if (btree_reader_) {
size_t chunk_size = current_chunk_.size();
if (n <= chunk_size && n <= kMaxBytesToCopy) {
subcord = Cord(current_chunk_.substr(0, n), method);
if (n < chunk_size) {
current_chunk_.remove_prefix(n);
} else {
current_chunk_ = btree_reader_.Next();
}
} else {
CordRep* rep;
current_chunk_ = btree_reader_.Read(n, chunk_size, rep);
subcord.contents_.EmplaceTree(rep, method);
}
bytes_remaining_ -= n;
return subcord;
}
// Short circuit if reading the entire data edge.
assert(current_leaf_ != nullptr);
if (n == current_leaf_->length) {
bytes_remaining_ = 0;
current_chunk_ = {};
CordRep* tree = CordRep::Ref(current_leaf_);
subcord.contents_.EmplaceTree(VerifyTree(tree), method);
return subcord;
}
// From this point on, we need a partial substring node.
// Get pointer to the underlying flat or external data payload and
// compute data pointer and offset into current flat or external.
CordRep* payload = current_leaf_->IsSubstring()
? current_leaf_->substring()->child
: current_leaf_;
const char* data = payload->IsExternal() ? payload->external()->base
: payload->flat()->Data();
const size_t offset = static_cast<size_t>(current_chunk_.data() - data);
auto* tree = CordRepSubstring::Substring(payload, offset, n);
subcord.contents_.EmplaceTree(VerifyTree(tree), method);
bytes_remaining_ -= n;
current_chunk_.remove_prefix(n);
return subcord;
}
char Cord::operator[](size_t i) const {
ABSL_HARDENING_ASSERT(i < size());
size_t offset = i;
const CordRep* rep = contents_.tree();
if (rep == nullptr) {
return contents_.data()[i];
}
rep = cord_internal::SkipCrcNode(rep);
while (true) {
assert(rep != nullptr);
assert(offset < rep->length);
if (rep->IsFlat()) {
// Get the "i"th character directly from the flat array.
return rep->flat()->Data()[offset];
} else if (rep->IsBtree()) {
return rep->btree()->GetCharacter(offset);
} else if (rep->IsExternal()) {
// Get the "i"th character from the external array.
return rep->external()->base[offset];
} else {
// This must be a substring a node, so bypass it to get to the child.
assert(rep->IsSubstring());
offset += rep->substring()->start;
rep = rep->substring()->child;
}
}
}
namespace {
// Tests whether the sequence of chunks beginning at `position` starts with
// `needle`.
//
// REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
// equal to `needle.size()`.
bool IsSubstringInCordAt(absl::Cord::CharIterator position,
absl::string_view needle) {
auto haystack_chunk = absl::Cord::ChunkRemaining(position);
while (true) {
// Precondition is that `absl::Cord::ChunkRemaining(position)` is not
// empty. This assert will trigger if that is not true.
assert(!haystack_chunk.empty());
auto min_length = std::min(haystack_chunk.size(), needle.size());
if (!absl::ConsumePrefix(&needle, haystack_chunk.substr(0, min_length))) {
return false;
}
if (needle.empty()) {
return true;
}
absl::Cord::Advance(&position, min_length);
haystack_chunk = absl::Cord::ChunkRemaining(position);
}
}
} // namespace
// A few options how this could be implemented:
// (a) Flatten the Cord and find, i.e.
// haystack.Flatten().find(needle)
// For large 'haystack' (where Cord makes sense to be used), this copies
// the whole 'haystack' and can be slow.
// (b) Use std::search, i.e.
// std::search(haystack.char_begin(), haystack.char_end(),
// needle.begin(), needle.end())
// This avoids the copy, but compares one byte at a time, and branches a
// lot every time it has to advance. It is also not possible to use
// std::search as is, because CharIterator is only an input iterator, not a
// forward iterator.
// (c) Use string_view::find in each fragment, and specifically handle fragment
// boundaries.
//
// This currently implements option (b).
absl::Cord::CharIterator absl::Cord::FindImpl(CharIterator it,
absl::string_view needle) const {
// Ensure preconditions are met by callers first.
// Needle must not be empty.
assert(!needle.empty());
// Haystack must be at least as large as needle.
assert(it.chunk_iterator_.bytes_remaining_ >= needle.size());
// Cord is a sequence of chunks. To find `needle` we go chunk by chunk looking
// for the first char of needle, up until we have advanced `N` defined as
// `haystack.size() - needle.size()`. If we find the first char of needle at
// `P` and `P` is less than `N`, we then call `IsSubstringInCordAt` to
// see if this is the needle. If not, we advance to `P + 1` and try again.
while (it.chunk_iterator_.bytes_remaining_ >= needle.size()) {
auto haystack_chunk = Cord::ChunkRemaining(it);
assert(!haystack_chunk.empty());
// Look for the first char of `needle` in the current chunk.
auto idx = haystack_chunk.find(needle.front());
if (idx == absl::string_view::npos) {
// No potential match in this chunk, advance past it.
Cord::Advance(&it, haystack_chunk.size());
continue;
}
// We found the start of a potential match in the chunk. Advance the
// iterator and haystack chunk to the match the position.
Cord::Advance(&it, idx);
// Check if there is enough haystack remaining to actually have a match.
if (it.chunk_iterator_.bytes_remaining_ < needle.size()) {
break;
}
// Check if this is `needle`.
if (IsSubstringInCordAt(it, needle)) {
return it;
}
// No match, increment the iterator for the next attempt.
Cord::Advance(&it, 1);
}
// If we got here, we did not find `needle`.
return char_end();
}
absl::Cord::CharIterator absl::Cord::Find(absl::string_view needle) const {
if (needle.empty()) {
return char_begin();
}
if (needle.size() > size()) {
return char_end();
}
if (needle.size() == size()) {
return *this == needle ? char_begin() : char_end();
}
return FindImpl(char_begin(), needle);
}
namespace {
// Tests whether the sequence of chunks beginning at `haystack` starts with the
// sequence of chunks beginning at `needle_begin` and extending to `needle_end`.
//
// REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
// equal to `needle_end - needle_begin` and `advance`.
bool IsSubcordInCordAt(absl::Cord::CharIterator haystack,
absl::Cord::CharIterator needle_begin,
absl::Cord::CharIterator needle_end) {
while (needle_begin != needle_end) {
auto haystack_chunk = absl::Cord::ChunkRemaining(haystack);
assert(!haystack_chunk.empty());
auto needle_chunk = absl::Cord::ChunkRemaining(needle_begin);
auto min_length = std::min(haystack_chunk.size(), needle_chunk.size());
if (haystack_chunk.substr(0, min_length) !=
needle_chunk.substr(0, min_length)) {
return false;
}
absl::Cord::Advance(&haystack, min_length);
absl::Cord::Advance(&needle_begin, min_length);
}
return true;
}
// Tests whether the sequence of chunks beginning at `position` starts with the
// cord `needle`.
//
// REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
// equal to `needle.size()`.
bool IsSubcordInCordAt(absl::Cord::CharIterator position,
const absl::Cord& needle) {
return IsSubcordInCordAt(position, needle.char_begin(), needle.char_end());
}
} // namespace
absl::Cord::CharIterator absl::Cord::Find(const absl::Cord& needle) const {
if (needle.empty()) {
return char_begin();
}
const auto needle_size = needle.size();
if (needle_size > size()) {
return char_end();
}
if (needle_size == size()) {
return *this == needle ? char_begin() : char_end();
}
const auto needle_chunk = Cord::ChunkRemaining(needle.char_begin());
auto haystack_it = char_begin();
while (true) {
haystack_it = FindImpl(haystack_it, needle_chunk);
if (haystack_it == char_end() ||
haystack_it.chunk_iterator_.bytes_remaining_ < needle_size) {
break;
}
// We found the first chunk of `needle` at `haystack_it` but not the entire
// subcord. Advance past the first chunk and check for the remainder.
auto haystack_advanced_it = haystack_it;
auto needle_it = needle.char_begin();
Cord::Advance(&haystack_advanced_it, needle_chunk.size());
Cord::Advance(&needle_it, needle_chunk.size());
if (IsSubcordInCordAt(haystack_advanced_it, needle_it, needle.char_end())) {
return haystack_it;
}
Cord::Advance(&haystack_it, 1);
if (haystack_it.chunk_iterator_.bytes_remaining_ < needle_size) {
break;
}
if (haystack_it.chunk_iterator_.bytes_remaining_ == needle_size) {
// Special case, if there is exactly `needle_size` bytes remaining, the
// subcord is either at `haystack_it` or not at all.
if (IsSubcordInCordAt(haystack_it, needle)) {
return haystack_it;
}
break;
}
}
return char_end();
}
bool Cord::Contains(absl::string_view rhs) const {
return rhs.empty() || Find(rhs) != char_end();
}
bool Cord::Contains(const absl::Cord& rhs) const {
return rhs.empty() || Find(rhs) != char_end();
}
absl::string_view Cord::FlattenSlowPath() {
assert(contents_.is_tree());
size_t total_size = size();
CordRep* new_rep;
char* new_buffer;
// Try to put the contents into a new flat rep. If they won't fit in the
// biggest possible flat node, use an external rep instead.
if (total_size <= kMaxFlatLength) {
new_rep = CordRepFlat::New(total_size);
new_rep->length = total_size;
new_buffer = new_rep->flat()->Data();
CopyToArraySlowPath(new_buffer);
} else {
new_buffer = std::allocator<char>().allocate(total_size);
CopyToArraySlowPath(new_buffer);
new_rep = absl::cord_internal::NewExternalRep(
absl::string_view(new_buffer, total_size), [](absl::string_view s) {
std::allocator<char>().deallocate(const_cast<char*>(s.data()),
s.size());
});
}
CordzUpdateScope scope(contents_.cordz_info(), CordzUpdateTracker::kFlatten);
CordRep::Unref(contents_.as_tree());
contents_.SetTree(new_rep, scope);
return absl::string_view(new_buffer, total_size);
}
/* static */ bool Cord::GetFlatAux(absl::Nonnull<CordRep*> rep,
absl::Nonnull<absl::string_view*> fragment) {
assert(rep != nullptr);
if (rep->length == 0) {
*fragment = absl::string_view();
return true;
}
rep = cord_internal::SkipCrcNode(rep);
if (rep->IsFlat()) {
*fragment = absl::string_view(rep->flat()->Data(), rep->length);
return true;
} else if (rep->IsExternal()) {
*fragment = absl::string_view(rep->external()->base, rep->length);
return true;
} else if (rep->IsBtree()) {
return rep->btree()->IsFlat(fragment);
} else if (rep->IsSubstring()) {
CordRep* child = rep->substring()->child;
if (child->IsFlat()) {
*fragment = absl::string_view(
child->flat()->Data() + rep->substring()->start, rep->length);
return true;
} else if (child->IsExternal()) {
*fragment = absl::string_view(
child->external()->base + rep->substring()->start, rep->length);
return true;
} else if (child->IsBtree()) {
return child->btree()->IsFlat(rep->substring()->start, rep->length,
fragment);
}
}
return false;
}
/* static */ void Cord::ForEachChunkAux(
absl::Nonnull<absl::cord_internal::CordRep*> rep,
absl::FunctionRef<void(absl::string_view)> callback) {
assert(rep != nullptr);
if (rep->length == 0) return;
rep = cord_internal::SkipCrcNode(rep);
if (rep->IsBtree()) {
ChunkIterator it(rep), end;
while (it != end) {
callback(*it);
++it;
}
return;
}
// This is a leaf node, so invoke our callback.
absl::cord_internal::CordRep* current_node = cord_internal::SkipCrcNode(rep);
absl::string_view chunk;
bool success = GetFlatAux(current_node, &chunk);
assert(success);
if (success) {
callback(chunk);
}
}
static void DumpNode(absl::Nonnull<CordRep*> rep, bool include_data,
absl::Nonnull<std::ostream*> os, int indent) {
const int kIndentStep = 1;
absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
absl::InlinedVector<int, kInlinedVectorSize> indents;
for (;;) {
*os << std::setw(3) << rep->refcount.Get();
*os << " " << std::setw(7) << rep->length;
*os << " [";
if (include_data) *os << static_cast<void*>(rep);
*os << "]";
*os << " " << std::setw(indent) << "";
bool leaf = false;
if (rep == nullptr) {
*os << "NULL\n";
leaf = true;
} else if (rep->IsCrc()) {
*os << "CRC crc=" << rep->crc()->crc_cord_state.Checksum() << "\n";
indent += kIndentStep;
rep = rep->crc()->child;
} else if (rep->IsSubstring()) {
*os << "SUBSTRING @ " << rep->substring()->start << "\n";
indent += kIndentStep;
rep = rep->substring()->child;
} else { // Leaf or ring
leaf = true;
if (rep->IsExternal()) {
*os << "EXTERNAL [";
if (include_data)
*os << absl::CEscape(std::string(rep->external()->base, rep->length));
*os << "]\n";
} else if (rep->IsFlat()) {
*os << "FLAT cap=" << rep->flat()->Capacity() << " [";
if (include_data)
*os << absl::CEscape(std::string(rep->flat()->Data(), rep->length));
*os << "]\n";
} else {
CordRepBtree::Dump(rep, /*label=*/"", include_data, *os);
}
}
if (leaf) {
if (stack.empty()) break;
rep = stack.back();
stack.pop_back();
indent = indents.back();
indents.pop_back();
}
}
ABSL_INTERNAL_CHECK(indents.empty(), "");
}
static std::string ReportError(absl::Nonnull<CordRep*> root,
absl::Nonnull<CordRep*> node) {
std::ostringstream buf;
buf << "Error at node " << node << " in:";
DumpNode(root, true, &buf);
return buf.str();
}
static bool VerifyNode(absl::Nonnull<CordRep*> root,
absl::Nonnull<CordRep*> start_node) {
absl::InlinedVector<absl::Nonnull<CordRep*>, 2> worklist;
worklist.push_back(start_node);
do {
CordRep* node = worklist.back();
worklist.pop_back();
ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
if (node != root) {
ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
ABSL_INTERNAL_CHECK(!node->IsCrc(), ReportError(root, node));
}
if (node->IsFlat()) {
ABSL_INTERNAL_CHECK(node->length <= node->flat()->Capacity(),
ReportError(root, node));
} else if (node->IsExternal()) {
ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
ReportError(root, node));
} else if (node->IsSubstring()) {
ABSL_INTERNAL_CHECK(
node->substring()->start < node->substring()->child->length,
ReportError(root, node));
ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
node->substring()->child->length,
ReportError(root, node));
} else if (node->IsCrc()) {
ABSL_INTERNAL_CHECK(
node->crc()->child != nullptr || node->crc()->length == 0,
ReportError(root, node));
if (node->crc()->child != nullptr) {
ABSL_INTERNAL_CHECK(node->crc()->length == node->crc()->child->length,
ReportError(root, node));
worklist.push_back(node->crc()->child);
}
}
} while (!worklist.empty());
return true;
}
std::ostream& operator<<(std::ostream& out, const Cord& cord) {
for (absl::string_view chunk : cord.Chunks()) {
out.write(chunk.data(), static_cast<std::streamsize>(chunk.size()));
}
return out;
}
namespace strings_internal {
size_t CordTestAccess::FlatOverhead() { return cord_internal::kFlatOverhead; }
size_t CordTestAccess::MaxFlatLength() { return cord_internal::kMaxFlatLength; }
size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
return cord_internal::TagToLength(tag);
}
uint8_t CordTestAccess::LengthToTag(size_t s) {
ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
return cord_internal::AllocatedSizeToTag(s + cord_internal::kFlatOverhead);
}
size_t CordTestAccess::SizeofCordRepExternal() {
return sizeof(CordRepExternal);
}
size_t CordTestAccess::SizeofCordRepSubstring() {
return sizeof(CordRepSubstring);
}
} // namespace strings_internal
ABSL_NAMESPACE_END
} // namespace absl