| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_RANDOM_POISSON_DISTRIBUTION_H_ |
| #define ABSL_RANDOM_POISSON_DISTRIBUTION_H_ |
| |
| #include <cassert> |
| #include <cmath> |
| #include <istream> |
| #include <limits> |
| #include <ostream> |
| #include <type_traits> |
| |
| #include "absl/random/internal/fast_uniform_bits.h" |
| #include "absl/random/internal/fastmath.h" |
| #include "absl/random/internal/generate_real.h" |
| #include "absl/random/internal/iostream_state_saver.h" |
| #include "absl/random/internal/traits.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // absl::poisson_distribution: |
| // Generates discrete variates conforming to a Poisson distribution. |
| // p(n) = (mean^n / n!) exp(-mean) |
| // |
| // Depending on the parameter, the distribution selects one of the following |
| // algorithms: |
| // * The standard algorithm, attributed to Knuth, extended using a split method |
| // for larger values |
| // * The "Ratio of Uniforms as a convenient method for sampling from classical |
| // discrete distributions", Stadlober, 1989. |
| // http://www.sciencedirect.com/science/article/pii/0377042790903495 |
| // |
| // NOTE: param_type.mean() is a double, which permits values larger than |
| // poisson_distribution<IntType>::max(), however this should be avoided and |
| // the distribution results are limited to the max() value. |
| // |
| // The goals of this implementation are to provide good performance while still |
| // beig thread-safe: This limits the implementation to not using lgamma provided |
| // by <math.h>. |
| // |
| template <typename IntType = int> |
| class poisson_distribution { |
| public: |
| using result_type = IntType; |
| |
| class param_type { |
| public: |
| using distribution_type = poisson_distribution; |
| explicit param_type(double mean = 1.0); |
| |
| double mean() const { return mean_; } |
| |
| friend bool operator==(const param_type& a, const param_type& b) { |
| return a.mean_ == b.mean_; |
| } |
| |
| friend bool operator!=(const param_type& a, const param_type& b) { |
| return !(a == b); |
| } |
| |
| private: |
| friend class poisson_distribution; |
| |
| double mean_; |
| double emu_; // e ^ -mean_ |
| double lmu_; // ln(mean_) |
| double s_; |
| double log_k_; |
| int split_; |
| |
| static_assert(random_internal::IsIntegral<IntType>::value, |
| "Class-template absl::poisson_distribution<> must be " |
| "parameterized using an integral type."); |
| }; |
| |
| poisson_distribution() : poisson_distribution(1.0) {} |
| |
| explicit poisson_distribution(double mean) : param_(mean) {} |
| |
| explicit poisson_distribution(const param_type& p) : param_(p) {} |
| |
| void reset() {} |
| |
| // generating functions |
| template <typename URBG> |
| result_type operator()(URBG& g) { // NOLINT(runtime/references) |
| return (*this)(g, param_); |
| } |
| |
| template <typename URBG> |
| result_type operator()(URBG& g, // NOLINT(runtime/references) |
| const param_type& p); |
| |
| param_type param() const { return param_; } |
| void param(const param_type& p) { param_ = p; } |
| |
| result_type(min)() const { return 0; } |
| result_type(max)() const { return (std::numeric_limits<result_type>::max)(); } |
| |
| double mean() const { return param_.mean(); } |
| |
| friend bool operator==(const poisson_distribution& a, |
| const poisson_distribution& b) { |
| return a.param_ == b.param_; |
| } |
| friend bool operator!=(const poisson_distribution& a, |
| const poisson_distribution& b) { |
| return a.param_ != b.param_; |
| } |
| |
| private: |
| param_type param_; |
| random_internal::FastUniformBits<uint64_t> fast_u64_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation details follow |
| // ----------------------------------------------------------------------------- |
| |
| template <typename IntType> |
| poisson_distribution<IntType>::param_type::param_type(double mean) |
| : mean_(mean), split_(0) { |
| assert(mean >= 0); |
| assert(mean <= |
| static_cast<double>((std::numeric_limits<result_type>::max)())); |
| // As a defensive measure, avoid large values of the mean. The rejection |
| // algorithm used does not support very large values well. It my be worth |
| // changing algorithms to better deal with these cases. |
| assert(mean <= 1e10); |
| if (mean_ < 10) { |
| // For small lambda, use the knuth method. |
| split_ = 1; |
| emu_ = std::exp(-mean_); |
| } else if (mean_ <= 50) { |
| // Use split-knuth method. |
| split_ = 1 + static_cast<int>(mean_ / 10.0); |
| emu_ = std::exp(-mean_ / static_cast<double>(split_)); |
| } else { |
| // Use ratio of uniforms method. |
| constexpr double k2E = 0.7357588823428846; |
| constexpr double kSA = 0.4494580810294493; |
| |
| lmu_ = std::log(mean_); |
| double a = mean_ + 0.5; |
| s_ = kSA + std::sqrt(k2E * a); |
| const double mode = std::ceil(mean_) - 1; |
| log_k_ = lmu_ * mode - absl::random_internal::StirlingLogFactorial(mode); |
| } |
| } |
| |
| template <typename IntType> |
| template <typename URBG> |
| typename poisson_distribution<IntType>::result_type |
| poisson_distribution<IntType>::operator()( |
| URBG& g, // NOLINT(runtime/references) |
| const param_type& p) { |
| using random_internal::GeneratePositiveTag; |
| using random_internal::GenerateRealFromBits; |
| using random_internal::GenerateSignedTag; |
| |
| if (p.split_ != 0) { |
| // Use Knuth's algorithm with range splitting to avoid floating-point |
| // errors. Knuth's algorithm is: Ui is a sequence of uniform variates on |
| // (0,1); return the number of variates required for product(Ui) < |
| // exp(-lambda). |
| // |
| // The expected number of variates required for Knuth's method can be |
| // computed as follows: |
| // The expected value of U is 0.5, so solving for 0.5^n < exp(-lambda) gives |
| // the expected number of uniform variates |
| // required for a given lambda, which is: |
| // lambda = [2, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17] |
| // n = [3, 8, 13, 15, 16, 18, 19, 21, 22, 24, 25] |
| // |
| result_type n = 0; |
| for (int split = p.split_; split > 0; --split) { |
| double r = 1.0; |
| do { |
| r *= GenerateRealFromBits<double, GeneratePositiveTag, true>( |
| fast_u64_(g)); // U(-1, 0) |
| ++n; |
| } while (r > p.emu_); |
| --n; |
| } |
| return n; |
| } |
| |
| // Use ratio of uniforms method. |
| // |
| // Let u ~ Uniform(0, 1), v ~ Uniform(-1, 1), |
| // a = lambda + 1/2, |
| // s = 1.5 - sqrt(3/e) + sqrt(2(lambda + 1/2)/e), |
| // x = s * v/u + a. |
| // P(floor(x) = k | u^2 < f(floor(x))/k), where |
| // f(m) = lambda^m exp(-lambda)/ m!, for 0 <= m, and f(m) = 0 otherwise, |
| // and k = max(f). |
| const double a = p.mean_ + 0.5; |
| for (;;) { |
| const double u = GenerateRealFromBits<double, GeneratePositiveTag, false>( |
| fast_u64_(g)); // U(0, 1) |
| const double v = GenerateRealFromBits<double, GenerateSignedTag, false>( |
| fast_u64_(g)); // U(-1, 1) |
| |
| const double x = std::floor(p.s_ * v / u + a); |
| if (x < 0) continue; // f(negative) = 0 |
| const double rhs = x * p.lmu_; |
| // clang-format off |
| double s = (x <= 1.0) ? 0.0 |
| : (x == 2.0) ? 0.693147180559945 |
| : absl::random_internal::StirlingLogFactorial(x); |
| // clang-format on |
| const double lhs = 2.0 * std::log(u) + p.log_k_ + s; |
| if (lhs < rhs) { |
| return x > static_cast<double>((max)()) |
| ? (max)() |
| : static_cast<result_type>(x); // f(x)/k >= u^2 |
| } |
| } |
| } |
| |
| template <typename CharT, typename Traits, typename IntType> |
| std::basic_ostream<CharT, Traits>& operator<<( |
| std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
| const poisson_distribution<IntType>& x) { |
| auto saver = random_internal::make_ostream_state_saver(os); |
| os.precision(random_internal::stream_precision_helper<double>::kPrecision); |
| os << x.mean(); |
| return os; |
| } |
| |
| template <typename CharT, typename Traits, typename IntType> |
| std::basic_istream<CharT, Traits>& operator>>( |
| std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
| poisson_distribution<IntType>& x) { // NOLINT(runtime/references) |
| using param_type = typename poisson_distribution<IntType>::param_type; |
| |
| auto saver = random_internal::make_istream_state_saver(is); |
| double mean = random_internal::read_floating_point<double>(is); |
| if (!is.fail()) { |
| x.param(param_type(mean)); |
| } |
| return is; |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_POISSON_DISTRIBUTION_H_ |