blob: 8e365a3c5df15e46d9108f42b38b39b6b1fca67f [file] [log] [blame]
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_
#define ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <type_traits>
#include "gtest/gtest.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
// This is a stateful allocator, but the state lives outside of the
// allocator (in whatever test is using the allocator). This is odd
// but helps in tests where the allocator is propagated into nested
// containers - that chain of allocators uses the same state and is
// thus easier to query for aggregate allocation information.
template <typename T>
class CountingAllocator {
public:
using Allocator = std::allocator<T>;
using AllocatorTraits = std::allocator_traits<Allocator>;
using value_type = typename AllocatorTraits::value_type;
using pointer = typename AllocatorTraits::pointer;
using const_pointer = typename AllocatorTraits::const_pointer;
using size_type = typename AllocatorTraits::size_type;
using difference_type = typename AllocatorTraits::difference_type;
CountingAllocator() = default;
explicit CountingAllocator(int64_t* bytes_used) : bytes_used_(bytes_used) {}
CountingAllocator(int64_t* bytes_used, int64_t* instance_count)
: bytes_used_(bytes_used), instance_count_(instance_count) {}
template <typename U>
CountingAllocator(const CountingAllocator<U>& x)
: bytes_used_(x.bytes_used_), instance_count_(x.instance_count_) {}
pointer allocate(
size_type n,
typename AllocatorTraits::const_void_pointer hint = nullptr) {
Allocator allocator;
pointer ptr = AllocatorTraits::allocate(allocator, n, hint);
if (bytes_used_ != nullptr) {
*bytes_used_ += n * sizeof(T);
}
return ptr;
}
void deallocate(pointer p, size_type n) {
Allocator allocator;
AllocatorTraits::deallocate(allocator, p, n);
if (bytes_used_ != nullptr) {
*bytes_used_ -= n * sizeof(T);
}
}
template <typename U, typename... Args>
void construct(U* p, Args&&... args) {
Allocator allocator;
AllocatorTraits::construct(allocator, p, std::forward<Args>(args)...);
if (instance_count_ != nullptr) {
*instance_count_ += 1;
}
}
template <typename U>
void destroy(U* p) {
Allocator allocator;
// Ignore GCC warning bug.
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuse-after-free"
#endif
AllocatorTraits::destroy(allocator, p);
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic pop
#endif
if (instance_count_ != nullptr) {
*instance_count_ -= 1;
}
}
template <typename U>
class rebind {
public:
using other = CountingAllocator<U>;
};
friend bool operator==(const CountingAllocator& a,
const CountingAllocator& b) {
return a.bytes_used_ == b.bytes_used_ &&
a.instance_count_ == b.instance_count_;
}
friend bool operator!=(const CountingAllocator& a,
const CountingAllocator& b) {
return !(a == b);
}
int64_t* bytes_used_ = nullptr;
int64_t* instance_count_ = nullptr;
};
template <typename T>
struct CopyAssignPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_copy_assignment = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit CopyAssignPropagatingCountingAlloc(
const CopyAssignPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = CopyAssignPropagatingCountingAlloc<U>;
};
};
template <typename T>
struct MoveAssignPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_move_assignment = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit MoveAssignPropagatingCountingAlloc(
const MoveAssignPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = MoveAssignPropagatingCountingAlloc<U>;
};
};
template <typename T>
struct SwapPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_swap = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit SwapPropagatingCountingAlloc(
const SwapPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = SwapPropagatingCountingAlloc<U>;
};
};
// Tries to allocate memory at the minimum alignment even when the default
// allocator uses a higher alignment.
template <typename T>
struct MinimumAlignmentAlloc : std::allocator<T> {
MinimumAlignmentAlloc() = default;
template <typename U>
explicit MinimumAlignmentAlloc(const MinimumAlignmentAlloc<U>& /*other*/) {}
template <class U>
struct rebind {
using other = MinimumAlignmentAlloc<U>;
};
T* allocate(size_t n) {
T* ptr = std::allocator<T>::allocate(n + 1);
char* cptr = reinterpret_cast<char*>(ptr);
cptr += alignof(T);
return reinterpret_cast<T*>(cptr);
}
void deallocate(T* ptr, size_t n) {
char* cptr = reinterpret_cast<char*>(ptr);
cptr -= alignof(T);
std::allocator<T>::deallocate(reinterpret_cast<T*>(cptr), n + 1);
}
};
inline bool IsAssertEnabled() {
// Use an assert with side-effects to figure out if they are actually enabled.
bool assert_enabled = false;
assert([&]() { // NOLINT
assert_enabled = true;
return true;
}());
return assert_enabled;
}
template <template <class Alloc> class Container>
void TestCopyAssignAllocPropagation() {
int64_t bytes1 = 0, instances1 = 0, bytes2 = 0, instances2 = 0;
CopyAssignPropagatingCountingAlloc<int> allocator1(&bytes1, &instances1);
CopyAssignPropagatingCountingAlloc<int> allocator2(&bytes2, &instances2);
// Test propagating allocator_type.
{
Container<CopyAssignPropagatingCountingAlloc<int>> c1(allocator1);
Container<CopyAssignPropagatingCountingAlloc<int>> c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = c1;
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 200);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with different allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_EQ(c2.get_allocator(), allocator2);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = c1;
EXPECT_EQ(c2.get_allocator(), allocator2);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 100);
}
EXPECT_EQ(bytes1, 0);
EXPECT_EQ(instances1, 0);
EXPECT_EQ(bytes2, 0);
EXPECT_EQ(instances2, 0);
}
template <template <class Alloc> class Container>
void TestMoveAssignAllocPropagation() {
int64_t bytes1 = 0, instances1 = 0, bytes2 = 0, instances2 = 0;
MoveAssignPropagatingCountingAlloc<int> allocator1(&bytes1, &instances1);
MoveAssignPropagatingCountingAlloc<int> allocator2(&bytes2, &instances2);
// Test propagating allocator_type.
{
Container<MoveAssignPropagatingCountingAlloc<int>> c1(allocator1);
Container<MoveAssignPropagatingCountingAlloc<int>> c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = std::move(c1);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with equal allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator1);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = std::move(c1);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with different allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = std::move(c1);
EXPECT_EQ(c2.get_allocator(), allocator2);
EXPECT_LE(instances1, 100); // The values in c1 may or may not have been
// destroyed at this point.
EXPECT_EQ(instances2, 100);
}
EXPECT_EQ(bytes1, 0);
EXPECT_EQ(instances1, 0);
EXPECT_EQ(bytes2, 0);
EXPECT_EQ(instances2, 0);
}
template <template <class Alloc> class Container>
void TestSwapAllocPropagation() {
int64_t bytes1 = 0, instances1 = 0, bytes2 = 0, instances2 = 0;
SwapPropagatingCountingAlloc<int> allocator1(&bytes1, &instances1);
SwapPropagatingCountingAlloc<int> allocator2(&bytes2, &instances2);
// Test propagating allocator_type.
{
Container<SwapPropagatingCountingAlloc<int>> c1(allocator1), c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2.swap(c1);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with equal allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator1);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2.swap(c1);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with different allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c1.get_allocator(), c2.get_allocator());
if (IsAssertEnabled()) {
EXPECT_DEATH_IF_SUPPORTED(c2.swap(c1), "");
}
}
EXPECT_EQ(bytes1, 0);
EXPECT_EQ(instances1, 0);
EXPECT_EQ(bytes2, 0);
EXPECT_EQ(instances2, 0);
}
template <template <class Alloc> class Container>
void TestAllocPropagation() {
TestCopyAssignAllocPropagation<Container>();
TestMoveAssignAllocPropagation<Container>();
TestSwapAllocPropagation<Container>();
}
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_