| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| |
| #include <stdlib.h> |
| |
| #include "cctest.h" |
| #include "double-conversion/diy-fp.h" |
| #include "double-conversion/utils.h" |
| #include "double-conversion/ieee.h" |
| |
| |
| using namespace double_conversion; |
| |
| |
| TEST(Uint64Conversions) { |
| // Start by checking the byte-order. |
| uint64_t ordered = DOUBLE_CONVERSION_UINT64_2PART_C(0x01234567, 89ABCDEF); |
| CHECK_EQ(3512700564088504e-318, Double(ordered).value()); |
| |
| uint64_t min_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00000000, 00000001); |
| CHECK_EQ(5e-324, Double(min_double64).value()); |
| |
| uint64_t max_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x7fefffff, ffffffff); |
| CHECK_EQ(1.7976931348623157e308, Double(max_double64).value()); |
| } |
| |
| |
| TEST(Uint32Conversions) { |
| // Start by checking the byte-order. |
| uint32_t ordered = 0x01234567; |
| CHECK_EQ(2.9988165487136453e-38f, Single(ordered).value()); |
| |
| uint32_t min_float32 = 0x00000001; |
| CHECK_EQ(1.4e-45f, Single(min_float32).value()); |
| |
| uint32_t max_float32 = 0x7f7fffff; |
| CHECK_EQ(3.4028234e38f, Single(max_float32).value()); |
| } |
| |
| |
| TEST(Double_AsDiyFp) { |
| uint64_t ordered = DOUBLE_CONVERSION_UINT64_2PART_C(0x01234567, 89ABCDEF); |
| DiyFp diy_fp = Double(ordered).AsDiyFp(); |
| CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e()); |
| // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64. |
| CHECK(DOUBLE_CONVERSION_UINT64_2PART_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT |
| |
| uint64_t min_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00000000, 00000001); |
| diy_fp = Double(min_double64).AsDiyFp(); |
| CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e()); |
| // This is a denormal; so no hidden bit. |
| CHECK(1 == diy_fp.f()); // NOLINT |
| |
| uint64_t max_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x7fefffff, ffffffff); |
| diy_fp = Double(max_double64).AsDiyFp(); |
| CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e()); |
| CHECK(DOUBLE_CONVERSION_UINT64_2PART_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT |
| } |
| |
| |
| TEST(Single_AsDiyFp) { |
| uint32_t ordered = 0x01234567; |
| DiyFp diy_fp = Single(ordered).AsDiyFp(); |
| CHECK_EQ(0x2 - 0x7F - 23, diy_fp.e()); |
| // The 23 mantissa bits, plus the implicit 1 in bit 24 as a uint32_t. |
| CHECK_EQ(0xA34567, diy_fp.f()); |
| |
| uint32_t min_float32 = 0x00000001; |
| diy_fp = Single(min_float32).AsDiyFp(); |
| CHECK_EQ(-0x7F - 23 + 1, diy_fp.e()); |
| // This is a denormal; so no hidden bit. |
| CHECK_EQ(1, diy_fp.f()); |
| |
| uint32_t max_float32 = 0x7f7fffff; |
| diy_fp = Single(max_float32).AsDiyFp(); |
| CHECK_EQ(0xFE - 0x7F - 23, diy_fp.e()); |
| CHECK_EQ(0x00ffffff, diy_fp.f()); |
| } |
| |
| |
| TEST(AsNormalizedDiyFp) { |
| uint64_t ordered = DOUBLE_CONVERSION_UINT64_2PART_C(0x01234567, 89ABCDEF); |
| DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp(); |
| CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e()); |
| CHECK((DOUBLE_CONVERSION_UINT64_2PART_C(0x00134567, 89ABCDEF) << 11) == |
| diy_fp.f()); // NOLINT |
| |
| uint64_t min_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00000000, 00000001); |
| diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
| CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e()); |
| // This is a denormal; so no hidden bit. |
| CHECK(DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT |
| |
| uint64_t max_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x7fefffff, ffffffff); |
| diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
| CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e()); |
| CHECK((DOUBLE_CONVERSION_UINT64_2PART_C(0x001fffff, ffffffff) << 11) == |
| diy_fp.f()); // NOLINT |
| } |
| |
| |
| TEST(Double_IsDenormal) { |
| uint64_t min_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00000000, 00000001); |
| CHECK(Double(min_double64).IsDenormal()); |
| uint64_t bits = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF); |
| CHECK(Double(bits).IsDenormal()); |
| bits = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000); |
| CHECK(!Double(bits).IsDenormal()); |
| } |
| |
| |
| TEST(Single_IsDenormal) { |
| uint32_t min_float32 = 0x00000001; |
| CHECK(Single(min_float32).IsDenormal()); |
| uint32_t bits = 0x007FFFFF; |
| CHECK(Single(bits).IsDenormal()); |
| bits = 0x00800000; |
| CHECK(!Single(bits).IsDenormal()); |
| } |
| |
| |
| TEST(Double_IsSpecial) { |
| CHECK(Double(Double::Infinity()).IsSpecial()); |
| CHECK(Double(-Double::Infinity()).IsSpecial()); |
| CHECK(Double(Double::NaN()).IsSpecial()); |
| uint64_t bits = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFF12345, 00000000); |
| CHECK(Double(bits).IsSpecial()); |
| // Denormals are not special: |
| CHECK(!Double(5e-324).IsSpecial()); |
| CHECK(!Double(-5e-324).IsSpecial()); |
| // And some random numbers: |
| CHECK(!Double(0.0).IsSpecial()); |
| CHECK(!Double(-0.0).IsSpecial()); |
| CHECK(!Double(1.0).IsSpecial()); |
| CHECK(!Double(-1.0).IsSpecial()); |
| CHECK(!Double(1000000.0).IsSpecial()); |
| CHECK(!Double(-1000000.0).IsSpecial()); |
| CHECK(!Double(1e23).IsSpecial()); |
| CHECK(!Double(-1e23).IsSpecial()); |
| CHECK(!Double(1.7976931348623157e308).IsSpecial()); |
| CHECK(!Double(-1.7976931348623157e308).IsSpecial()); |
| } |
| |
| |
| TEST(Single_IsSpecial) { |
| CHECK(Single(Single::Infinity()).IsSpecial()); |
| CHECK(Single(-Single::Infinity()).IsSpecial()); |
| CHECK(Single(Single::NaN()).IsSpecial()); |
| uint32_t bits = 0xFFF12345; |
| CHECK(Single(bits).IsSpecial()); |
| // Denormals are not special: |
| CHECK(!Single(1.4e-45f).IsSpecial()); |
| CHECK(!Single(-1.4e-45f).IsSpecial()); |
| // And some random numbers: |
| CHECK(!Single(0.0f).IsSpecial()); |
| CHECK(!Single(-0.0f).IsSpecial()); |
| CHECK(!Single(1.0f).IsSpecial()); |
| CHECK(!Single(-1.0f).IsSpecial()); |
| CHECK(!Single(1000000.0f).IsSpecial()); |
| CHECK(!Single(-1000000.0f).IsSpecial()); |
| CHECK(!Single(1e23f).IsSpecial()); |
| CHECK(!Single(-1e23f).IsSpecial()); |
| CHECK(!Single(1.18e-38f).IsSpecial()); |
| CHECK(!Single(-1.18e-38f).IsSpecial()); |
| } |
| |
| |
| TEST(Double_IsInfinite) { |
| CHECK(Double(Double::Infinity()).IsInfinite()); |
| CHECK(Double(-Double::Infinity()).IsInfinite()); |
| CHECK(!Double(Double::NaN()).IsInfinite()); |
| CHECK(!Double(0.0).IsInfinite()); |
| CHECK(!Double(-0.0).IsInfinite()); |
| CHECK(!Double(1.0).IsInfinite()); |
| CHECK(!Double(-1.0).IsInfinite()); |
| uint64_t min_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00000000, 00000001); |
| CHECK(!Double(min_double64).IsInfinite()); |
| } |
| |
| |
| TEST(Single_IsInfinite) { |
| CHECK(Single(Single::Infinity()).IsInfinite()); |
| CHECK(Single(-Single::Infinity()).IsInfinite()); |
| CHECK(!Single(Single::NaN()).IsInfinite()); |
| CHECK(!Single(0.0f).IsInfinite()); |
| CHECK(!Single(-0.0f).IsInfinite()); |
| CHECK(!Single(1.0f).IsInfinite()); |
| CHECK(!Single(-1.0f).IsInfinite()); |
| uint32_t min_float32 = 0x00000001; |
| CHECK(!Single(min_float32).IsInfinite()); |
| } |
| |
| |
| TEST(Double_IsNan) { |
| CHECK(Double(Double::NaN()).IsNan()); |
| uint64_t other_nan = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, 00000001); |
| CHECK(Double(other_nan).IsNan()); |
| CHECK(!Double(Double::Infinity()).IsNan()); |
| CHECK(!Double(-Double::Infinity()).IsNan()); |
| CHECK(!Double(0.0).IsNan()); |
| CHECK(!Double(-0.0).IsNan()); |
| CHECK(!Double(1.0).IsNan()); |
| CHECK(!Double(-1.0).IsNan()); |
| uint64_t min_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00000000, 00000001); |
| CHECK(!Double(min_double64).IsNan()); |
| } |
| |
| |
| TEST(Single_IsNan) { |
| CHECK(Single(Single::NaN()).IsNan()); |
| uint32_t other_nan = 0xFFFFF001; |
| CHECK(Single(other_nan).IsNan()); |
| CHECK(!Single(Single::Infinity()).IsNan()); |
| CHECK(!Single(-Single::Infinity()).IsNan()); |
| CHECK(!Single(0.0f).IsNan()); |
| CHECK(!Single(-0.0f).IsNan()); |
| CHECK(!Single(1.0f).IsNan()); |
| CHECK(!Single(-1.0f).IsNan()); |
| uint32_t min_float32 = 0x00000001; |
| CHECK(!Single(min_float32).IsNan()); |
| } |
| |
| |
| TEST(Double_Sign) { |
| CHECK_EQ(1, Double(1.0).Sign()); |
| CHECK_EQ(1, Double(Double::Infinity()).Sign()); |
| CHECK_EQ(-1, Double(-Double::Infinity()).Sign()); |
| CHECK_EQ(1, Double(0.0).Sign()); |
| CHECK_EQ(-1, Double(-0.0).Sign()); |
| uint64_t min_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00000000, 00000001); |
| CHECK_EQ(1, Double(min_double64).Sign()); |
| } |
| |
| |
| TEST(Single_Sign) { |
| CHECK_EQ(1, Single(1.0f).Sign()); |
| CHECK_EQ(1, Single(Single::Infinity()).Sign()); |
| CHECK_EQ(-1, Single(-Single::Infinity()).Sign()); |
| CHECK_EQ(1, Single(0.0f).Sign()); |
| CHECK_EQ(-1, Single(-0.0f).Sign()); |
| uint32_t min_float32 = 0x00000001; |
| CHECK_EQ(1, Single(min_float32).Sign()); |
| } |
| |
| |
| TEST(Double_NormalizedBoundaries) { |
| DiyFp boundary_plus; |
| DiyFp boundary_minus; |
| DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp(); |
| Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // 1.5 does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| diy_fp = Double(1.0).AsNormalizedDiyFp(); |
| Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // 1.0 does have a significand of the form 2^p (for some p). |
| // Therefore its lower boundary is twice as close as the upper boundary. |
| CHECK(boundary_plus.f() - diy_fp.f() > diy_fp.f() - boundary_minus.f()); |
| CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT |
| |
| uint64_t min_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00000000, 00000001); |
| diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
| Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // min-value does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| // Denormals have their boundaries much closer. |
| CHECK((static_cast<uint64_t>(1) << 62) == |
| diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint64_t smallest_normal64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000); |
| diy_fp = Double(smallest_normal64).AsNormalizedDiyFp(); |
| Double(smallest_normal64).NormalizedBoundaries(&boundary_minus, |
| &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // Even though the significand is of the form 2^p (for some p), its boundaries |
| // are at the same distance. (This is the only exception). |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint64_t largest_denormal64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF); |
| diy_fp = Double(largest_denormal64).AsNormalizedDiyFp(); |
| Double(largest_denormal64).NormalizedBoundaries(&boundary_minus, |
| &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint64_t max_double64 = DOUBLE_CONVERSION_UINT64_2PART_C(0x7fefffff, ffffffff); |
| diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
| Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // max-value does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| } |
| |
| |
| TEST(Single_NormalizedBoundaries) { |
| uint64_t kOne64 = 1; |
| DiyFp boundary_plus; |
| DiyFp boundary_minus; |
| DiyFp diy_fp = Single(1.5f).AsDiyFp(); |
| diy_fp.Normalize(); |
| Single(1.5f).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // 1.5 does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| // Normalization shifts the significand by 8 bits. Add 32 bits for the bigger |
| // data-type, and remove 1 because boundaries are at half a ULP. |
| CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f()); |
| |
| diy_fp = Single(1.0f).AsDiyFp(); |
| diy_fp.Normalize(); |
| Single(1.0f).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // 1.0 does have a significand of the form 2^p (for some p). |
| // Therefore its lower boundary is twice as close as the upper boundary. |
| CHECK(boundary_plus.f() - diy_fp.f() > diy_fp.f() - boundary_minus.f()); |
| CHECK((kOne64 << 38) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| CHECK((kOne64 << 39) == boundary_plus.f() - diy_fp.f()); // NOLINT |
| |
| uint32_t min_float32 = 0x00000001; |
| diy_fp = Single(min_float32).AsDiyFp(); |
| diy_fp.Normalize(); |
| Single(min_float32).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // min-value does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| // Denormals have their boundaries much closer. |
| CHECK((kOne64 << 62) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint32_t smallest_normal32 = 0x00800000; |
| diy_fp = Single(smallest_normal32).AsDiyFp(); |
| diy_fp.Normalize(); |
| Single(smallest_normal32).NormalizedBoundaries(&boundary_minus, |
| &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // Even though the significand is of the form 2^p (for some p), its boundaries |
| // are at the same distance. (This is the only exception). |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint32_t largest_denormal32 = 0x007FFFFF; |
| diy_fp = Single(largest_denormal32).AsDiyFp(); |
| diy_fp.Normalize(); |
| Single(largest_denormal32).NormalizedBoundaries(&boundary_minus, |
| &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((kOne64 << 40) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint32_t max_float32 = 0x7f7fffff; |
| diy_fp = Single(max_float32).AsDiyFp(); |
| diy_fp.Normalize(); |
| Single(max_float32).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // max-value does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| } |
| |
| |
| TEST(NextDouble) { |
| CHECK_EQ(4e-324, Double(0.0).NextDouble()); |
| CHECK_EQ(0.0, Double(-0.0).NextDouble()); |
| CHECK_EQ(-0.0, Double(-4e-324).NextDouble()); |
| CHECK(Double(Double(-0.0).NextDouble()).Sign() > 0); |
| CHECK(Double(Double(-4e-324).NextDouble()).Sign() < 0); |
| Double d0(-4e-324); |
| Double d1(d0.NextDouble()); |
| Double d2(d1.NextDouble()); |
| CHECK_EQ(-0.0, d1.value()); |
| CHECK(d1.Sign() < 0); |
| CHECK_EQ(0.0, d2.value()); |
| CHECK(d2.Sign() > 0); |
| CHECK_EQ(4e-324, d2.NextDouble()); |
| CHECK_EQ(-1.7976931348623157e308, Double(-Double::Infinity()).NextDouble()); |
| CHECK_EQ(Double::Infinity(), |
| Double(DOUBLE_CONVERSION_UINT64_2PART_C(0x7fefffff, ffffffff)).NextDouble()); |
| } |
| |
| |
| TEST(PreviousDouble) { |
| CHECK_EQ(0.0, Double(4e-324).PreviousDouble()); |
| CHECK_EQ(-0.0, Double(0.0).PreviousDouble()); |
| CHECK(Double(Double(0.0).PreviousDouble()).Sign() < 0); |
| CHECK_EQ(-4e-324, Double(-0.0).PreviousDouble()); |
| Double d0(4e-324); |
| Double d1(d0.PreviousDouble()); |
| Double d2(d1.PreviousDouble()); |
| CHECK_EQ(0.0, d1.value()); |
| CHECK(d1.Sign() > 0); |
| CHECK_EQ(-0.0, d2.value()); |
| CHECK(d2.Sign() < 0); |
| CHECK_EQ(-4e-324, d2.PreviousDouble()); |
| CHECK_EQ(1.7976931348623157e308, Double(Double::Infinity()).PreviousDouble()); |
| CHECK_EQ(-Double::Infinity(), |
| Double(DOUBLE_CONVERSION_UINT64_2PART_C(0xffefffff, ffffffff)).PreviousDouble()); |
| } |