| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <climits> |
| #include <locale> |
| #include <cmath> |
| |
| #include "string-to-double.h" |
| |
| #include "ieee.h" |
| #include "strtod.h" |
| #include "utils.h" |
| |
| namespace double_conversion { |
| |
| namespace { |
| |
| inline char ToLower(char ch) { |
| static const std::ctype<char>& cType = |
| std::use_facet<std::ctype<char> >(std::locale::classic()); |
| return cType.tolower(ch); |
| } |
| |
| inline char Pass(char ch) { |
| return ch; |
| } |
| |
| template <class Iterator, class Converter> |
| static inline bool ConsumeSubStringImpl(Iterator* current, |
| Iterator end, |
| const char* substring, |
| Converter converter) { |
| DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring); |
| for (substring++; *substring != '\0'; substring++) { |
| ++*current; |
| if (*current == end || converter(**current) != *substring) { |
| return false; |
| } |
| } |
| ++*current; |
| return true; |
| } |
| |
| // Consumes the given substring from the iterator. |
| // Returns false, if the substring does not match. |
| template <class Iterator> |
| static bool ConsumeSubString(Iterator* current, |
| Iterator end, |
| const char* substring, |
| bool allow_case_insensitivity) { |
| if (allow_case_insensitivity) { |
| return ConsumeSubStringImpl(current, end, substring, ToLower); |
| } else { |
| return ConsumeSubStringImpl(current, end, substring, Pass); |
| } |
| } |
| |
| // Consumes first character of the str is equal to ch |
| inline bool ConsumeFirstCharacter(char ch, |
| const char* str, |
| bool case_insensitivity) { |
| return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0]; |
| } |
| } // namespace |
| |
| // Maximum number of significant digits in decimal representation. |
| // The longest possible double in decimal representation is |
| // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 |
| // (768 digits). If we parse a number whose first digits are equal to a |
| // mean of 2 adjacent doubles (that could have up to 769 digits) the result |
| // must be rounded to the bigger one unless the tail consists of zeros, so |
| // we don't need to preserve all the digits. |
| const int kMaxSignificantDigits = 772; |
| |
| |
| static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 }; |
| static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7); |
| |
| |
| static const uc16 kWhitespaceTable16[] = { |
| 160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195, |
| 8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279 |
| }; |
| static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16); |
| |
| |
| static bool isWhitespace(int x) { |
| if (x < 128) { |
| for (int i = 0; i < kWhitespaceTable7Length; i++) { |
| if (kWhitespaceTable7[i] == x) return true; |
| } |
| } else { |
| for (int i = 0; i < kWhitespaceTable16Length; i++) { |
| if (kWhitespaceTable16[i] == x) return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| // Returns true if a nonspace found and false if the end has reached. |
| template <class Iterator> |
| static inline bool AdvanceToNonspace(Iterator* current, Iterator end) { |
| while (*current != end) { |
| if (!isWhitespace(**current)) return true; |
| ++*current; |
| } |
| return false; |
| } |
| |
| |
| static bool isDigit(int x, int radix) { |
| return (x >= '0' && x <= '9' && x < '0' + radix) |
| || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) |
| || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); |
| } |
| |
| |
| static double SignedZero(bool sign) { |
| return sign ? -0.0 : 0.0; |
| } |
| |
| |
| // Returns true if 'c' is a decimal digit that is valid for the given radix. |
| // |
| // The function is small and could be inlined, but VS2012 emitted a warning |
| // because it constant-propagated the radix and concluded that the last |
| // condition was always true. By moving it into a separate function the |
| // compiler wouldn't warn anymore. |
| #ifdef _MSC_VER |
| #pragma optimize("",off) |
| static bool IsDecimalDigitForRadix(int c, int radix) { |
| return '0' <= c && c <= '9' && (c - '0') < radix; |
| } |
| #pragma optimize("",on) |
| #else |
| static bool inline IsDecimalDigitForRadix(int c, int radix) { |
| return '0' <= c && c <= '9' && (c - '0') < radix; |
| } |
| #endif |
| // Returns true if 'c' is a character digit that is valid for the given radix. |
| // The 'a_character' should be 'a' or 'A'. |
| // |
| // The function is small and could be inlined, but VS2012 emitted a warning |
| // because it constant-propagated the radix and concluded that the first |
| // condition was always false. By moving it into a separate function the |
| // compiler wouldn't warn anymore. |
| static bool IsCharacterDigitForRadix(int c, int radix, char a_character) { |
| return radix > 10 && c >= a_character && c < a_character + radix - 10; |
| } |
| |
| // Returns true, when the iterator is equal to end. |
| template<class Iterator> |
| static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) { |
| if (separator == StringToDoubleConverter::kNoSeparator) { |
| ++(*it); |
| return *it == end; |
| } |
| if (!isDigit(**it, base)) { |
| ++(*it); |
| return *it == end; |
| } |
| ++(*it); |
| if (*it == end) return true; |
| if (*it + 1 == end) return false; |
| if (**it == separator && isDigit(*(*it + 1), base)) { |
| ++(*it); |
| } |
| return *it == end; |
| } |
| |
| // Checks whether the string in the range start-end is a hex-float string. |
| // This function assumes that the leading '0x'/'0X' is already consumed. |
| // |
| // Hex float strings are of one of the following forms: |
| // - hex_digits+ 'p' ('+'|'-')? exponent_digits+ |
| // - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+ |
| // - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+ |
| template<class Iterator> |
| static bool IsHexFloatString(Iterator start, |
| Iterator end, |
| uc16 separator, |
| bool allow_trailing_junk) { |
| DOUBLE_CONVERSION_ASSERT(start != end); |
| |
| Iterator current = start; |
| |
| bool saw_digit = false; |
| while (isDigit(*current, 16)) { |
| saw_digit = true; |
| if (Advance(¤t, separator, 16, end)) return false; |
| } |
| if (*current == '.') { |
| if (Advance(¤t, separator, 16, end)) return false; |
| while (isDigit(*current, 16)) { |
| saw_digit = true; |
| if (Advance(¤t, separator, 16, end)) return false; |
| } |
| } |
| if (!saw_digit) return false; |
| if (*current != 'p' && *current != 'P') return false; |
| if (Advance(¤t, separator, 16, end)) return false; |
| if (*current == '+' || *current == '-') { |
| if (Advance(¤t, separator, 16, end)) return false; |
| } |
| if (!isDigit(*current, 10)) return false; |
| if (Advance(¤t, separator, 16, end)) return true; |
| while (isDigit(*current, 10)) { |
| if (Advance(¤t, separator, 16, end)) return true; |
| } |
| return allow_trailing_junk || !AdvanceToNonspace(¤t, end); |
| } |
| |
| |
| // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. |
| // |
| // If parse_as_hex_float is true, then the string must be a valid |
| // hex-float. |
| template <int radix_log_2, class Iterator> |
| static double RadixStringToIeee(Iterator* current, |
| Iterator end, |
| bool sign, |
| uc16 separator, |
| bool parse_as_hex_float, |
| bool allow_trailing_junk, |
| double junk_string_value, |
| bool read_as_double, |
| bool* result_is_junk) { |
| DOUBLE_CONVERSION_ASSERT(*current != end); |
| DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float || |
| IsHexFloatString(*current, end, separator, allow_trailing_junk)); |
| |
| const int kDoubleSize = Double::kSignificandSize; |
| const int kSingleSize = Single::kSignificandSize; |
| const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize; |
| |
| *result_is_junk = true; |
| |
| int64_t number = 0; |
| int exponent = 0; |
| const int radix = (1 << radix_log_2); |
| // Whether we have encountered a '.' and are parsing the decimal digits. |
| // Only relevant if parse_as_hex_float is true. |
| bool post_decimal = false; |
| |
| // Skip leading 0s. |
| while (**current == '0') { |
| if (Advance(current, separator, radix, end)) { |
| *result_is_junk = false; |
| return SignedZero(sign); |
| } |
| } |
| |
| while (true) { |
| int digit; |
| if (IsDecimalDigitForRadix(**current, radix)) { |
| digit = static_cast<char>(**current) - '0'; |
| if (post_decimal) exponent -= radix_log_2; |
| } else if (IsCharacterDigitForRadix(**current, radix, 'a')) { |
| digit = static_cast<char>(**current) - 'a' + 10; |
| if (post_decimal) exponent -= radix_log_2; |
| } else if (IsCharacterDigitForRadix(**current, radix, 'A')) { |
| digit = static_cast<char>(**current) - 'A' + 10; |
| if (post_decimal) exponent -= radix_log_2; |
| } else if (parse_as_hex_float && **current == '.') { |
| post_decimal = true; |
| Advance(current, separator, radix, end); |
| DOUBLE_CONVERSION_ASSERT(*current != end); |
| continue; |
| } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) { |
| break; |
| } else { |
| if (allow_trailing_junk || !AdvanceToNonspace(current, end)) { |
| break; |
| } else { |
| return junk_string_value; |
| } |
| } |
| |
| number = number * radix + digit; |
| int overflow = static_cast<int>(number >> kSignificandSize); |
| if (overflow != 0) { |
| // Overflow occurred. Need to determine which direction to round the |
| // result. |
| int overflow_bits_count = 1; |
| while (overflow > 1) { |
| overflow_bits_count++; |
| overflow >>= 1; |
| } |
| |
| int dropped_bits_mask = ((1 << overflow_bits_count) - 1); |
| int dropped_bits = static_cast<int>(number) & dropped_bits_mask; |
| number >>= overflow_bits_count; |
| exponent += overflow_bits_count; |
| |
| bool zero_tail = true; |
| for (;;) { |
| if (Advance(current, separator, radix, end)) break; |
| if (parse_as_hex_float && **current == '.') { |
| // Just run over the '.'. We are just trying to see whether there is |
| // a non-zero digit somewhere. |
| Advance(current, separator, radix, end); |
| DOUBLE_CONVERSION_ASSERT(*current != end); |
| post_decimal = true; |
| } |
| if (!isDigit(**current, radix)) break; |
| zero_tail = zero_tail && **current == '0'; |
| if (!post_decimal) exponent += radix_log_2; |
| } |
| |
| if (!parse_as_hex_float && |
| !allow_trailing_junk && |
| AdvanceToNonspace(current, end)) { |
| return junk_string_value; |
| } |
| |
| int middle_value = (1 << (overflow_bits_count - 1)); |
| if (dropped_bits > middle_value) { |
| number++; // Rounding up. |
| } else if (dropped_bits == middle_value) { |
| // Rounding to even to consistency with decimals: half-way case rounds |
| // up if significant part is odd and down otherwise. |
| if ((number & 1) != 0 || !zero_tail) { |
| number++; // Rounding up. |
| } |
| } |
| |
| // Rounding up may cause overflow. |
| if ((number & ((int64_t)1 << kSignificandSize)) != 0) { |
| exponent++; |
| number >>= 1; |
| } |
| break; |
| } |
| if (Advance(current, separator, radix, end)) break; |
| } |
| |
| DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize)); |
| DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); |
| |
| *result_is_junk = false; |
| |
| if (parse_as_hex_float) { |
| DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P'); |
| Advance(current, separator, radix, end); |
| DOUBLE_CONVERSION_ASSERT(*current != end); |
| bool is_negative = false; |
| if (**current == '+') { |
| Advance(current, separator, radix, end); |
| DOUBLE_CONVERSION_ASSERT(*current != end); |
| } else if (**current == '-') { |
| is_negative = true; |
| Advance(current, separator, radix, end); |
| DOUBLE_CONVERSION_ASSERT(*current != end); |
| } |
| int written_exponent = 0; |
| while (IsDecimalDigitForRadix(**current, 10)) { |
| // No need to read exponents if they are too big. That could potentially overflow |
| // the `written_exponent` variable. |
| if (abs(written_exponent) <= 100 * Double::kMaxExponent) { |
| written_exponent = 10 * written_exponent + **current - '0'; |
| } |
| if (Advance(current, separator, radix, end)) break; |
| } |
| if (is_negative) written_exponent = -written_exponent; |
| exponent += written_exponent; |
| } |
| |
| if (exponent == 0 || number == 0) { |
| if (sign) { |
| if (number == 0) return -0.0; |
| number = -number; |
| } |
| return static_cast<double>(number); |
| } |
| |
| DOUBLE_CONVERSION_ASSERT(number != 0); |
| double result = Double(DiyFp(number, exponent)).value(); |
| return sign ? -result : result; |
| } |
| |
| template <class Iterator> |
| double StringToDoubleConverter::StringToIeee( |
| Iterator input, |
| int length, |
| bool read_as_double, |
| int* processed_characters_count) const { |
| Iterator current = input; |
| Iterator end = input + length; |
| |
| *processed_characters_count = 0; |
| |
| const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; |
| const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; |
| const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; |
| const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; |
| const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0; |
| |
| // To make sure that iterator dereferencing is valid the following |
| // convention is used: |
| // 1. Each '++current' statement is followed by check for equality to 'end'. |
| // 2. If AdvanceToNonspace returned false then current == end. |
| // 3. If 'current' becomes equal to 'end' the function returns or goes to |
| // 'parsing_done'. |
| // 4. 'current' is not dereferenced after the 'parsing_done' label. |
| // 5. Code before 'parsing_done' may rely on 'current != end'. |
| if (current == end) return empty_string_value_; |
| |
| if (allow_leading_spaces || allow_trailing_spaces) { |
| if (!AdvanceToNonspace(¤t, end)) { |
| *processed_characters_count = static_cast<int>(current - input); |
| return empty_string_value_; |
| } |
| if (!allow_leading_spaces && (input != current)) { |
| // No leading spaces allowed, but AdvanceToNonspace moved forward. |
| return junk_string_value_; |
| } |
| } |
| |
| // Exponent will be adjusted if insignificant digits of the integer part |
| // or insignificant leading zeros of the fractional part are dropped. |
| int exponent = 0; |
| int significant_digits = 0; |
| int insignificant_digits = 0; |
| bool nonzero_digit_dropped = false; |
| |
| bool sign = false; |
| |
| if (*current == '+' || *current == '-') { |
| sign = (*current == '-'); |
| ++current; |
| Iterator next_non_space = current; |
| // Skip following spaces (if allowed). |
| if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; |
| if (!allow_spaces_after_sign && (current != next_non_space)) { |
| return junk_string_value_; |
| } |
| current = next_non_space; |
| } |
| |
| if (infinity_symbol_ != NULL) { |
| if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) { |
| if (!ConsumeSubString(¤t, end, infinity_symbol_, allow_case_insensitivity)) { |
| return junk_string_value_; |
| } |
| |
| if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| return junk_string_value_; |
| } |
| if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| return junk_string_value_; |
| } |
| |
| *processed_characters_count = static_cast<int>(current - input); |
| return sign ? -Double::Infinity() : Double::Infinity(); |
| } |
| } |
| |
| if (nan_symbol_ != NULL) { |
| if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) { |
| if (!ConsumeSubString(¤t, end, nan_symbol_, allow_case_insensitivity)) { |
| return junk_string_value_; |
| } |
| |
| if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| return junk_string_value_; |
| } |
| if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| return junk_string_value_; |
| } |
| |
| *processed_characters_count = static_cast<int>(current - input); |
| return sign ? -Double::NaN() : Double::NaN(); |
| } |
| } |
| |
| bool leading_zero = false; |
| if (*current == '0') { |
| if (Advance(¤t, separator_, 10, end)) { |
| *processed_characters_count = static_cast<int>(current - input); |
| return SignedZero(sign); |
| } |
| |
| leading_zero = true; |
| |
| // It could be hexadecimal value. |
| if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) && |
| (*current == 'x' || *current == 'X')) { |
| ++current; |
| |
| if (current == end) return junk_string_value_; // "0x" |
| |
| bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) && |
| IsHexFloatString(current, end, separator_, allow_trailing_junk); |
| |
| if (!parse_as_hex_float && !isDigit(*current, 16)) { |
| return junk_string_value_; |
| } |
| |
| bool result_is_junk; |
| double result = RadixStringToIeee<4>(¤t, |
| end, |
| sign, |
| separator_, |
| parse_as_hex_float, |
| allow_trailing_junk, |
| junk_string_value_, |
| read_as_double, |
| &result_is_junk); |
| if (!result_is_junk) { |
| if (allow_trailing_spaces) AdvanceToNonspace(¤t, end); |
| *processed_characters_count = static_cast<int>(current - input); |
| } |
| return result; |
| } |
| |
| // Ignore leading zeros in the integer part. |
| while (*current == '0') { |
| if (Advance(¤t, separator_, 10, end)) { |
| *processed_characters_count = static_cast<int>(current - input); |
| return SignedZero(sign); |
| } |
| } |
| } |
| |
| bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; |
| |
| // The longest form of simplified number is: "-<significant digits>.1eXXX\0". |
| const int kBufferSize = kMaxSignificantDigits + 10; |
| DOUBLE_CONVERSION_STACK_UNINITIALIZED char |
| buffer[kBufferSize]; // NOLINT: size is known at compile time. |
| int buffer_pos = 0; |
| |
| // Copy significant digits of the integer part (if any) to the buffer. |
| while (*current >= '0' && *current <= '9') { |
| if (significant_digits < kMaxSignificantDigits) { |
| DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); |
| buffer[buffer_pos++] = static_cast<char>(*current); |
| significant_digits++; |
| // Will later check if it's an octal in the buffer. |
| } else { |
| insignificant_digits++; // Move the digit into the exponential part. |
| nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| } |
| octal = octal && *current < '8'; |
| if (Advance(¤t, separator_, 10, end)) goto parsing_done; |
| } |
| |
| if (significant_digits == 0) { |
| octal = false; |
| } |
| |
| if (*current == '.') { |
| if (octal && !allow_trailing_junk) return junk_string_value_; |
| if (octal) goto parsing_done; |
| |
| if (Advance(¤t, separator_, 10, end)) { |
| if (significant_digits == 0 && !leading_zero) { |
| return junk_string_value_; |
| } else { |
| goto parsing_done; |
| } |
| } |
| |
| if (significant_digits == 0) { |
| // octal = false; |
| // Integer part consists of 0 or is absent. Significant digits start after |
| // leading zeros (if any). |
| while (*current == '0') { |
| if (Advance(¤t, separator_, 10, end)) { |
| *processed_characters_count = static_cast<int>(current - input); |
| return SignedZero(sign); |
| } |
| exponent--; // Move this 0 into the exponent. |
| } |
| } |
| |
| // There is a fractional part. |
| // We don't emit a '.', but adjust the exponent instead. |
| while (*current >= '0' && *current <= '9') { |
| if (significant_digits < kMaxSignificantDigits) { |
| DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); |
| buffer[buffer_pos++] = static_cast<char>(*current); |
| significant_digits++; |
| exponent--; |
| } else { |
| // Ignore insignificant digits in the fractional part. |
| nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| } |
| if (Advance(¤t, separator_, 10, end)) goto parsing_done; |
| } |
| } |
| |
| if (!leading_zero && exponent == 0 && significant_digits == 0) { |
| // If leading_zeros is true then the string contains zeros. |
| // If exponent < 0 then string was [+-]\.0*... |
| // If significant_digits != 0 the string is not equal to 0. |
| // Otherwise there are no digits in the string. |
| return junk_string_value_; |
| } |
| |
| // Parse exponential part. |
| if (*current == 'e' || *current == 'E') { |
| if (octal && !allow_trailing_junk) return junk_string_value_; |
| if (octal) goto parsing_done; |
| Iterator junk_begin = current; |
| ++current; |
| if (current == end) { |
| if (allow_trailing_junk) { |
| current = junk_begin; |
| goto parsing_done; |
| } else { |
| return junk_string_value_; |
| } |
| } |
| char exponen_sign = '+'; |
| if (*current == '+' || *current == '-') { |
| exponen_sign = static_cast<char>(*current); |
| ++current; |
| if (current == end) { |
| if (allow_trailing_junk) { |
| current = junk_begin; |
| goto parsing_done; |
| } else { |
| return junk_string_value_; |
| } |
| } |
| } |
| |
| if (current == end || *current < '0' || *current > '9') { |
| if (allow_trailing_junk) { |
| current = junk_begin; |
| goto parsing_done; |
| } else { |
| return junk_string_value_; |
| } |
| } |
| |
| const int max_exponent = INT_MAX / 2; |
| DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
| int num = 0; |
| do { |
| // Check overflow. |
| int digit = *current - '0'; |
| if (num >= max_exponent / 10 |
| && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
| num = max_exponent; |
| } else { |
| num = num * 10 + digit; |
| } |
| ++current; |
| } while (current != end && *current >= '0' && *current <= '9'); |
| |
| exponent += (exponen_sign == '-' ? -num : num); |
| } |
| |
| if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| return junk_string_value_; |
| } |
| if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| return junk_string_value_; |
| } |
| if (allow_trailing_spaces) { |
| AdvanceToNonspace(¤t, end); |
| } |
| |
| parsing_done: |
| exponent += insignificant_digits; |
| |
| if (octal) { |
| double result; |
| bool result_is_junk; |
| char* start = buffer; |
| result = RadixStringToIeee<3>(&start, |
| buffer + buffer_pos, |
| sign, |
| separator_, |
| false, // Don't parse as hex_float. |
| allow_trailing_junk, |
| junk_string_value_, |
| read_as_double, |
| &result_is_junk); |
| DOUBLE_CONVERSION_ASSERT(!result_is_junk); |
| *processed_characters_count = static_cast<int>(current - input); |
| return result; |
| } |
| |
| if (nonzero_digit_dropped) { |
| buffer[buffer_pos++] = '1'; |
| exponent--; |
| } |
| |
| DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize); |
| buffer[buffer_pos] = '\0'; |
| |
| double converted; |
| if (read_as_double) { |
| converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); |
| } else { |
| converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent); |
| } |
| *processed_characters_count = static_cast<int>(current - input); |
| return sign? -converted: converted; |
| } |
| |
| |
| double StringToDoubleConverter::StringToDouble( |
| const char* buffer, |
| int length, |
| int* processed_characters_count) const { |
| return StringToIeee(buffer, length, true, processed_characters_count); |
| } |
| |
| |
| double StringToDoubleConverter::StringToDouble( |
| const uc16* buffer, |
| int length, |
| int* processed_characters_count) const { |
| return StringToIeee(buffer, length, true, processed_characters_count); |
| } |
| |
| |
| float StringToDoubleConverter::StringToFloat( |
| const char* buffer, |
| int length, |
| int* processed_characters_count) const { |
| return static_cast<float>(StringToIeee(buffer, length, false, |
| processed_characters_count)); |
| } |
| |
| |
| float StringToDoubleConverter::StringToFloat( |
| const uc16* buffer, |
| int length, |
| int* processed_characters_count) const { |
| return static_cast<float>(StringToIeee(buffer, length, false, |
| processed_characters_count)); |
| } |
| |
| } // namespace double_conversion |