blob: 1328ac498800fc17b08be40ebd1d4ca06b0cb322 [file] [log] [blame]
/****************************************************************************
*
* ftbsdf.c
*
* Signed Distance Field support for bitmap fonts (body only).
*
* Copyright (C) 2020-2022 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* Written by Anuj Verma.
*
* This file is part of the FreeType project, and may only be used,
* modified, and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
*/
#include <freetype/internal/ftobjs.h>
#include <freetype/internal/ftdebug.h>
#include <freetype/internal/ftmemory.h>
#include <freetype/fttrigon.h>
#include "ftsdf.h"
#include "ftsdferrs.h"
#include "ftsdfcommon.h"
/**************************************************************************
*
* A brief technical overview of how the BSDF rasterizer works
* -----------------------------------------------------------
*
* [Notes]:
* * SDF stands for Signed Distance Field everywhere.
*
* * BSDF stands for Bitmap to Signed Distance Field rasterizer.
*
* * This renderer converts rasterized bitmaps to SDF. There is another
* renderer called 'sdf', which generates SDF directly from outlines;
* see file `ftsdf.c` for more.
*
* * The idea of generating SDF from bitmaps is taken from two research
* papers, where one is dependent on the other:
*
* - Per-Erik Danielsson: Euclidean Distance Mapping
* http://webstaff.itn.liu.se/~stegu/JFA/Danielsson.pdf
*
* From this paper we use the eight-point sequential Euclidean
* distance mapping (8SED). This is the heart of the process used
* in this rasterizer.
*
* - Stefan Gustavson, Robin Strand: Anti-aliased Euclidean distance transform.
* http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf
*
* The original 8SED algorithm discards the pixels' alpha values,
* which can contain information about the actual outline of the
* glyph. This paper takes advantage of those alpha values and
* approximates outline pretty accurately.
*
* * This rasterizer also works for monochrome bitmaps. However, the
* result is not as accurate since we don't have any way to
* approximate outlines from binary bitmaps.
*
* ========================================================================
*
* Generating SDF from bitmap is done in several steps.
*
* (1) The only information we have is the bitmap itself. It can
* be monochrome or anti-aliased. If it is anti-aliased, pixel values
* are nothing but coverage values. These coverage values can be used
* to extract information about the outline of the image. For
* example, if the pixel's alpha value is 0.5, then we can safely
* assume that the outline passes through the center of the pixel.
*
* (2) Find edge pixels in the bitmap (see `bsdf_is_edge` for more). For
* all edge pixels we use the Anti-aliased Euclidean distance
* transform algorithm and compute approximate edge distances (see
* `compute_edge_distance` and/or the second paper for more).
*
* (3) Now that we have computed approximate distances for edge pixels we
* use the 8SED algorithm to basically sweep the entire bitmap and
* compute distances for the rest of the pixels. (Since the algorithm
* is pretty convoluted it is only explained briefly in a comment to
* function `edt8`. To see the actual algorithm refer to the first
* paper.)
*
* (4) Finally, compute the sign for each pixel. This is done in function
* `finalize_sdf`. The basic idea is that if a pixel's original
* alpha/coverage value is greater than 0.5 then it is 'inside' (and
* 'outside' otherwise).
*
* Pseudo Code:
*
* ```
* b = source bitmap;
* t = target bitmap;
* dm = list of distances; // dimension equal to b
*
* foreach grid_point (x, y) in b:
* {
* if (is_edge(x, y)):
* dm = approximate_edge_distance(b, x, y);
*
* // do the 8SED on the distances
* edt8(dm);
*
* // determine the signs
* determine_signs(dm):
*
* // copy SDF data to the target bitmap
* copy(dm to t);
* }
*
*/
/**************************************************************************
*
* The macro FT_COMPONENT is used in trace mode. It is an implicit
* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
* messages during execution.
*/
#undef FT_COMPONENT
#define FT_COMPONENT bsdf
/**************************************************************************
*
* useful macros
*
*/
#define ONE 65536 /* 1 in 16.16 */
/**************************************************************************
*
* structs
*
*/
/**************************************************************************
*
* @Struct:
* BSDF_TRaster
*
* @Description:
* This struct is used in place of @FT_Raster and is stored within the
* internal FreeType renderer struct. While rasterizing this is passed
* to the @FT_Raster_RenderFunc function, which then can be used however
* we want.
*
* @Fields:
* memory ::
* Used internally to allocate intermediate memory while raterizing.
*
*/
typedef struct BSDF_TRaster_
{
FT_Memory memory;
} BSDF_TRaster, *BSDF_PRaster;
/**************************************************************************
*
* @Struct:
* ED
*
* @Description:
* Euclidean distance. It gets used for Euclidean distance transforms;
* it can also be interpreted as an edge distance.
*
* @Fields:
* dist ::
* Vector length of the `prox` parameter. Can be squared or absolute
* depending on the `USE_SQUARED_DISTANCES` macro defined in file
* `ftsdfcommon.h`.
*
* prox ::
* Vector to the nearest edge. Can also be interpreted as shortest
* distance of a point.
*
* alpha ::
* Alpha value of the original bitmap from which we generate SDF.
* Needed for computing the gradient and determining the proper sign
* of a pixel.
*
*/
typedef struct ED_
{
FT_16D16 dist;
FT_16D16_Vec prox;
FT_Byte alpha;
} ED;
/**************************************************************************
*
* @Struct:
* BSDF_Worker
*
* @Description:
* A convenience struct that is passed to functions while generating
* SDF; most of those functions require the same parameters.
*
* @Fields:
* distance_map ::
* A one-dimensional array that gets interpreted as two-dimensional
* one. It contains the Euclidean distances of all points of the
* bitmap.
*
* width ::
* Width of the above `distance_map`.
*
* rows ::
* Number of rows in the above `distance_map`.
*
* params ::
* Internal parameters and properties required by the rasterizer. See
* file `ftsdf.h` for more.
*
*/
typedef struct BSDF_Worker_
{
ED* distance_map;
FT_Int width;
FT_Int rows;
SDF_Raster_Params params;
} BSDF_Worker;
/**************************************************************************
*
* initializer
*
*/
static const ED zero_ed = { 0, { 0, 0 }, 0 };
/**************************************************************************
*
* rasterizer functions
*
*/
/**************************************************************************
*
* @Function:
* bsdf_is_edge
*
* @Description:
* Check whether a pixel is an edge pixel, i.e., whether it is
* surrounded by a completely black pixel (zero alpha), and the current
* pixel is not a completely black pixel.
*
* @Input:
* dm ::
* Array of distances. The parameter must point to the current
* pixel, i.e., the pixel that is to be checked for being an edge.
*
* x ::
* The x position of the current pixel.
*
* y ::
* The y position of the current pixel.
*
* w ::
* Width of the bitmap.
*
* r ::
* Number of rows in the bitmap.
*
* @Return:
* 1~if the current pixel is an edge pixel, 0~otherwise.
*
*/
#ifdef CHECK_NEIGHBOR
#undef CHECK_NEIGHBOR
#endif
#define CHECK_NEIGHBOR( x_offset, y_offset ) \
do \
{ \
if ( x + x_offset >= 0 && x + x_offset < w && \
y + y_offset >= 0 && y + y_offset < r ) \
{ \
num_neighbors++; \
\
to_check = dm + y_offset * w + x_offset; \
if ( to_check->alpha == 0 ) \
{ \
is_edge = 1; \
goto Done; \
} \
} \
} while ( 0 )
static FT_Bool
bsdf_is_edge( ED* dm, /* distance map */
FT_Int x, /* x index of point to check */
FT_Int y, /* y index of point to check */
FT_Int w, /* width */
FT_Int r ) /* rows */
{
FT_Bool is_edge = 0;
ED* to_check = NULL;
FT_Int num_neighbors = 0;
if ( dm->alpha == 0 )
goto Done;
if ( dm->alpha > 0 && dm->alpha < 255 )
{
is_edge = 1;
goto Done;
}
/* up */
CHECK_NEIGHBOR( 0, -1 );
/* down */
CHECK_NEIGHBOR( 0, 1 );
/* left */
CHECK_NEIGHBOR( -1, 0 );
/* right */
CHECK_NEIGHBOR( 1, 0 );
/* up left */
CHECK_NEIGHBOR( -1, -1 );
/* up right */
CHECK_NEIGHBOR( 1, -1 );
/* down left */
CHECK_NEIGHBOR( -1, 1 );
/* down right */
CHECK_NEIGHBOR( 1, 1 );
if ( num_neighbors != 8 )
is_edge = 1;
Done:
return is_edge;
}
#undef CHECK_NEIGHBOR
/**************************************************************************
*
* @Function:
* compute_edge_distance
*
* @Description:
* Approximate the outline and compute the distance from `current`
* to the approximated outline.
*
* @Input:
* current ::
* Array of Euclidean distances. `current` must point to the position
* for which the distance is to be caculated. We treat this array as
* a two-dimensional array mapped to a one-dimensional array.
*
* x ::
* The x coordinate of the `current` parameter in the array.
*
* y ::
* The y coordinate of the `current` parameter in the array.
*
* w ::
* The width of the distances array.
*
* r ::
* Number of rows in the distances array.
*
* @Return:
* A vector pointing to the approximate edge distance.
*
* @Note:
* This is a computationally expensive function. Try to reduce the
* number of calls to this function. Moreover, this must only be used
* for edge pixel positions.
*
*/
static FT_16D16_Vec
compute_edge_distance( ED* current,
FT_Int x,
FT_Int y,
FT_Int w,
FT_Int r )
{
/*
* This function, based on the paper presented by Stefan Gustavson and
* Robin Strand, gets used to approximate edge distances from
* anti-aliased bitmaps.
*
* The algorithm is as follows.
*
* (1) In anti-aliased images, the pixel's alpha value is the coverage
* of the pixel by the outline. For example, if the alpha value is
* 0.5f we can assume that the outline passes through the center of
* the pixel.
*
* (2) For this reason we can use that alpha value to approximate the real
* distance of the pixel to edge pretty accurately. A simple
* approximation is `(0.5f - alpha)`, assuming that the outline is
* parallel to the x or y~axis. However, in this algorithm we use a
* different approximation which is quite accurate even for
* non-axis-aligned edges.
*
* (3) The only remaining piece of information that we cannot
* approximate directly from the alpha is the direction of the edge.
* This is where we use Sobel's operator to compute the gradient of
* the pixel. The gradient give us a pretty good approximation of
* the edge direction. We use a 3x3 kernel filter to compute the
* gradient.
*
* (4) After the above two steps we have both the direction and the
* distance to the edge which is used to generate the Signed
* Distance Field.
*
* References:
*
* - Anti-Aliased Euclidean Distance Transform:
* http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf
* - Sobel Operator:
* https://en.wikipedia.org/wiki/Sobel_operator
*/
FT_16D16_Vec g = { 0, 0 };
FT_16D16 dist, current_alpha;
FT_16D16 a1, temp;
FT_16D16 gx, gy;
FT_16D16 alphas[9];
/* Since our spread cannot be 0, this condition */
/* can never be true. */
if ( x <= 0 || x >= w - 1 ||
y <= 0 || y >= r - 1 )
return g;
/* initialize the alphas */
alphas[0] = 256 * (FT_16D16)current[-w - 1].alpha;
alphas[1] = 256 * (FT_16D16)current[-w ].alpha;
alphas[2] = 256 * (FT_16D16)current[-w + 1].alpha;
alphas[3] = 256 * (FT_16D16)current[ -1].alpha;
alphas[4] = 256 * (FT_16D16)current[ 0].alpha;
alphas[5] = 256 * (FT_16D16)current[ 1].alpha;
alphas[6] = 256 * (FT_16D16)current[ w - 1].alpha;
alphas[7] = 256 * (FT_16D16)current[ w ].alpha;
alphas[8] = 256 * (FT_16D16)current[ w + 1].alpha;
current_alpha = alphas[4];
/* Compute the gradient using the Sobel operator. */
/* In this case we use the following 3x3 filters: */
/* */
/* For x: | -1 0 -1 | */
/* | -root(2) 0 root(2) | */
/* | -1 0 1 | */
/* */
/* For y: | -1 -root(2) -1 | */
/* | 0 0 0 | */
/* | 1 root(2) 1 | */
/* */
/* [Note]: 92681 is root(2) in 16.16 format. */
g.x = -alphas[0] -
FT_MulFix( alphas[3], 92681 ) -
alphas[6] +
alphas[2] +
FT_MulFix( alphas[5], 92681 ) +
alphas[8];
g.y = -alphas[0] -
FT_MulFix( alphas[1], 92681 ) -
alphas[2] +
alphas[6] +
FT_MulFix( alphas[7], 92681 ) +
alphas[8];
FT_Vector_NormLen( &g );
/* The gradient gives us the direction of the */
/* edge for the current pixel. Once we have the */
/* approximate direction of the edge, we can */
/* approximate the edge distance much better. */
if ( g.x == 0 || g.y == 0 )
dist = ONE / 2 - alphas[4];
else
{
gx = g.x;
gy = g.y;
gx = FT_ABS( gx );
gy = FT_ABS( gy );
if ( gx < gy )
{
temp = gx;
gx = gy;
gy = temp;
}
a1 = FT_DivFix( gy, gx ) / 2;
if ( current_alpha < a1 )
dist = ( gx + gy ) / 2 -
square_root( 2 * FT_MulFix( gx,
FT_MulFix( gy,
current_alpha ) ) );
else if ( current_alpha < ( ONE - a1 ) )
dist = FT_MulFix( ONE / 2 - current_alpha, gx );
else
dist = -( gx + gy ) / 2 +
square_root( 2 * FT_MulFix( gx,
FT_MulFix( gy,
ONE - current_alpha ) ) );
}
g.x = FT_MulFix( g.x, dist );
g.y = FT_MulFix( g.y, dist );
return g;
}
/**************************************************************************
*
* @Function:
* bsdf_approximate_edge
*
* @Description:
* Loops over all the pixels and call `compute_edge_distance` only for
* edge pixels. This maked the process a lot faster since
* `compute_edge_distance` uses functions such as `FT_Vector_NormLen',
* which are quite slow.
*
* @InOut:
* worker ::
* Contains the distance map as well as all the relevant parameters
* required by the function.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The function directly manipulates `worker->distance_map`.
*
*/
static FT_Error
bsdf_approximate_edge( BSDF_Worker* worker )
{
FT_Error error = FT_Err_Ok;
FT_Int i, j;
FT_Int index;
ED* ed;
if ( !worker || !worker->distance_map )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
ed = worker->distance_map;
for ( j = 0; j < worker->rows; j++ )
{
for ( i = 0; i < worker->width; i++ )
{
index = j * worker->width + i;
if ( bsdf_is_edge( worker->distance_map + index,
i, j,
worker->width,
worker->rows ) )
{
/* approximate the edge distance for edge pixels */
ed[index].prox = compute_edge_distance( ed + index,
i, j,
worker->width,
worker->rows );
ed[index].dist = VECTOR_LENGTH_16D16( ed[index].prox );
}
else
{
/* for non-edge pixels assign far away distances */
ed[index].dist = 400 * ONE;
ed[index].prox.x = 200 * ONE;
ed[index].prox.y = 200 * ONE;
}
}
}
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* bsdf_init_distance_map
*
* @Description:
* Initialize the distance map according to the '8-point sequential
* Euclidean distance mapping' (8SED) algorithm. Basically it copies
* the `source` bitmap alpha values to the `distance_map->alpha`
* parameter of `worker`.
*
* @Input:
* source ::
* Source bitmap to copy the data from.
*
* @Output:
* worker ::
* Target distance map to copy the data to.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
bsdf_init_distance_map( const FT_Bitmap* source,
BSDF_Worker* worker )
{
FT_Error error = FT_Err_Ok;
FT_Int x_diff, y_diff;
FT_Int t_i, t_j, s_i, s_j;
FT_Byte* s;
ED* t;
/* again check the parameters (probably unnecessary) */
if ( !source || !worker )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* Because of the way we convert a bitmap to SDF, */
/* i.e., aligning the source to the center of the */
/* target, the target's width and rows must be */
/* checked before copying. */
if ( worker->width < (FT_Int)source->width ||
worker->rows < (FT_Int)source->rows )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* check pixel mode */
if ( source->pixel_mode == FT_PIXEL_MODE_NONE )
{
FT_ERROR(( "bsdf_copy_source_to_target:"
" Invalid pixel mode of source bitmap" ));
error = FT_THROW( Invalid_Argument );
goto Exit;
}
#ifdef FT_DEBUG_LEVEL_TRACE
if ( source->pixel_mode == FT_PIXEL_MODE_MONO )
{
FT_TRACE0(( "bsdf_copy_source_to_target:"
" The `bsdf' renderer can convert monochrome\n" ));
FT_TRACE0(( " "
" bitmaps to SDF but the results are not perfect\n" ));
FT_TRACE0(( " "
" because there is no way to approximate actual\n" ));
FT_TRACE0(( " "
" outlines from monochrome bitmaps. Consider\n" ));
FT_TRACE0(( " "
" using an anti-aliased bitmap instead.\n" ));
}
#endif
/* Calculate the width and row differences */
/* between target and source. */
x_diff = worker->width - (int)source->width;
y_diff = worker->rows - (int)source->rows;
x_diff /= 2;
y_diff /= 2;
t = (ED*)worker->distance_map;
s = source->buffer;
/* For now we only support pixel mode `FT_PIXEL_MODE_MONO` */
/* and `FT_PIXEL_MODE_GRAY`. More will be added later. */
/* */
/* [NOTE]: We can also use @FT_Bitmap_Convert to convert */
/* bitmap to 8bpp. To avoid extra allocation and */
/* since the target bitmap can be 16bpp we manually */
/* convert the source bitmap to the desired bpp. */
switch ( source->pixel_mode )
{
case FT_PIXEL_MODE_MONO:
{
FT_Int t_width = worker->width;
FT_Int t_rows = worker->rows;
FT_Int s_width = (int)source->width;
FT_Int s_rows = (int)source->rows;
for ( t_j = 0; t_j < t_rows; t_j++ )
{
for ( t_i = 0; t_i < t_width; t_i++ )
{
FT_Int t_index = t_j * t_width + t_i;
FT_Int s_index;
FT_Int div, mod;
FT_Byte pixel, byte;
t[t_index] = zero_ed;
s_i = t_i - x_diff;
s_j = t_j - y_diff;
/* Assign 0 to padding similar to */
/* the source bitmap. */
if ( s_i < 0 || s_i >= s_width ||
s_j < 0 || s_j >= s_rows )
continue;
if ( worker->params.flip_y )
s_index = ( s_rows - s_j - 1 ) * source->pitch;
else
s_index = s_j * source->pitch;
div = s_index + s_i / 8;
mod = 7 - s_i % 8;
pixel = s[div];
byte = (FT_Byte)( 1 << mod );
t[t_index].alpha = pixel & byte ? 255 : 0;
}
}
}
break;
case FT_PIXEL_MODE_GRAY:
{
FT_Int t_width = worker->width;
FT_Int t_rows = worker->rows;
FT_Int s_width = (int)source->width;
FT_Int s_rows = (int)source->rows;
/* loop over all pixels and assign pixel values from source */
for ( t_j = 0; t_j < t_rows; t_j++ )
{
for ( t_i = 0; t_i < t_width; t_i++ )
{
FT_Int t_index = t_j * t_width + t_i;
FT_Int s_index;
t[t_index] = zero_ed;
s_i = t_i - x_diff;
s_j = t_j - y_diff;
/* Assign 0 to padding similar to */
/* the source bitmap. */
if ( s_i < 0 || s_i >= s_width ||
s_j < 0 || s_j >= s_rows )
continue;
if ( worker->params.flip_y )
s_index = ( s_rows - s_j - 1 ) * s_width + s_i;
else
s_index = s_j * s_width + s_i;
/* simply copy the alpha values */
t[t_index].alpha = s[s_index];
}
}
}
break;
default:
FT_ERROR(( "bsdf_copy_source_to_target:"
" unsopported pixel mode of source bitmap\n" ));
error = FT_THROW( Unimplemented_Feature );
break;
}
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* compare_neighbor
*
* @Description:
* Compare neighbor pixel (which is defined by the offset) and update
* `current` distance if the new distance is shorter than the original.
*
* @Input:
* x_offset ::
* X offset of the neighbor to be checked. The offset is relative to
* the `current`.
*
* y_offset ::
* Y offset of the neighbor to be checked. The offset is relative to
* the `current`.
*
* width ::
* Width of the `current` array.
*
* @InOut:
* current ::
* Pointer into array of distances. This parameter must point to the
* position whose neighbor is to be checked. The array is treated as
* a two-dimensional array.
*
*/
static void
compare_neighbor( ED* current,
FT_Int x_offset,
FT_Int y_offset,
FT_Int width )
{
ED* to_check;
FT_16D16 dist;
FT_16D16_Vec dist_vec;
to_check = current + ( y_offset * width ) + x_offset;
/*
* While checking for the nearest point we first approximate the
* distance of `current` by adding the deviation (which is sqrt(2) at
* most). Only if the new value is less than the current value we
* calculate the actual distances using `FT_Vector_Length`. This last
* step can be omitted by using squared distances.
*/
/*
* Approximate the distance. We subtract 1 to avoid precision errors,
* which could happen because the two directions can be opposite.
*/
dist = to_check->dist - ONE;
if ( dist < current->dist )
{
dist_vec = to_check->prox;
dist_vec.x += x_offset * ONE;
dist_vec.y += y_offset * ONE;
dist = VECTOR_LENGTH_16D16( dist_vec );
if ( dist < current->dist )
{
current->dist = dist;
current->prox = dist_vec;
}
}
}
/**************************************************************************
*
* @Function:
* first_pass
*
* @Description:
* First pass of the 8SED algorithm. Loop over the bitmap from top to
* bottom and scan each row left to right, updating the distances in
* `worker->distance_map`.
*
* @InOut:
* worker::
* Contains all the relevant parameters.
*
*/
static void
first_pass( BSDF_Worker* worker )
{
FT_Int i, j; /* iterators */
FT_Int w, r; /* width, rows */
ED* dm; /* distance map */
dm = worker->distance_map;
w = worker->width;
r = worker->rows;
/* Start scanning from top to bottom and sweep each */
/* row back and forth comparing the distances of the */
/* neighborhood. Leave the first row as it has no top */
/* neighbor; it will be covered in the second scan of */
/* the image (from bottom to top). */
for ( j = 1; j < r; j++ )
{
FT_Int index;
ED* current;
/* Forward pass of rows (left -> right). Leave the first */
/* column, which gets covered in the backward pass. */
for ( i = 1; i < w - 1; i++ )
{
index = j * w + i;
current = dm + index;
/* left-up */
compare_neighbor( current, -1, -1, w );
/* up */
compare_neighbor( current, 0, -1, w );
/* up-right */
compare_neighbor( current, 1, -1, w );
/* left */
compare_neighbor( current, -1, 0, w );
}
/* Backward pass of rows (right -> left). Leave the last */
/* column, which was already covered in the forward pass. */
for ( i = w - 2; i >= 0; i-- )
{
index = j * w + i;
current = dm + index;
/* right */
compare_neighbor( current, 1, 0, w );
}
}
}
/**************************************************************************
*
* @Function:
* second_pass
*
* @Description:
* Second pass of the 8SED algorithm. Loop over the bitmap from bottom
* to top and scan each row left to right, updating the distances in
* `worker->distance_map`.
*
* @InOut:
* worker::
* Contains all the relevant parameters.
*
*/
static void
second_pass( BSDF_Worker* worker )
{
FT_Int i, j; /* iterators */
FT_Int w, r; /* width, rows */
ED* dm; /* distance map */
dm = worker->distance_map;
w = worker->width;
r = worker->rows;
/* Start scanning from bottom to top and sweep each */
/* row back and forth comparing the distances of the */
/* neighborhood. Leave the last row as it has no down */
/* neighbor; it is already covered in the first scan */
/* of the image (from top to bottom). */
for ( j = r - 2; j >= 0; j-- )
{
FT_Int index;
ED* current;
/* Forward pass of rows (left -> right). Leave the first */
/* column, which gets covered in the backward pass. */
for ( i = 1; i < w - 1; i++ )
{
index = j * w + i;
current = dm + index;
/* left-up */
compare_neighbor( current, -1, 1, w );
/* up */
compare_neighbor( current, 0, 1, w );
/* up-right */
compare_neighbor( current, 1, 1, w );
/* left */
compare_neighbor( current, -1, 0, w );
}
/* Backward pass of rows (right -> left). Leave the last */
/* column, which was already covered in the forward pass. */
for ( i = w - 2; i >= 0; i-- )
{
index = j * w + i;
current = dm + index;
/* right */
compare_neighbor( current, 1, 0, w );
}
}
}
/**************************************************************************
*
* @Function:
* edt8
*
* @Description:
* Compute the distance map of the a bitmap. Execute both first and
* second pass of the 8SED algorithm.
*
* @InOut:
* worker::
* Contains all the relevant parameters.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
edt8( BSDF_Worker* worker )
{
FT_Error error = FT_Err_Ok;
if ( !worker || !worker->distance_map )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* first scan of the image */
first_pass( worker );
/* second scan of the image */
second_pass( worker );
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* finalize_sdf
*
* @Description:
* Copy the SDF data from `worker->distance_map` to the `target` bitmap.
* Also transform the data to output format, (which is 6.10 fixed-point
* format at the moment).
*
* @Input:
* worker ::
* Contains source distance map and other SDF data.
*
* @Output:
* target ::
* Target bitmap to which the SDF data is copied to.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
finalize_sdf( BSDF_Worker* worker,
const FT_Bitmap* target )
{
FT_Error error = FT_Err_Ok;
FT_Int w, r;
FT_Int i, j;
FT_SDFFormat* t_buffer;
FT_16D16 sp_sq, spread;
if ( !worker || !target )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
w = (int)target->width;
r = (int)target->rows;
t_buffer = (FT_SDFFormat*)target->buffer;
if ( w != worker->width ||
r != worker->rows )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
spread = FT_INT_16D16( worker->params.spread );
#if USE_SQUARED_DISTANCES
sp_sq = FT_INT_16D16( worker->params.spread *
worker->params.spread );
#else
sp_sq = FT_INT_16D16( worker->params.spread );
#endif
for ( j = 0; j < r; j++ )
{
for ( i = 0; i < w; i++ )
{
FT_Int index;
FT_16D16 dist;
FT_SDFFormat final_dist;
FT_Char sign;
index = j * w + i;
dist = worker->distance_map[index].dist;
if ( dist < 0 || dist > sp_sq )
dist = sp_sq;
#if USE_SQUARED_DISTANCES
dist = square_root( dist );
#endif
/* We assume that if the pixel is inside a contour */
/* its coverage value must be > 127. */
sign = worker->distance_map[index].alpha < 127 ? -1 : 1;
/* flip the sign according to the property */
if ( worker->params.flip_sign )
sign = -sign;
/* concatenate from 16.16 to appropriate format */
final_dist = map_fixed_to_sdf( dist * sign, spread );
t_buffer[index] = final_dist;
}
}
Exit:
return error;
}
/**************************************************************************
*
* interface functions
*
*/
/* called when adding a new module through @FT_Add_Module */
static FT_Error
bsdf_raster_new( FT_Memory memory,
BSDF_PRaster* araster )
{
FT_Error error;
BSDF_PRaster raster = NULL;
if ( !FT_NEW( raster ) )
raster->memory = memory;
*araster = raster;
return error;
}
/* unused */
static void
bsdf_raster_reset( FT_Raster raster,
unsigned char* pool_base,
unsigned long pool_size )
{
FT_UNUSED( raster );
FT_UNUSED( pool_base );
FT_UNUSED( pool_size );
}
/* unused */
static FT_Error
bsdf_raster_set_mode( FT_Raster raster,
unsigned long mode,
void* args )
{
FT_UNUSED( raster );
FT_UNUSED( mode );
FT_UNUSED( args );
return FT_Err_Ok;
}
/* called while rendering through @FT_Render_Glyph */
static FT_Error
bsdf_raster_render( FT_Raster raster,
const FT_Raster_Params* params )
{
FT_Error error = FT_Err_Ok;
FT_Memory memory = NULL;
const FT_Bitmap* source = NULL;
const FT_Bitmap* target = NULL;
BSDF_TRaster* bsdf_raster = (BSDF_TRaster*)raster;
BSDF_Worker worker;
const SDF_Raster_Params* sdf_params = (const SDF_Raster_Params*)params;
worker.distance_map = NULL;
/* check for valid parameters */
if ( !raster || !params )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* check whether the flag is set */
if ( sdf_params->root.flags != FT_RASTER_FLAG_SDF )
{
error = FT_THROW( Raster_Corrupted );
goto Exit;
}
source = (const FT_Bitmap*)sdf_params->root.source;
target = (const FT_Bitmap*)sdf_params->root.target;
/* check source and target bitmap */
if ( !source || !target )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
memory = bsdf_raster->memory;
if ( !memory )
{
FT_TRACE0(( "bsdf_raster_render: Raster not set up properly,\n" ));
FT_TRACE0(( " unable to find memory handle.\n" ));
error = FT_THROW( Invalid_Handle );
goto Exit;
}
/* check whether spread is set properly */
if ( sdf_params->spread > MAX_SPREAD ||
sdf_params->spread < MIN_SPREAD )
{
FT_TRACE0(( "bsdf_raster_render:"
" The `spread' field of `SDF_Raster_Params'\n" ));
FT_TRACE0(( " "
" is invalid; the value of this field must be\n" ));
FT_TRACE0(( " "
" within [%d, %d].\n",
MIN_SPREAD, MAX_SPREAD ));
FT_TRACE0(( " "
" Also, you must pass `SDF_Raster_Params'\n" ));
FT_TRACE0(( " "
" instead of the default `FT_Raster_Params'\n" ));
FT_TRACE0(( " "
" while calling this function and set the fields\n" ));
FT_TRACE0(( " "
" accordingly.\n" ));
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* set up the worker */
/* allocate the distance map */
if ( FT_QALLOC_MULT( worker.distance_map, target->rows,
target->width * sizeof ( *worker.distance_map ) ) )
goto Exit;
worker.width = (int)target->width;
worker.rows = (int)target->rows;
worker.params = *sdf_params;
FT_CALL( bsdf_init_distance_map( source, &worker ) );
FT_CALL( bsdf_approximate_edge( &worker ) );
FT_CALL( edt8( &worker ) );
FT_CALL( finalize_sdf( &worker, target ) );
FT_TRACE0(( "bsdf_raster_render: Total memory used = %ld\n",
worker.width * worker.rows *
(long)sizeof ( *worker.distance_map ) ));
Exit:
if ( worker.distance_map )
FT_FREE( worker.distance_map );
return error;
}
/* called while deleting `FT_Library` only if the module is added */
static void
bsdf_raster_done( FT_Raster raster )
{
FT_Memory memory = (FT_Memory)((BSDF_TRaster*)raster)->memory;
FT_FREE( raster );
}
FT_DEFINE_RASTER_FUNCS(
ft_bitmap_sdf_raster,
FT_GLYPH_FORMAT_BITMAP,
(FT_Raster_New_Func) bsdf_raster_new, /* raster_new */
(FT_Raster_Reset_Func) bsdf_raster_reset, /* raster_reset */
(FT_Raster_Set_Mode_Func)bsdf_raster_set_mode, /* raster_set_mode */
(FT_Raster_Render_Func) bsdf_raster_render, /* raster_render */
(FT_Raster_Done_Func) bsdf_raster_done /* raster_done */
)
/* END */