| //======================================================================== |
| // A simple particle engine with threaded physics |
| // Copyright (c) Marcus Geelnard |
| // Copyright (c) Camilla Löwy <elmindreda@glfw.org> |
| // |
| // This software is provided 'as-is', without any express or implied |
| // warranty. In no event will the authors be held liable for any damages |
| // arising from the use of this software. |
| // |
| // Permission is granted to anyone to use this software for any purpose, |
| // including commercial applications, and to alter it and redistribute it |
| // freely, subject to the following restrictions: |
| // |
| // 1. The origin of this software must not be misrepresented; you must not |
| // claim that you wrote the original software. If you use this software |
| // in a product, an acknowledgment in the product documentation would |
| // be appreciated but is not required. |
| // |
| // 2. Altered source versions must be plainly marked as such, and must not |
| // be misrepresented as being the original software. |
| // |
| // 3. This notice may not be removed or altered from any source |
| // distribution. |
| // |
| //======================================================================== |
| |
| #if defined(_MSC_VER) |
| // Make MS math.h define M_PI |
| #define _USE_MATH_DEFINES |
| #endif |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <math.h> |
| #include <time.h> |
| |
| #include <tinycthread.h> |
| #include <getopt.h> |
| #include <linmath.h> |
| |
| #include <glad/gl.h> |
| #define GLFW_INCLUDE_NONE |
| #include <GLFW/glfw3.h> |
| |
| // Define tokens for GL_EXT_separate_specular_color if not already defined |
| #ifndef GL_EXT_separate_specular_color |
| #define GL_LIGHT_MODEL_COLOR_CONTROL_EXT 0x81F8 |
| #define GL_SINGLE_COLOR_EXT 0x81F9 |
| #define GL_SEPARATE_SPECULAR_COLOR_EXT 0x81FA |
| #endif // GL_EXT_separate_specular_color |
| |
| |
| //======================================================================== |
| // Type definitions |
| //======================================================================== |
| |
| typedef struct |
| { |
| float x, y, z; |
| } Vec3; |
| |
| // This structure is used for interleaved vertex arrays (see the |
| // draw_particles function) |
| // |
| // NOTE: This structure SHOULD be packed on most systems. It uses 32-bit fields |
| // on 32-bit boundaries, and is a multiple of 64 bits in total (6x32=3x64). If |
| // it does not work, try using pragmas or whatever to force the structure to be |
| // packed. |
| typedef struct |
| { |
| GLfloat s, t; // Texture coordinates |
| GLuint rgba; // Color (four ubytes packed into an uint) |
| GLfloat x, y, z; // Vertex coordinates |
| } Vertex; |
| |
| |
| //======================================================================== |
| // Program control global variables |
| //======================================================================== |
| |
| // Window dimensions |
| float aspect_ratio; |
| |
| // "wireframe" flag (true if we use wireframe view) |
| int wireframe; |
| |
| // Thread synchronization |
| struct { |
| double t; // Time (s) |
| float dt; // Time since last frame (s) |
| int p_frame; // Particle physics frame number |
| int d_frame; // Particle draw frame number |
| cnd_t p_done; // Condition: particle physics done |
| cnd_t d_done; // Condition: particle draw done |
| mtx_t particles_lock; // Particles data sharing mutex |
| } thread_sync; |
| |
| |
| //======================================================================== |
| // Texture declarations (we hard-code them into the source code, since |
| // they are so simple) |
| //======================================================================== |
| |
| #define P_TEX_WIDTH 8 // Particle texture dimensions |
| #define P_TEX_HEIGHT 8 |
| #define F_TEX_WIDTH 16 // Floor texture dimensions |
| #define F_TEX_HEIGHT 16 |
| |
| // Texture object IDs |
| GLuint particle_tex_id, floor_tex_id; |
| |
| // Particle texture (a simple spot) |
| const unsigned char particle_texture[ P_TEX_WIDTH * P_TEX_HEIGHT ] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x11, 0x22, 0x22, 0x11, 0x00, 0x00, |
| 0x00, 0x11, 0x33, 0x88, 0x77, 0x33, 0x11, 0x00, |
| 0x00, 0x22, 0x88, 0xff, 0xee, 0x77, 0x22, 0x00, |
| 0x00, 0x22, 0x77, 0xee, 0xff, 0x88, 0x22, 0x00, |
| 0x00, 0x11, 0x33, 0x77, 0x88, 0x33, 0x11, 0x00, |
| 0x00, 0x00, 0x11, 0x33, 0x22, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| // Floor texture (your basic checkered floor) |
| const unsigned char floor_texture[ F_TEX_WIDTH * F_TEX_HEIGHT ] = { |
| 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, |
| 0xff, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, |
| 0xf0, 0xcc, 0xee, 0xff, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x66, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30, |
| 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xee, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, |
| 0xf0, 0xf0, 0xf0, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x55, 0x30, 0x30, 0x44, 0x30, 0x30, |
| 0xf0, 0xdd, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, |
| 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x60, 0x30, |
| 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, |
| 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x33, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, |
| 0x30, 0x30, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30, 0xf0, 0xff, 0xf0, 0xf0, 0xdd, 0xf0, 0xf0, 0xff, |
| 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x55, 0x33, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0, |
| 0x30, 0x44, 0x66, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, |
| 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xaa, 0xf0, 0xf0, 0xcc, 0xf0, |
| 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xff, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xdd, 0xf0, |
| 0x30, 0x30, 0x30, 0x77, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, |
| 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, |
| }; |
| |
| |
| //======================================================================== |
| // These are fixed constants that control the particle engine. In a |
| // modular world, these values should be variables... |
| //======================================================================== |
| |
| // Maximum number of particles |
| #define MAX_PARTICLES 3000 |
| |
| // Life span of a particle (in seconds) |
| #define LIFE_SPAN 8.f |
| |
| // A new particle is born every [BIRTH_INTERVAL] second |
| #define BIRTH_INTERVAL (LIFE_SPAN/(float)MAX_PARTICLES) |
| |
| // Particle size (meters) |
| #define PARTICLE_SIZE 0.7f |
| |
| // Gravitational constant (m/s^2) |
| #define GRAVITY 9.8f |
| |
| // Base initial velocity (m/s) |
| #define VELOCITY 8.f |
| |
| // Bounce friction (1.0 = no friction, 0.0 = maximum friction) |
| #define FRICTION 0.75f |
| |
| // "Fountain" height (m) |
| #define FOUNTAIN_HEIGHT 3.f |
| |
| // Fountain radius (m) |
| #define FOUNTAIN_RADIUS 1.6f |
| |
| // Minimum delta-time for particle phisics (s) |
| #define MIN_DELTA_T (BIRTH_INTERVAL * 0.5f) |
| |
| |
| //======================================================================== |
| // Particle system global variables |
| //======================================================================== |
| |
| // This structure holds all state for a single particle |
| typedef struct { |
| float x,y,z; // Position in space |
| float vx,vy,vz; // Velocity vector |
| float r,g,b; // Color of particle |
| float life; // Life of particle (1.0 = newborn, < 0.0 = dead) |
| int active; // Tells if this particle is active |
| } PARTICLE; |
| |
| // Global vectors holding all particles. We use two vectors for double |
| // buffering. |
| static PARTICLE particles[MAX_PARTICLES]; |
| |
| // Global variable holding the age of the youngest particle |
| static float min_age; |
| |
| // Color of latest born particle (used for fountain lighting) |
| static float glow_color[4]; |
| |
| // Position of latest born particle (used for fountain lighting) |
| static float glow_pos[4]; |
| |
| |
| //======================================================================== |
| // Object material and fog configuration constants |
| //======================================================================== |
| |
| const GLfloat fountain_diffuse[4] = { 0.7f, 1.f, 1.f, 1.f }; |
| const GLfloat fountain_specular[4] = { 1.f, 1.f, 1.f, 1.f }; |
| const GLfloat fountain_shininess = 12.f; |
| const GLfloat floor_diffuse[4] = { 1.f, 0.6f, 0.6f, 1.f }; |
| const GLfloat floor_specular[4] = { 0.6f, 0.6f, 0.6f, 1.f }; |
| const GLfloat floor_shininess = 18.f; |
| const GLfloat fog_color[4] = { 0.1f, 0.1f, 0.1f, 1.f }; |
| |
| |
| //======================================================================== |
| // Print usage information |
| //======================================================================== |
| |
| static void usage(void) |
| { |
| printf("Usage: particles [-bfhs]\n"); |
| printf("Options:\n"); |
| printf(" -f Run in full screen\n"); |
| printf(" -h Display this help\n"); |
| printf(" -s Run program as single thread (default is to use two threads)\n"); |
| printf("\n"); |
| printf("Program runtime controls:\n"); |
| printf(" W Toggle wireframe mode\n"); |
| printf(" Esc Exit program\n"); |
| } |
| |
| |
| //======================================================================== |
| // Initialize a new particle |
| //======================================================================== |
| |
| static void init_particle(PARTICLE *p, double t) |
| { |
| float xy_angle, velocity; |
| |
| // Start position of particle is at the fountain blow-out |
| p->x = 0.f; |
| p->y = 0.f; |
| p->z = FOUNTAIN_HEIGHT; |
| |
| // Start velocity is up (Z)... |
| p->vz = 0.7f + (0.3f / 4096.f) * (float) (rand() & 4095); |
| |
| // ...and a randomly chosen X/Y direction |
| xy_angle = (2.f * (float) M_PI / 4096.f) * (float) (rand() & 4095); |
| p->vx = 0.4f * (float) cos(xy_angle); |
| p->vy = 0.4f * (float) sin(xy_angle); |
| |
| // Scale velocity vector according to a time-varying velocity |
| velocity = VELOCITY * (0.8f + 0.1f * (float) (sin(0.5 * t) + sin(1.31 * t))); |
| p->vx *= velocity; |
| p->vy *= velocity; |
| p->vz *= velocity; |
| |
| // Color is time-varying |
| p->r = 0.7f + 0.3f * (float) sin(0.34 * t + 0.1); |
| p->g = 0.6f + 0.4f * (float) sin(0.63 * t + 1.1); |
| p->b = 0.6f + 0.4f * (float) sin(0.91 * t + 2.1); |
| |
| // Store settings for fountain glow lighting |
| glow_pos[0] = 0.4f * (float) sin(1.34 * t); |
| glow_pos[1] = 0.4f * (float) sin(3.11 * t); |
| glow_pos[2] = FOUNTAIN_HEIGHT + 1.f; |
| glow_pos[3] = 1.f; |
| glow_color[0] = p->r; |
| glow_color[1] = p->g; |
| glow_color[2] = p->b; |
| glow_color[3] = 1.f; |
| |
| // The particle is new-born and active |
| p->life = 1.f; |
| p->active = 1; |
| } |
| |
| |
| //======================================================================== |
| // Update a particle |
| //======================================================================== |
| |
| #define FOUNTAIN_R2 (FOUNTAIN_RADIUS+PARTICLE_SIZE/2)*(FOUNTAIN_RADIUS+PARTICLE_SIZE/2) |
| |
| static void update_particle(PARTICLE *p, float dt) |
| { |
| // If the particle is not active, we need not do anything |
| if (!p->active) |
| return; |
| |
| // The particle is getting older... |
| p->life -= dt * (1.f / LIFE_SPAN); |
| |
| // Did the particle die? |
| if (p->life <= 0.f) |
| { |
| p->active = 0; |
| return; |
| } |
| |
| // Apply gravity |
| p->vz = p->vz - GRAVITY * dt; |
| |
| // Update particle position |
| p->x = p->x + p->vx * dt; |
| p->y = p->y + p->vy * dt; |
| p->z = p->z + p->vz * dt; |
| |
| // Simple collision detection + response |
| if (p->vz < 0.f) |
| { |
| // Particles should bounce on the fountain (with friction) |
| if ((p->x * p->x + p->y * p->y) < FOUNTAIN_R2 && |
| p->z < (FOUNTAIN_HEIGHT + PARTICLE_SIZE / 2)) |
| { |
| p->vz = -FRICTION * p->vz; |
| p->z = FOUNTAIN_HEIGHT + PARTICLE_SIZE / 2 + |
| FRICTION * (FOUNTAIN_HEIGHT + |
| PARTICLE_SIZE / 2 - p->z); |
| } |
| |
| // Particles should bounce on the floor (with friction) |
| else if (p->z < PARTICLE_SIZE / 2) |
| { |
| p->vz = -FRICTION * p->vz; |
| p->z = PARTICLE_SIZE / 2 + |
| FRICTION * (PARTICLE_SIZE / 2 - p->z); |
| } |
| } |
| } |
| |
| |
| //======================================================================== |
| // The main frame for the particle engine. Called once per frame. |
| //======================================================================== |
| |
| static void particle_engine(double t, float dt) |
| { |
| int i; |
| float dt2; |
| |
| // Update particles (iterated several times per frame if dt is too large) |
| while (dt > 0.f) |
| { |
| // Calculate delta time for this iteration |
| dt2 = dt < MIN_DELTA_T ? dt : MIN_DELTA_T; |
| |
| for (i = 0; i < MAX_PARTICLES; i++) |
| update_particle(&particles[i], dt2); |
| |
| min_age += dt2; |
| |
| // Should we create any new particle(s)? |
| while (min_age >= BIRTH_INTERVAL) |
| { |
| min_age -= BIRTH_INTERVAL; |
| |
| // Find a dead particle to replace with a new one |
| for (i = 0; i < MAX_PARTICLES; i++) |
| { |
| if (!particles[i].active) |
| { |
| init_particle(&particles[i], t + min_age); |
| update_particle(&particles[i], min_age); |
| break; |
| } |
| } |
| } |
| |
| dt -= dt2; |
| } |
| } |
| |
| |
| //======================================================================== |
| // Draw all active particles. We use OpenGL 1.1 vertex |
| // arrays for this in order to accelerate the drawing. |
| //======================================================================== |
| |
| #define BATCH_PARTICLES 70 // Number of particles to draw in each batch |
| // (70 corresponds to 7.5 KB = will not blow |
| // the L1 data cache on most CPUs) |
| #define PARTICLE_VERTS 4 // Number of vertices per particle |
| |
| static void draw_particles(GLFWwindow* window, double t, float dt) |
| { |
| int i, particle_count; |
| Vertex vertex_array[BATCH_PARTICLES * PARTICLE_VERTS]; |
| Vertex* vptr; |
| float alpha; |
| GLuint rgba; |
| Vec3 quad_lower_left, quad_lower_right; |
| GLfloat mat[16]; |
| PARTICLE* pptr; |
| |
| // Here comes the real trick with flat single primitive objects (s.c. |
| // "billboards"): We must rotate the textured primitive so that it |
| // always faces the viewer (is coplanar with the view-plane). |
| // We: |
| // 1) Create the primitive around origo (0,0,0) |
| // 2) Rotate it so that it is coplanar with the view plane |
| // 3) Translate it according to the particle position |
| // Note that 1) and 2) is the same for all particles (done only once). |
| |
| // Get modelview matrix. We will only use the upper left 3x3 part of |
| // the matrix, which represents the rotation. |
| glGetFloatv(GL_MODELVIEW_MATRIX, mat); |
| |
| // 1) & 2) We do it in one swift step: |
| // Although not obvious, the following six lines represent two matrix/ |
| // vector multiplications. The matrix is the inverse 3x3 rotation |
| // matrix (i.e. the transpose of the same matrix), and the two vectors |
| // represent the lower left corner of the quad, PARTICLE_SIZE/2 * |
| // (-1,-1,0), and the lower right corner, PARTICLE_SIZE/2 * (1,-1,0). |
| // The upper left/right corners of the quad is always the negative of |
| // the opposite corners (regardless of rotation). |
| quad_lower_left.x = (-PARTICLE_SIZE / 2) * (mat[0] + mat[1]); |
| quad_lower_left.y = (-PARTICLE_SIZE / 2) * (mat[4] + mat[5]); |
| quad_lower_left.z = (-PARTICLE_SIZE / 2) * (mat[8] + mat[9]); |
| quad_lower_right.x = (PARTICLE_SIZE / 2) * (mat[0] - mat[1]); |
| quad_lower_right.y = (PARTICLE_SIZE / 2) * (mat[4] - mat[5]); |
| quad_lower_right.z = (PARTICLE_SIZE / 2) * (mat[8] - mat[9]); |
| |
| // Don't update z-buffer, since all particles are transparent! |
| glDepthMask(GL_FALSE); |
| |
| glEnable(GL_BLEND); |
| glBlendFunc(GL_SRC_ALPHA, GL_ONE); |
| |
| // Select particle texture |
| if (!wireframe) |
| { |
| glEnable(GL_TEXTURE_2D); |
| glBindTexture(GL_TEXTURE_2D, particle_tex_id); |
| } |
| |
| // Set up vertex arrays. We use interleaved arrays, which is easier to |
| // handle (in most situations) and it gives a linear memory access |
| // access pattern (which may give better performance in some |
| // situations). GL_T2F_C4UB_V3F means: 2 floats for texture coords, |
| // 4 ubytes for color and 3 floats for vertex coord (in that order). |
| // Most OpenGL cards / drivers are optimized for this format. |
| glInterleavedArrays(GL_T2F_C4UB_V3F, 0, vertex_array); |
| |
| // Wait for particle physics thread to be done |
| mtx_lock(&thread_sync.particles_lock); |
| while (!glfwWindowShouldClose(window) && |
| thread_sync.p_frame <= thread_sync.d_frame) |
| { |
| struct timespec ts; |
| clock_gettime(CLOCK_REALTIME, &ts); |
| ts.tv_nsec += 100 * 1000 * 1000; |
| ts.tv_sec += ts.tv_nsec / (1000 * 1000 * 1000); |
| ts.tv_nsec %= 1000 * 1000 * 1000; |
| cnd_timedwait(&thread_sync.p_done, &thread_sync.particles_lock, &ts); |
| } |
| |
| // Store the frame time and delta time for the physics thread |
| thread_sync.t = t; |
| thread_sync.dt = dt; |
| |
| // Update frame counter |
| thread_sync.d_frame++; |
| |
| // Loop through all particles and build vertex arrays. |
| particle_count = 0; |
| vptr = vertex_array; |
| pptr = particles; |
| |
| for (i = 0; i < MAX_PARTICLES; i++) |
| { |
| if (pptr->active) |
| { |
| // Calculate particle intensity (we set it to max during 75% |
| // of its life, then it fades out) |
| alpha = 4.f * pptr->life; |
| if (alpha > 1.f) |
| alpha = 1.f; |
| |
| // Convert color from float to 8-bit (store it in a 32-bit |
| // integer using endian independent type casting) |
| ((GLubyte*) &rgba)[0] = (GLubyte)(pptr->r * 255.f); |
| ((GLubyte*) &rgba)[1] = (GLubyte)(pptr->g * 255.f); |
| ((GLubyte*) &rgba)[2] = (GLubyte)(pptr->b * 255.f); |
| ((GLubyte*) &rgba)[3] = (GLubyte)(alpha * 255.f); |
| |
| // 3) Translate the quad to the correct position in modelview |
| // space and store its parameters in vertex arrays (we also |
| // store texture coord and color information for each vertex). |
| |
| // Lower left corner |
| vptr->s = 0.f; |
| vptr->t = 0.f; |
| vptr->rgba = rgba; |
| vptr->x = pptr->x + quad_lower_left.x; |
| vptr->y = pptr->y + quad_lower_left.y; |
| vptr->z = pptr->z + quad_lower_left.z; |
| vptr ++; |
| |
| // Lower right corner |
| vptr->s = 1.f; |
| vptr->t = 0.f; |
| vptr->rgba = rgba; |
| vptr->x = pptr->x + quad_lower_right.x; |
| vptr->y = pptr->y + quad_lower_right.y; |
| vptr->z = pptr->z + quad_lower_right.z; |
| vptr ++; |
| |
| // Upper right corner |
| vptr->s = 1.f; |
| vptr->t = 1.f; |
| vptr->rgba = rgba; |
| vptr->x = pptr->x - quad_lower_left.x; |
| vptr->y = pptr->y - quad_lower_left.y; |
| vptr->z = pptr->z - quad_lower_left.z; |
| vptr ++; |
| |
| // Upper left corner |
| vptr->s = 0.f; |
| vptr->t = 1.f; |
| vptr->rgba = rgba; |
| vptr->x = pptr->x - quad_lower_right.x; |
| vptr->y = pptr->y - quad_lower_right.y; |
| vptr->z = pptr->z - quad_lower_right.z; |
| vptr ++; |
| |
| // Increase count of drawable particles |
| particle_count ++; |
| } |
| |
| // If we have filled up one batch of particles, draw it as a set |
| // of quads using glDrawArrays. |
| if (particle_count >= BATCH_PARTICLES) |
| { |
| // The first argument tells which primitive type we use (QUAD) |
| // The second argument tells the index of the first vertex (0) |
| // The last argument is the vertex count |
| glDrawArrays(GL_QUADS, 0, PARTICLE_VERTS * particle_count); |
| particle_count = 0; |
| vptr = vertex_array; |
| } |
| |
| // Next particle |
| pptr++; |
| } |
| |
| // We are done with the particle data |
| mtx_unlock(&thread_sync.particles_lock); |
| cnd_signal(&thread_sync.d_done); |
| |
| // Draw final batch of particles (if any) |
| glDrawArrays(GL_QUADS, 0, PARTICLE_VERTS * particle_count); |
| |
| // Disable vertex arrays (Note: glInterleavedArrays implicitly called |
| // glEnableClientState for vertex, texture coord and color arrays) |
| glDisableClientState(GL_VERTEX_ARRAY); |
| glDisableClientState(GL_TEXTURE_COORD_ARRAY); |
| glDisableClientState(GL_COLOR_ARRAY); |
| |
| glDisable(GL_TEXTURE_2D); |
| glDisable(GL_BLEND); |
| |
| glDepthMask(GL_TRUE); |
| } |
| |
| |
| //======================================================================== |
| // Fountain geometry specification |
| //======================================================================== |
| |
| #define FOUNTAIN_SIDE_POINTS 14 |
| #define FOUNTAIN_SWEEP_STEPS 32 |
| |
| static const float fountain_side[FOUNTAIN_SIDE_POINTS * 2] = |
| { |
| 1.2f, 0.f, 1.f, 0.2f, 0.41f, 0.3f, 0.4f, 0.35f, |
| 0.4f, 1.95f, 0.41f, 2.f, 0.8f, 2.2f, 1.2f, 2.4f, |
| 1.5f, 2.7f, 1.55f,2.95f, 1.6f, 3.f, 1.f, 3.f, |
| 0.5f, 3.f, 0.f, 3.f |
| }; |
| |
| static const float fountain_normal[FOUNTAIN_SIDE_POINTS * 2] = |
| { |
| 1.0000f, 0.0000f, 0.6428f, 0.7660f, 0.3420f, 0.9397f, 1.0000f, 0.0000f, |
| 1.0000f, 0.0000f, 0.3420f,-0.9397f, 0.4226f,-0.9063f, 0.5000f,-0.8660f, |
| 0.7660f,-0.6428f, 0.9063f,-0.4226f, 0.0000f,1.00000f, 0.0000f,1.00000f, |
| 0.0000f,1.00000f, 0.0000f,1.00000f |
| }; |
| |
| |
| //======================================================================== |
| // Draw a fountain |
| //======================================================================== |
| |
| static void draw_fountain(void) |
| { |
| static GLuint fountain_list = 0; |
| double angle; |
| float x, y; |
| int m, n; |
| |
| // The first time, we build the fountain display list |
| if (!fountain_list) |
| { |
| fountain_list = glGenLists(1); |
| glNewList(fountain_list, GL_COMPILE_AND_EXECUTE); |
| |
| glMaterialfv(GL_FRONT, GL_DIFFUSE, fountain_diffuse); |
| glMaterialfv(GL_FRONT, GL_SPECULAR, fountain_specular); |
| glMaterialf(GL_FRONT, GL_SHININESS, fountain_shininess); |
| |
| // Build fountain using triangle strips |
| for (n = 0; n < FOUNTAIN_SIDE_POINTS - 1; n++) |
| { |
| glBegin(GL_TRIANGLE_STRIP); |
| for (m = 0; m <= FOUNTAIN_SWEEP_STEPS; m++) |
| { |
| angle = (double) m * (2.0 * M_PI / (double) FOUNTAIN_SWEEP_STEPS); |
| x = (float) cos(angle); |
| y = (float) sin(angle); |
| |
| // Draw triangle strip |
| glNormal3f(x * fountain_normal[n * 2 + 2], |
| y * fountain_normal[n * 2 + 2], |
| fountain_normal[n * 2 + 3]); |
| glVertex3f(x * fountain_side[n * 2 + 2], |
| y * fountain_side[n * 2 + 2], |
| fountain_side[n * 2 +3 ]); |
| glNormal3f(x * fountain_normal[n * 2], |
| y * fountain_normal[n * 2], |
| fountain_normal[n * 2 + 1]); |
| glVertex3f(x * fountain_side[n * 2], |
| y * fountain_side[n * 2], |
| fountain_side[n * 2 + 1]); |
| } |
| |
| glEnd(); |
| } |
| |
| glEndList(); |
| } |
| else |
| glCallList(fountain_list); |
| } |
| |
| |
| //======================================================================== |
| // Recursive function for building variable tessellated floor |
| //======================================================================== |
| |
| static void tessellate_floor(float x1, float y1, float x2, float y2, int depth) |
| { |
| float delta, x, y; |
| |
| // Last recursion? |
| if (depth >= 5) |
| delta = 999999.f; |
| else |
| { |
| x = (float) (fabs(x1) < fabs(x2) ? fabs(x1) : fabs(x2)); |
| y = (float) (fabs(y1) < fabs(y2) ? fabs(y1) : fabs(y2)); |
| delta = x*x + y*y; |
| } |
| |
| // Recurse further? |
| if (delta < 0.1f) |
| { |
| x = (x1 + x2) * 0.5f; |
| y = (y1 + y2) * 0.5f; |
| tessellate_floor(x1, y1, x, y, depth + 1); |
| tessellate_floor(x, y1, x2, y, depth + 1); |
| tessellate_floor(x1, y, x, y2, depth + 1); |
| tessellate_floor(x, y, x2, y2, depth + 1); |
| } |
| else |
| { |
| glTexCoord2f(x1 * 30.f, y1 * 30.f); |
| glVertex3f( x1 * 80.f, y1 * 80.f, 0.f); |
| glTexCoord2f(x2 * 30.f, y1 * 30.f); |
| glVertex3f( x2 * 80.f, y1 * 80.f, 0.f); |
| glTexCoord2f(x2 * 30.f, y2 * 30.f); |
| glVertex3f( x2 * 80.f, y2 * 80.f, 0.f); |
| glTexCoord2f(x1 * 30.f, y2 * 30.f); |
| glVertex3f( x1 * 80.f, y2 * 80.f, 0.f); |
| } |
| } |
| |
| |
| //======================================================================== |
| // Draw floor. We build the floor recursively and let the tessellation in the |
| // center (near x,y=0,0) be high, while the tessellation around the edges be |
| // low. |
| //======================================================================== |
| |
| static void draw_floor(void) |
| { |
| static GLuint floor_list = 0; |
| |
| if (!wireframe) |
| { |
| glEnable(GL_TEXTURE_2D); |
| glBindTexture(GL_TEXTURE_2D, floor_tex_id); |
| } |
| |
| // The first time, we build the floor display list |
| if (!floor_list) |
| { |
| floor_list = glGenLists(1); |
| glNewList(floor_list, GL_COMPILE_AND_EXECUTE); |
| |
| glMaterialfv(GL_FRONT, GL_DIFFUSE, floor_diffuse); |
| glMaterialfv(GL_FRONT, GL_SPECULAR, floor_specular); |
| glMaterialf(GL_FRONT, GL_SHININESS, floor_shininess); |
| |
| // Draw floor as a bunch of triangle strips (high tessellation |
| // improves lighting) |
| glNormal3f(0.f, 0.f, 1.f); |
| glBegin(GL_QUADS); |
| tessellate_floor(-1.f, -1.f, 0.f, 0.f, 0); |
| tessellate_floor( 0.f, -1.f, 1.f, 0.f, 0); |
| tessellate_floor( 0.f, 0.f, 1.f, 1.f, 0); |
| tessellate_floor(-1.f, 0.f, 0.f, 1.f, 0); |
| glEnd(); |
| |
| glEndList(); |
| } |
| else |
| glCallList(floor_list); |
| |
| glDisable(GL_TEXTURE_2D); |
| |
| } |
| |
| |
| //======================================================================== |
| // Position and configure light sources |
| //======================================================================== |
| |
| static void setup_lights(void) |
| { |
| float l1pos[4], l1amb[4], l1dif[4], l1spec[4]; |
| float l2pos[4], l2amb[4], l2dif[4], l2spec[4]; |
| |
| // Set light source 1 parameters |
| l1pos[0] = 0.f; l1pos[1] = -9.f; l1pos[2] = 8.f; l1pos[3] = 1.f; |
| l1amb[0] = 0.2f; l1amb[1] = 0.2f; l1amb[2] = 0.2f; l1amb[3] = 1.f; |
| l1dif[0] = 0.8f; l1dif[1] = 0.4f; l1dif[2] = 0.2f; l1dif[3] = 1.f; |
| l1spec[0] = 1.f; l1spec[1] = 0.6f; l1spec[2] = 0.2f; l1spec[3] = 0.f; |
| |
| // Set light source 2 parameters |
| l2pos[0] = -15.f; l2pos[1] = 12.f; l2pos[2] = 1.5f; l2pos[3] = 1.f; |
| l2amb[0] = 0.f; l2amb[1] = 0.f; l2amb[2] = 0.f; l2amb[3] = 1.f; |
| l2dif[0] = 0.2f; l2dif[1] = 0.4f; l2dif[2] = 0.8f; l2dif[3] = 1.f; |
| l2spec[0] = 0.2f; l2spec[1] = 0.6f; l2spec[2] = 1.f; l2spec[3] = 0.f; |
| |
| glLightfv(GL_LIGHT1, GL_POSITION, l1pos); |
| glLightfv(GL_LIGHT1, GL_AMBIENT, l1amb); |
| glLightfv(GL_LIGHT1, GL_DIFFUSE, l1dif); |
| glLightfv(GL_LIGHT1, GL_SPECULAR, l1spec); |
| glLightfv(GL_LIGHT2, GL_POSITION, l2pos); |
| glLightfv(GL_LIGHT2, GL_AMBIENT, l2amb); |
| glLightfv(GL_LIGHT2, GL_DIFFUSE, l2dif); |
| glLightfv(GL_LIGHT2, GL_SPECULAR, l2spec); |
| glLightfv(GL_LIGHT3, GL_POSITION, glow_pos); |
| glLightfv(GL_LIGHT3, GL_DIFFUSE, glow_color); |
| glLightfv(GL_LIGHT3, GL_SPECULAR, glow_color); |
| |
| glEnable(GL_LIGHT1); |
| glEnable(GL_LIGHT2); |
| glEnable(GL_LIGHT3); |
| } |
| |
| |
| //======================================================================== |
| // Main rendering function |
| //======================================================================== |
| |
| static void draw_scene(GLFWwindow* window, double t) |
| { |
| double xpos, ypos, zpos, angle_x, angle_y, angle_z; |
| static double t_old = 0.0; |
| float dt; |
| mat4x4 projection; |
| |
| // Calculate frame-to-frame delta time |
| dt = (float) (t - t_old); |
| t_old = t; |
| |
| mat4x4_perspective(projection, |
| 65.f * (float) M_PI / 180.f, |
| aspect_ratio, |
| 1.0, 60.0); |
| |
| glClearColor(0.1f, 0.1f, 0.1f, 1.f); |
| glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); |
| |
| glMatrixMode(GL_PROJECTION); |
| glLoadMatrixf((const GLfloat*) projection); |
| |
| // Setup camera |
| glMatrixMode(GL_MODELVIEW); |
| glLoadIdentity(); |
| |
| // Rotate camera |
| angle_x = 90.0 - 10.0; |
| angle_y = 10.0 * sin(0.3 * t); |
| angle_z = 10.0 * t; |
| glRotated(-angle_x, 1.0, 0.0, 0.0); |
| glRotated(-angle_y, 0.0, 1.0, 0.0); |
| glRotated(-angle_z, 0.0, 0.0, 1.0); |
| |
| // Translate camera |
| xpos = 15.0 * sin((M_PI / 180.0) * angle_z) + |
| 2.0 * sin((M_PI / 180.0) * 3.1 * t); |
| ypos = -15.0 * cos((M_PI / 180.0) * angle_z) + |
| 2.0 * cos((M_PI / 180.0) * 2.9 * t); |
| zpos = 4.0 + 2.0 * cos((M_PI / 180.0) * 4.9 * t); |
| glTranslated(-xpos, -ypos, -zpos); |
| |
| glFrontFace(GL_CCW); |
| glCullFace(GL_BACK); |
| glEnable(GL_CULL_FACE); |
| |
| setup_lights(); |
| glEnable(GL_LIGHTING); |
| |
| glEnable(GL_FOG); |
| glFogi(GL_FOG_MODE, GL_EXP); |
| glFogf(GL_FOG_DENSITY, 0.05f); |
| glFogfv(GL_FOG_COLOR, fog_color); |
| |
| draw_floor(); |
| |
| glEnable(GL_DEPTH_TEST); |
| glDepthFunc(GL_LEQUAL); |
| glDepthMask(GL_TRUE); |
| |
| draw_fountain(); |
| |
| glDisable(GL_LIGHTING); |
| glDisable(GL_FOG); |
| |
| // Particles must be drawn after all solid objects have been drawn |
| draw_particles(window, t, dt); |
| |
| // Z-buffer not needed anymore |
| glDisable(GL_DEPTH_TEST); |
| } |
| |
| |
| //======================================================================== |
| // Window resize callback function |
| //======================================================================== |
| |
| static void resize_callback(GLFWwindow* window, int width, int height) |
| { |
| glViewport(0, 0, width, height); |
| aspect_ratio = height ? width / (float) height : 1.f; |
| } |
| |
| |
| //======================================================================== |
| // Key callback functions |
| //======================================================================== |
| |
| static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods) |
| { |
| if (action == GLFW_PRESS) |
| { |
| switch (key) |
| { |
| case GLFW_KEY_ESCAPE: |
| glfwSetWindowShouldClose(window, GLFW_TRUE); |
| break; |
| case GLFW_KEY_W: |
| wireframe = !wireframe; |
| glPolygonMode(GL_FRONT_AND_BACK, |
| wireframe ? GL_LINE : GL_FILL); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| |
| //======================================================================== |
| // Thread for updating particle physics |
| //======================================================================== |
| |
| static int physics_thread_main(void* arg) |
| { |
| GLFWwindow* window = arg; |
| |
| for (;;) |
| { |
| mtx_lock(&thread_sync.particles_lock); |
| |
| // Wait for particle drawing to be done |
| while (!glfwWindowShouldClose(window) && |
| thread_sync.p_frame > thread_sync.d_frame) |
| { |
| struct timespec ts; |
| clock_gettime(CLOCK_REALTIME, &ts); |
| ts.tv_nsec += 100 * 1000 * 1000; |
| ts.tv_sec += ts.tv_nsec / (1000 * 1000 * 1000); |
| ts.tv_nsec %= 1000 * 1000 * 1000; |
| cnd_timedwait(&thread_sync.d_done, &thread_sync.particles_lock, &ts); |
| } |
| |
| if (glfwWindowShouldClose(window)) |
| break; |
| |
| // Update particles |
| particle_engine(thread_sync.t, thread_sync.dt); |
| |
| // Update frame counter |
| thread_sync.p_frame++; |
| |
| // Unlock mutex and signal drawing thread |
| mtx_unlock(&thread_sync.particles_lock); |
| cnd_signal(&thread_sync.p_done); |
| } |
| |
| return 0; |
| } |
| |
| |
| //======================================================================== |
| // main |
| //======================================================================== |
| |
| int main(int argc, char** argv) |
| { |
| int ch, width, height; |
| thrd_t physics_thread = 0; |
| GLFWwindow* window; |
| GLFWmonitor* monitor = NULL; |
| |
| if (!glfwInit()) |
| { |
| fprintf(stderr, "Failed to initialize GLFW\n"); |
| exit(EXIT_FAILURE); |
| } |
| |
| while ((ch = getopt(argc, argv, "fh")) != -1) |
| { |
| switch (ch) |
| { |
| case 'f': |
| monitor = glfwGetPrimaryMonitor(); |
| break; |
| case 'h': |
| usage(); |
| exit(EXIT_SUCCESS); |
| } |
| } |
| |
| if (monitor) |
| { |
| const GLFWvidmode* mode = glfwGetVideoMode(monitor); |
| |
| glfwWindowHint(GLFW_RED_BITS, mode->redBits); |
| glfwWindowHint(GLFW_GREEN_BITS, mode->greenBits); |
| glfwWindowHint(GLFW_BLUE_BITS, mode->blueBits); |
| glfwWindowHint(GLFW_REFRESH_RATE, mode->refreshRate); |
| |
| width = mode->width; |
| height = mode->height; |
| } |
| else |
| { |
| width = 640; |
| height = 480; |
| } |
| |
| window = glfwCreateWindow(width, height, "Particle Engine", monitor, NULL); |
| if (!window) |
| { |
| fprintf(stderr, "Failed to create GLFW window\n"); |
| glfwTerminate(); |
| exit(EXIT_FAILURE); |
| } |
| |
| if (monitor) |
| glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); |
| |
| glfwMakeContextCurrent(window); |
| gladLoadGL(glfwGetProcAddress); |
| glfwSwapInterval(1); |
| |
| glfwSetFramebufferSizeCallback(window, resize_callback); |
| glfwSetKeyCallback(window, key_callback); |
| |
| // Set initial aspect ratio |
| glfwGetFramebufferSize(window, &width, &height); |
| resize_callback(window, width, height); |
| |
| // Upload particle texture |
| glGenTextures(1, &particle_tex_id); |
| glBindTexture(GL_TEXTURE_2D, particle_tex_id); |
| glPixelStorei(GL_UNPACK_ALIGNMENT, 1); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); |
| glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, P_TEX_WIDTH, P_TEX_HEIGHT, |
| 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, particle_texture); |
| |
| // Upload floor texture |
| glGenTextures(1, &floor_tex_id); |
| glBindTexture(GL_TEXTURE_2D, floor_tex_id); |
| glPixelStorei(GL_UNPACK_ALIGNMENT, 1); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); |
| glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, F_TEX_WIDTH, F_TEX_HEIGHT, |
| 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, floor_texture); |
| |
| if (glfwExtensionSupported("GL_EXT_separate_specular_color")) |
| { |
| glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL_EXT, |
| GL_SEPARATE_SPECULAR_COLOR_EXT); |
| } |
| |
| // Set filled polygon mode as default (not wireframe) |
| glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); |
| wireframe = 0; |
| |
| // Set initial times |
| thread_sync.t = 0.0; |
| thread_sync.dt = 0.001f; |
| thread_sync.p_frame = 0; |
| thread_sync.d_frame = 0; |
| |
| mtx_init(&thread_sync.particles_lock, mtx_timed); |
| cnd_init(&thread_sync.p_done); |
| cnd_init(&thread_sync.d_done); |
| |
| if (thrd_create(&physics_thread, physics_thread_main, window) != thrd_success) |
| { |
| glfwTerminate(); |
| exit(EXIT_FAILURE); |
| } |
| |
| glfwSetTime(0.0); |
| |
| while (!glfwWindowShouldClose(window)) |
| { |
| draw_scene(window, glfwGetTime()); |
| |
| glfwSwapBuffers(window); |
| glfwPollEvents(); |
| } |
| |
| thrd_join(physics_thread, NULL); |
| |
| glfwDestroyWindow(window); |
| glfwTerminate(); |
| |
| exit(EXIT_SUCCESS); |
| } |
| |