| // This is a generated file (see the discoveryapis_generator project). |
| |
| library googleapis.language.v1; |
| |
| import 'dart:core' as core; |
| import 'dart:async' as async; |
| import 'dart:convert' as convert; |
| |
| import 'package:_discoveryapis_commons/_discoveryapis_commons.dart' as commons; |
| import 'package:http/http.dart' as http; |
| |
| export 'package:_discoveryapis_commons/_discoveryapis_commons.dart' |
| show ApiRequestError, DetailedApiRequestError; |
| |
| const core.String USER_AGENT = 'dart-api-client language/v1'; |
| |
| /// Provides natural language understanding technologies to developers. Examples |
| /// include sentiment analysis, entity recognition, entity sentiment analysis, |
| /// and text annotations. |
| class LanguageApi { |
| /// Apply machine learning models to reveal the structure and meaning of text |
| static const CloudLanguageScope = |
| "https://www.googleapis.com/auth/cloud-language"; |
| |
| /// View and manage your data across Google Cloud Platform services |
| static const CloudPlatformScope = |
| "https://www.googleapis.com/auth/cloud-platform"; |
| |
| final commons.ApiRequester _requester; |
| |
| DocumentsResourceApi get documents => new DocumentsResourceApi(_requester); |
| |
| LanguageApi(http.Client client, |
| {core.String rootUrl: "https://language.googleapis.com/", |
| core.String servicePath: ""}) |
| : _requester = |
| new commons.ApiRequester(client, rootUrl, servicePath, USER_AGENT); |
| } |
| |
| class DocumentsResourceApi { |
| final commons.ApiRequester _requester; |
| |
| DocumentsResourceApi(commons.ApiRequester client) : _requester = client; |
| |
| /// Finds named entities (currently proper names and common nouns) in the text |
| /// along with entity types, salience, mentions for each entity, and |
| /// other properties. |
| /// |
| /// [request] - The metadata request object. |
| /// |
| /// Request parameters: |
| /// |
| /// [$fields] - Selector specifying which fields to include in a partial |
| /// response. |
| /// |
| /// Completes with a [AnalyzeEntitiesResponse]. |
| /// |
| /// Completes with a [commons.ApiRequestError] if the API endpoint returned an |
| /// error. |
| /// |
| /// If the used [http.Client] completes with an error when making a REST call, |
| /// this method will complete with the same error. |
| async.Future<AnalyzeEntitiesResponse> analyzeEntities( |
| AnalyzeEntitiesRequest request, |
| {core.String $fields}) { |
| var _url = null; |
| var _queryParams = new core.Map<core.String, core.List<core.String>>(); |
| var _uploadMedia = null; |
| var _uploadOptions = null; |
| var _downloadOptions = commons.DownloadOptions.Metadata; |
| var _body = null; |
| |
| if (request != null) { |
| _body = convert.JSON.encode((request).toJson()); |
| } |
| if ($fields != null) { |
| _queryParams["fields"] = [$fields]; |
| } |
| |
| _url = 'v1/documents:analyzeEntities'; |
| |
| var _response = _requester.request(_url, "POST", |
| body: _body, |
| queryParams: _queryParams, |
| uploadOptions: _uploadOptions, |
| uploadMedia: _uploadMedia, |
| downloadOptions: _downloadOptions); |
| return _response.then((data) => new AnalyzeEntitiesResponse.fromJson(data)); |
| } |
| |
| /// Finds entities, similar to AnalyzeEntities in the text and analyzes |
| /// sentiment associated with each entity and its mentions. |
| /// |
| /// [request] - The metadata request object. |
| /// |
| /// Request parameters: |
| /// |
| /// [$fields] - Selector specifying which fields to include in a partial |
| /// response. |
| /// |
| /// Completes with a [AnalyzeEntitySentimentResponse]. |
| /// |
| /// Completes with a [commons.ApiRequestError] if the API endpoint returned an |
| /// error. |
| /// |
| /// If the used [http.Client] completes with an error when making a REST call, |
| /// this method will complete with the same error. |
| async.Future<AnalyzeEntitySentimentResponse> analyzeEntitySentiment( |
| AnalyzeEntitySentimentRequest request, |
| {core.String $fields}) { |
| var _url = null; |
| var _queryParams = new core.Map<core.String, core.List<core.String>>(); |
| var _uploadMedia = null; |
| var _uploadOptions = null; |
| var _downloadOptions = commons.DownloadOptions.Metadata; |
| var _body = null; |
| |
| if (request != null) { |
| _body = convert.JSON.encode((request).toJson()); |
| } |
| if ($fields != null) { |
| _queryParams["fields"] = [$fields]; |
| } |
| |
| _url = 'v1/documents:analyzeEntitySentiment'; |
| |
| var _response = _requester.request(_url, "POST", |
| body: _body, |
| queryParams: _queryParams, |
| uploadOptions: _uploadOptions, |
| uploadMedia: _uploadMedia, |
| downloadOptions: _downloadOptions); |
| return _response |
| .then((data) => new AnalyzeEntitySentimentResponse.fromJson(data)); |
| } |
| |
| /// Analyzes the sentiment of the provided text. |
| /// |
| /// [request] - The metadata request object. |
| /// |
| /// Request parameters: |
| /// |
| /// [$fields] - Selector specifying which fields to include in a partial |
| /// response. |
| /// |
| /// Completes with a [AnalyzeSentimentResponse]. |
| /// |
| /// Completes with a [commons.ApiRequestError] if the API endpoint returned an |
| /// error. |
| /// |
| /// If the used [http.Client] completes with an error when making a REST call, |
| /// this method will complete with the same error. |
| async.Future<AnalyzeSentimentResponse> analyzeSentiment( |
| AnalyzeSentimentRequest request, |
| {core.String $fields}) { |
| var _url = null; |
| var _queryParams = new core.Map<core.String, core.List<core.String>>(); |
| var _uploadMedia = null; |
| var _uploadOptions = null; |
| var _downloadOptions = commons.DownloadOptions.Metadata; |
| var _body = null; |
| |
| if (request != null) { |
| _body = convert.JSON.encode((request).toJson()); |
| } |
| if ($fields != null) { |
| _queryParams["fields"] = [$fields]; |
| } |
| |
| _url = 'v1/documents:analyzeSentiment'; |
| |
| var _response = _requester.request(_url, "POST", |
| body: _body, |
| queryParams: _queryParams, |
| uploadOptions: _uploadOptions, |
| uploadMedia: _uploadMedia, |
| downloadOptions: _downloadOptions); |
| return _response |
| .then((data) => new AnalyzeSentimentResponse.fromJson(data)); |
| } |
| |
| /// Analyzes the syntax of the text and provides sentence boundaries and |
| /// tokenization along with part of speech tags, dependency trees, and other |
| /// properties. |
| /// |
| /// [request] - The metadata request object. |
| /// |
| /// Request parameters: |
| /// |
| /// [$fields] - Selector specifying which fields to include in a partial |
| /// response. |
| /// |
| /// Completes with a [AnalyzeSyntaxResponse]. |
| /// |
| /// Completes with a [commons.ApiRequestError] if the API endpoint returned an |
| /// error. |
| /// |
| /// If the used [http.Client] completes with an error when making a REST call, |
| /// this method will complete with the same error. |
| async.Future<AnalyzeSyntaxResponse> analyzeSyntax( |
| AnalyzeSyntaxRequest request, |
| {core.String $fields}) { |
| var _url = null; |
| var _queryParams = new core.Map<core.String, core.List<core.String>>(); |
| var _uploadMedia = null; |
| var _uploadOptions = null; |
| var _downloadOptions = commons.DownloadOptions.Metadata; |
| var _body = null; |
| |
| if (request != null) { |
| _body = convert.JSON.encode((request).toJson()); |
| } |
| if ($fields != null) { |
| _queryParams["fields"] = [$fields]; |
| } |
| |
| _url = 'v1/documents:analyzeSyntax'; |
| |
| var _response = _requester.request(_url, "POST", |
| body: _body, |
| queryParams: _queryParams, |
| uploadOptions: _uploadOptions, |
| uploadMedia: _uploadMedia, |
| downloadOptions: _downloadOptions); |
| return _response.then((data) => new AnalyzeSyntaxResponse.fromJson(data)); |
| } |
| |
| /// A convenience method that provides all the features that analyzeSentiment, |
| /// analyzeEntities, and analyzeSyntax provide in one call. |
| /// |
| /// [request] - The metadata request object. |
| /// |
| /// Request parameters: |
| /// |
| /// [$fields] - Selector specifying which fields to include in a partial |
| /// response. |
| /// |
| /// Completes with a [AnnotateTextResponse]. |
| /// |
| /// Completes with a [commons.ApiRequestError] if the API endpoint returned an |
| /// error. |
| /// |
| /// If the used [http.Client] completes with an error when making a REST call, |
| /// this method will complete with the same error. |
| async.Future<AnnotateTextResponse> annotateText(AnnotateTextRequest request, |
| {core.String $fields}) { |
| var _url = null; |
| var _queryParams = new core.Map<core.String, core.List<core.String>>(); |
| var _uploadMedia = null; |
| var _uploadOptions = null; |
| var _downloadOptions = commons.DownloadOptions.Metadata; |
| var _body = null; |
| |
| if (request != null) { |
| _body = convert.JSON.encode((request).toJson()); |
| } |
| if ($fields != null) { |
| _queryParams["fields"] = [$fields]; |
| } |
| |
| _url = 'v1/documents:annotateText'; |
| |
| var _response = _requester.request(_url, "POST", |
| body: _body, |
| queryParams: _queryParams, |
| uploadOptions: _uploadOptions, |
| uploadMedia: _uploadMedia, |
| downloadOptions: _downloadOptions); |
| return _response.then((data) => new AnnotateTextResponse.fromJson(data)); |
| } |
| |
| /// Classifies a document into categories. |
| /// |
| /// [request] - The metadata request object. |
| /// |
| /// Request parameters: |
| /// |
| /// [$fields] - Selector specifying which fields to include in a partial |
| /// response. |
| /// |
| /// Completes with a [ClassifyTextResponse]. |
| /// |
| /// Completes with a [commons.ApiRequestError] if the API endpoint returned an |
| /// error. |
| /// |
| /// If the used [http.Client] completes with an error when making a REST call, |
| /// this method will complete with the same error. |
| async.Future<ClassifyTextResponse> classifyText(ClassifyTextRequest request, |
| {core.String $fields}) { |
| var _url = null; |
| var _queryParams = new core.Map<core.String, core.List<core.String>>(); |
| var _uploadMedia = null; |
| var _uploadOptions = null; |
| var _downloadOptions = commons.DownloadOptions.Metadata; |
| var _body = null; |
| |
| if (request != null) { |
| _body = convert.JSON.encode((request).toJson()); |
| } |
| if ($fields != null) { |
| _queryParams["fields"] = [$fields]; |
| } |
| |
| _url = 'v1/documents:classifyText'; |
| |
| var _response = _requester.request(_url, "POST", |
| body: _body, |
| queryParams: _queryParams, |
| uploadOptions: _uploadOptions, |
| uploadMedia: _uploadMedia, |
| downloadOptions: _downloadOptions); |
| return _response.then((data) => new ClassifyTextResponse.fromJson(data)); |
| } |
| } |
| |
| /// The entity analysis request message. |
| class AnalyzeEntitiesRequest { |
| /// Input document. |
| Document document; |
| |
| /// The encoding type used by the API to calculate offsets. |
| /// Possible string values are: |
| /// - "NONE" : If `EncodingType` is not specified, encoding-dependent |
| /// information (such as |
| /// `begin_offset`) will be set at `-1`. |
| /// - "UTF8" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-8 encoding of the input. C++ and Go are examples of languages |
| /// that use this encoding natively. |
| /// - "UTF16" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-16 encoding of the input. Java and Javascript are examples of |
| /// languages that use this encoding natively. |
| /// - "UTF32" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-32 encoding of the input. Python is an example of a language |
| /// that uses this encoding natively. |
| core.String encodingType; |
| |
| AnalyzeEntitiesRequest(); |
| |
| AnalyzeEntitiesRequest.fromJson(core.Map _json) { |
| if (_json.containsKey("document")) { |
| document = new Document.fromJson(_json["document"]); |
| } |
| if (_json.containsKey("encodingType")) { |
| encodingType = _json["encodingType"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (document != null) { |
| _json["document"] = (document).toJson(); |
| } |
| if (encodingType != null) { |
| _json["encodingType"] = encodingType; |
| } |
| return _json; |
| } |
| } |
| |
| /// The entity analysis response message. |
| class AnalyzeEntitiesResponse { |
| /// The recognized entities in the input document. |
| core.List<Entity> entities; |
| |
| /// The language of the text, which will be the same as the language specified |
| /// in the request or, if not specified, the automatically-detected language. |
| /// See Document.language field for more details. |
| core.String language; |
| |
| AnalyzeEntitiesResponse(); |
| |
| AnalyzeEntitiesResponse.fromJson(core.Map _json) { |
| if (_json.containsKey("entities")) { |
| entities = _json["entities"] |
| .map<Entity>((value) => new Entity.fromJson(value)) |
| .toList(); |
| } |
| if (_json.containsKey("language")) { |
| language = _json["language"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (entities != null) { |
| _json["entities"] = entities.map((value) => (value).toJson()).toList(); |
| } |
| if (language != null) { |
| _json["language"] = language; |
| } |
| return _json; |
| } |
| } |
| |
| /// The entity-level sentiment analysis request message. |
| class AnalyzeEntitySentimentRequest { |
| /// Input document. |
| Document document; |
| |
| /// The encoding type used by the API to calculate offsets. |
| /// Possible string values are: |
| /// - "NONE" : If `EncodingType` is not specified, encoding-dependent |
| /// information (such as |
| /// `begin_offset`) will be set at `-1`. |
| /// - "UTF8" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-8 encoding of the input. C++ and Go are examples of languages |
| /// that use this encoding natively. |
| /// - "UTF16" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-16 encoding of the input. Java and Javascript are examples of |
| /// languages that use this encoding natively. |
| /// - "UTF32" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-32 encoding of the input. Python is an example of a language |
| /// that uses this encoding natively. |
| core.String encodingType; |
| |
| AnalyzeEntitySentimentRequest(); |
| |
| AnalyzeEntitySentimentRequest.fromJson(core.Map _json) { |
| if (_json.containsKey("document")) { |
| document = new Document.fromJson(_json["document"]); |
| } |
| if (_json.containsKey("encodingType")) { |
| encodingType = _json["encodingType"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (document != null) { |
| _json["document"] = (document).toJson(); |
| } |
| if (encodingType != null) { |
| _json["encodingType"] = encodingType; |
| } |
| return _json; |
| } |
| } |
| |
| /// The entity-level sentiment analysis response message. |
| class AnalyzeEntitySentimentResponse { |
| /// The recognized entities in the input document with associated sentiments. |
| core.List<Entity> entities; |
| |
| /// The language of the text, which will be the same as the language specified |
| /// in the request or, if not specified, the automatically-detected language. |
| /// See Document.language field for more details. |
| core.String language; |
| |
| AnalyzeEntitySentimentResponse(); |
| |
| AnalyzeEntitySentimentResponse.fromJson(core.Map _json) { |
| if (_json.containsKey("entities")) { |
| entities = _json["entities"] |
| .map<Entity>((value) => new Entity.fromJson(value)) |
| .toList(); |
| } |
| if (_json.containsKey("language")) { |
| language = _json["language"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (entities != null) { |
| _json["entities"] = entities.map((value) => (value).toJson()).toList(); |
| } |
| if (language != null) { |
| _json["language"] = language; |
| } |
| return _json; |
| } |
| } |
| |
| /// The sentiment analysis request message. |
| class AnalyzeSentimentRequest { |
| /// Input document. |
| Document document; |
| |
| /// The encoding type used by the API to calculate sentence offsets. |
| /// Possible string values are: |
| /// - "NONE" : If `EncodingType` is not specified, encoding-dependent |
| /// information (such as |
| /// `begin_offset`) will be set at `-1`. |
| /// - "UTF8" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-8 encoding of the input. C++ and Go are examples of languages |
| /// that use this encoding natively. |
| /// - "UTF16" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-16 encoding of the input. Java and Javascript are examples of |
| /// languages that use this encoding natively. |
| /// - "UTF32" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-32 encoding of the input. Python is an example of a language |
| /// that uses this encoding natively. |
| core.String encodingType; |
| |
| AnalyzeSentimentRequest(); |
| |
| AnalyzeSentimentRequest.fromJson(core.Map _json) { |
| if (_json.containsKey("document")) { |
| document = new Document.fromJson(_json["document"]); |
| } |
| if (_json.containsKey("encodingType")) { |
| encodingType = _json["encodingType"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (document != null) { |
| _json["document"] = (document).toJson(); |
| } |
| if (encodingType != null) { |
| _json["encodingType"] = encodingType; |
| } |
| return _json; |
| } |
| } |
| |
| /// The sentiment analysis response message. |
| class AnalyzeSentimentResponse { |
| /// The overall sentiment of the input document. |
| Sentiment documentSentiment; |
| |
| /// The language of the text, which will be the same as the language specified |
| /// in the request or, if not specified, the automatically-detected language. |
| /// See Document.language field for more details. |
| core.String language; |
| |
| /// The sentiment for all the sentences in the document. |
| core.List<Sentence> sentences; |
| |
| AnalyzeSentimentResponse(); |
| |
| AnalyzeSentimentResponse.fromJson(core.Map _json) { |
| if (_json.containsKey("documentSentiment")) { |
| documentSentiment = new Sentiment.fromJson(_json["documentSentiment"]); |
| } |
| if (_json.containsKey("language")) { |
| language = _json["language"]; |
| } |
| if (_json.containsKey("sentences")) { |
| sentences = _json["sentences"] |
| .map<Sentence>((value) => new Sentence.fromJson(value)) |
| .toList(); |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (documentSentiment != null) { |
| _json["documentSentiment"] = (documentSentiment).toJson(); |
| } |
| if (language != null) { |
| _json["language"] = language; |
| } |
| if (sentences != null) { |
| _json["sentences"] = sentences.map((value) => (value).toJson()).toList(); |
| } |
| return _json; |
| } |
| } |
| |
| /// The syntax analysis request message. |
| class AnalyzeSyntaxRequest { |
| /// Input document. |
| Document document; |
| |
| /// The encoding type used by the API to calculate offsets. |
| /// Possible string values are: |
| /// - "NONE" : If `EncodingType` is not specified, encoding-dependent |
| /// information (such as |
| /// `begin_offset`) will be set at `-1`. |
| /// - "UTF8" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-8 encoding of the input. C++ and Go are examples of languages |
| /// that use this encoding natively. |
| /// - "UTF16" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-16 encoding of the input. Java and Javascript are examples of |
| /// languages that use this encoding natively. |
| /// - "UTF32" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-32 encoding of the input. Python is an example of a language |
| /// that uses this encoding natively. |
| core.String encodingType; |
| |
| AnalyzeSyntaxRequest(); |
| |
| AnalyzeSyntaxRequest.fromJson(core.Map _json) { |
| if (_json.containsKey("document")) { |
| document = new Document.fromJson(_json["document"]); |
| } |
| if (_json.containsKey("encodingType")) { |
| encodingType = _json["encodingType"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (document != null) { |
| _json["document"] = (document).toJson(); |
| } |
| if (encodingType != null) { |
| _json["encodingType"] = encodingType; |
| } |
| return _json; |
| } |
| } |
| |
| /// The syntax analysis response message. |
| class AnalyzeSyntaxResponse { |
| /// The language of the text, which will be the same as the language specified |
| /// in the request or, if not specified, the automatically-detected language. |
| /// See Document.language field for more details. |
| core.String language; |
| |
| /// Sentences in the input document. |
| core.List<Sentence> sentences; |
| |
| /// Tokens, along with their syntactic information, in the input document. |
| core.List<Token> tokens; |
| |
| AnalyzeSyntaxResponse(); |
| |
| AnalyzeSyntaxResponse.fromJson(core.Map _json) { |
| if (_json.containsKey("language")) { |
| language = _json["language"]; |
| } |
| if (_json.containsKey("sentences")) { |
| sentences = _json["sentences"] |
| .map<Sentence>((value) => new Sentence.fromJson(value)) |
| .toList(); |
| } |
| if (_json.containsKey("tokens")) { |
| tokens = _json["tokens"] |
| .map<Token>((value) => new Token.fromJson(value)) |
| .toList(); |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (language != null) { |
| _json["language"] = language; |
| } |
| if (sentences != null) { |
| _json["sentences"] = sentences.map((value) => (value).toJson()).toList(); |
| } |
| if (tokens != null) { |
| _json["tokens"] = tokens.map((value) => (value).toJson()).toList(); |
| } |
| return _json; |
| } |
| } |
| |
| /// The request message for the text annotation API, which can perform multiple |
| /// analysis types (sentiment, entities, and syntax) in one call. |
| class AnnotateTextRequest { |
| /// Input document. |
| Document document; |
| |
| /// The encoding type used by the API to calculate offsets. |
| /// Possible string values are: |
| /// - "NONE" : If `EncodingType` is not specified, encoding-dependent |
| /// information (such as |
| /// `begin_offset`) will be set at `-1`. |
| /// - "UTF8" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-8 encoding of the input. C++ and Go are examples of languages |
| /// that use this encoding natively. |
| /// - "UTF16" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-16 encoding of the input. Java and Javascript are examples of |
| /// languages that use this encoding natively. |
| /// - "UTF32" : Encoding-dependent information (such as `begin_offset`) is |
| /// calculated based |
| /// on the UTF-32 encoding of the input. Python is an example of a language |
| /// that uses this encoding natively. |
| core.String encodingType; |
| |
| /// The enabled features. |
| Features features; |
| |
| AnnotateTextRequest(); |
| |
| AnnotateTextRequest.fromJson(core.Map _json) { |
| if (_json.containsKey("document")) { |
| document = new Document.fromJson(_json["document"]); |
| } |
| if (_json.containsKey("encodingType")) { |
| encodingType = _json["encodingType"]; |
| } |
| if (_json.containsKey("features")) { |
| features = new Features.fromJson(_json["features"]); |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (document != null) { |
| _json["document"] = (document).toJson(); |
| } |
| if (encodingType != null) { |
| _json["encodingType"] = encodingType; |
| } |
| if (features != null) { |
| _json["features"] = (features).toJson(); |
| } |
| return _json; |
| } |
| } |
| |
| /// The text annotations response message. |
| class AnnotateTextResponse { |
| /// Categories identified in the input document. |
| core.List<ClassificationCategory> categories; |
| |
| /// The overall sentiment for the document. Populated if the user enables |
| /// AnnotateTextRequest.Features.extract_document_sentiment. |
| Sentiment documentSentiment; |
| |
| /// Entities, along with their semantic information, in the input document. |
| /// Populated if the user enables |
| /// AnnotateTextRequest.Features.extract_entities. |
| core.List<Entity> entities; |
| |
| /// The language of the text, which will be the same as the language specified |
| /// in the request or, if not specified, the automatically-detected language. |
| /// See Document.language field for more details. |
| core.String language; |
| |
| /// Sentences in the input document. Populated if the user enables |
| /// AnnotateTextRequest.Features.extract_syntax. |
| core.List<Sentence> sentences; |
| |
| /// Tokens, along with their syntactic information, in the input document. |
| /// Populated if the user enables |
| /// AnnotateTextRequest.Features.extract_syntax. |
| core.List<Token> tokens; |
| |
| AnnotateTextResponse(); |
| |
| AnnotateTextResponse.fromJson(core.Map _json) { |
| if (_json.containsKey("categories")) { |
| categories = _json["categories"] |
| .map<ClassificationCategory>( |
| (value) => new ClassificationCategory.fromJson(value)) |
| .toList(); |
| } |
| if (_json.containsKey("documentSentiment")) { |
| documentSentiment = new Sentiment.fromJson(_json["documentSentiment"]); |
| } |
| if (_json.containsKey("entities")) { |
| entities = _json["entities"] |
| .map<Entity>((value) => new Entity.fromJson(value)) |
| .toList(); |
| } |
| if (_json.containsKey("language")) { |
| language = _json["language"]; |
| } |
| if (_json.containsKey("sentences")) { |
| sentences = _json["sentences"] |
| .map<Sentence>((value) => new Sentence.fromJson(value)) |
| .toList(); |
| } |
| if (_json.containsKey("tokens")) { |
| tokens = _json["tokens"] |
| .map<Token>((value) => new Token.fromJson(value)) |
| .toList(); |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (categories != null) { |
| _json["categories"] = |
| categories.map((value) => (value).toJson()).toList(); |
| } |
| if (documentSentiment != null) { |
| _json["documentSentiment"] = (documentSentiment).toJson(); |
| } |
| if (entities != null) { |
| _json["entities"] = entities.map((value) => (value).toJson()).toList(); |
| } |
| if (language != null) { |
| _json["language"] = language; |
| } |
| if (sentences != null) { |
| _json["sentences"] = sentences.map((value) => (value).toJson()).toList(); |
| } |
| if (tokens != null) { |
| _json["tokens"] = tokens.map((value) => (value).toJson()).toList(); |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents a category returned from the text classifier. |
| class ClassificationCategory { |
| /// The classifier's confidence of the category. Number represents how certain |
| /// the classifier is that this category represents the given text. |
| core.double confidence; |
| |
| /// The name of the category representing the document. |
| core.String name; |
| |
| ClassificationCategory(); |
| |
| ClassificationCategory.fromJson(core.Map _json) { |
| if (_json.containsKey("confidence")) { |
| confidence = _json["confidence"]; |
| } |
| if (_json.containsKey("name")) { |
| name = _json["name"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (confidence != null) { |
| _json["confidence"] = confidence; |
| } |
| if (name != null) { |
| _json["name"] = name; |
| } |
| return _json; |
| } |
| } |
| |
| /// The document classification request message. |
| class ClassifyTextRequest { |
| /// Input document. |
| Document document; |
| |
| ClassifyTextRequest(); |
| |
| ClassifyTextRequest.fromJson(core.Map _json) { |
| if (_json.containsKey("document")) { |
| document = new Document.fromJson(_json["document"]); |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (document != null) { |
| _json["document"] = (document).toJson(); |
| } |
| return _json; |
| } |
| } |
| |
| /// The document classification response message. |
| class ClassifyTextResponse { |
| /// Categories representing the input document. |
| core.List<ClassificationCategory> categories; |
| |
| ClassifyTextResponse(); |
| |
| ClassifyTextResponse.fromJson(core.Map _json) { |
| if (_json.containsKey("categories")) { |
| categories = _json["categories"] |
| .map<ClassificationCategory>( |
| (value) => new ClassificationCategory.fromJson(value)) |
| .toList(); |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (categories != null) { |
| _json["categories"] = |
| categories.map((value) => (value).toJson()).toList(); |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents dependency parse tree information for a token. (For more |
| /// information on dependency labels, see |
| /// http://www.aclweb.org/anthology/P13-2017 |
| class DependencyEdge { |
| /// Represents the head of this token in the dependency tree. |
| /// This is the index of the token which has an arc going to this token. |
| /// The index is the position of the token in the array of tokens returned |
| /// by the API method. If this token is a root token, then the |
| /// `head_token_index` is its own index. |
| core.int headTokenIndex; |
| |
| /// The parse label for the token. |
| /// Possible string values are: |
| /// - "UNKNOWN" : Unknown |
| /// - "ABBREV" : Abbreviation modifier |
| /// - "ACOMP" : Adjectival complement |
| /// - "ADVCL" : Adverbial clause modifier |
| /// - "ADVMOD" : Adverbial modifier |
| /// - "AMOD" : Adjectival modifier of an NP |
| /// - "APPOS" : Appositional modifier of an NP |
| /// - "ATTR" : Attribute dependent of a copular verb |
| /// - "AUX" : Auxiliary (non-main) verb |
| /// - "AUXPASS" : Passive auxiliary |
| /// - "CC" : Coordinating conjunction |
| /// - "CCOMP" : Clausal complement of a verb or adjective |
| /// - "CONJ" : Conjunct |
| /// - "CSUBJ" : Clausal subject |
| /// - "CSUBJPASS" : Clausal passive subject |
| /// - "DEP" : Dependency (unable to determine) |
| /// - "DET" : Determiner |
| /// - "DISCOURSE" : Discourse |
| /// - "DOBJ" : Direct object |
| /// - "EXPL" : Expletive |
| /// - "GOESWITH" : Goes with (part of a word in a text not well edited) |
| /// - "IOBJ" : Indirect object |
| /// - "MARK" : Marker (word introducing a subordinate clause) |
| /// - "MWE" : Multi-word expression |
| /// - "MWV" : Multi-word verbal expression |
| /// - "NEG" : Negation modifier |
| /// - "NN" : Noun compound modifier |
| /// - "NPADVMOD" : Noun phrase used as an adverbial modifier |
| /// - "NSUBJ" : Nominal subject |
| /// - "NSUBJPASS" : Passive nominal subject |
| /// - "NUM" : Numeric modifier of a noun |
| /// - "NUMBER" : Element of compound number |
| /// - "P" : Punctuation mark |
| /// - "PARATAXIS" : Parataxis relation |
| /// - "PARTMOD" : Participial modifier |
| /// - "PCOMP" : The complement of a preposition is a clause |
| /// - "POBJ" : Object of a preposition |
| /// - "POSS" : Possession modifier |
| /// - "POSTNEG" : Postverbal negative particle |
| /// - "PRECOMP" : Predicate complement |
| /// - "PRECONJ" : Preconjunt |
| /// - "PREDET" : Predeterminer |
| /// - "PREF" : Prefix |
| /// - "PREP" : Prepositional modifier |
| /// - "PRONL" : The relationship between a verb and verbal morpheme |
| /// - "PRT" : Particle |
| /// - "PS" : Associative or possessive marker |
| /// - "QUANTMOD" : Quantifier phrase modifier |
| /// - "RCMOD" : Relative clause modifier |
| /// - "RCMODREL" : Complementizer in relative clause |
| /// - "RDROP" : Ellipsis without a preceding predicate |
| /// - "REF" : Referent |
| /// - "REMNANT" : Remnant |
| /// - "REPARANDUM" : Reparandum |
| /// - "ROOT" : Root |
| /// - "SNUM" : Suffix specifying a unit of number |
| /// - "SUFF" : Suffix |
| /// - "TMOD" : Temporal modifier |
| /// - "TOPIC" : Topic marker |
| /// - "VMOD" : Clause headed by an infinite form of the verb that modifies a |
| /// noun |
| /// - "VOCATIVE" : Vocative |
| /// - "XCOMP" : Open clausal complement |
| /// - "SUFFIX" : Name suffix |
| /// - "TITLE" : Name title |
| /// - "ADVPHMOD" : Adverbial phrase modifier |
| /// - "AUXCAUS" : Causative auxiliary |
| /// - "AUXVV" : Helper auxiliary |
| /// - "DTMOD" : Rentaishi (Prenominal modifier) |
| /// - "FOREIGN" : Foreign words |
| /// - "KW" : Keyword |
| /// - "LIST" : List for chains of comparable items |
| /// - "NOMC" : Nominalized clause |
| /// - "NOMCSUBJ" : Nominalized clausal subject |
| /// - "NOMCSUBJPASS" : Nominalized clausal passive |
| /// - "NUMC" : Compound of numeric modifier |
| /// - "COP" : Copula |
| /// - "DISLOCATED" : Dislocated relation (for fronted/topicalized elements) |
| /// - "ASP" : Aspect marker |
| /// - "GMOD" : Genitive modifier |
| /// - "GOBJ" : Genitive object |
| /// - "INFMOD" : Infinitival modifier |
| /// - "MES" : Measure |
| /// - "NCOMP" : Nominal complement of a noun |
| core.String label; |
| |
| DependencyEdge(); |
| |
| DependencyEdge.fromJson(core.Map _json) { |
| if (_json.containsKey("headTokenIndex")) { |
| headTokenIndex = _json["headTokenIndex"]; |
| } |
| if (_json.containsKey("label")) { |
| label = _json["label"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (headTokenIndex != null) { |
| _json["headTokenIndex"] = headTokenIndex; |
| } |
| if (label != null) { |
| _json["label"] = label; |
| } |
| return _json; |
| } |
| } |
| |
| /// ################################################################ # |
| /// |
| /// Represents the input to API methods. |
| class Document { |
| /// The content of the input in string format. |
| core.String content; |
| |
| /// The Google Cloud Storage URI where the file content is located. |
| /// This URI must be of the form: gs://bucket_name/object_name. For more |
| /// details, see https://cloud.google.com/storage/docs/reference-uris. |
| /// NOTE: Cloud Storage object versioning is not supported. |
| core.String gcsContentUri; |
| |
| /// The language of the document (if not specified, the language is |
| /// automatically detected). Both ISO and BCP-47 language codes are |
| /// accepted.<br> |
| /// [Language Support](/natural-language/docs/languages) |
| /// lists currently supported languages for each API method. |
| /// If the language (either specified by the caller or automatically detected) |
| /// is not supported by the called API method, an `INVALID_ARGUMENT` error |
| /// is returned. |
| core.String language; |
| |
| /// Required. If the type is not set or is `TYPE_UNSPECIFIED`, |
| /// returns an `INVALID_ARGUMENT` error. |
| /// Possible string values are: |
| /// - "TYPE_UNSPECIFIED" : The content type is not specified. |
| /// - "PLAIN_TEXT" : Plain text |
| /// - "HTML" : HTML |
| core.String type; |
| |
| Document(); |
| |
| Document.fromJson(core.Map _json) { |
| if (_json.containsKey("content")) { |
| content = _json["content"]; |
| } |
| if (_json.containsKey("gcsContentUri")) { |
| gcsContentUri = _json["gcsContentUri"]; |
| } |
| if (_json.containsKey("language")) { |
| language = _json["language"]; |
| } |
| if (_json.containsKey("type")) { |
| type = _json["type"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (content != null) { |
| _json["content"] = content; |
| } |
| if (gcsContentUri != null) { |
| _json["gcsContentUri"] = gcsContentUri; |
| } |
| if (language != null) { |
| _json["language"] = language; |
| } |
| if (type != null) { |
| _json["type"] = type; |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents a phrase in the text that is a known entity, such as |
| /// a person, an organization, or location. The API associates information, such |
| /// as salience and mentions, with entities. |
| class Entity { |
| /// The mentions of this entity in the input document. The API currently |
| /// supports proper noun mentions. |
| core.List<EntityMention> mentions; |
| |
| /// Metadata associated with the entity. |
| /// |
| /// Currently, Wikipedia URLs and Knowledge Graph MIDs are provided, if |
| /// available. The associated keys are "wikipedia_url" and "mid", |
| /// respectively. |
| core.Map<core.String, core.String> metadata; |
| |
| /// The representative name for the entity. |
| core.String name; |
| |
| /// The salience score associated with the entity in the [0, 1.0] range. |
| /// |
| /// The salience score for an entity provides information about the |
| /// importance or centrality of that entity to the entire document text. |
| /// Scores closer to 0 are less salient, while scores closer to 1.0 are highly |
| /// salient. |
| core.double salience; |
| |
| /// For calls to AnalyzeEntitySentiment or if |
| /// AnnotateTextRequest.Features.extract_entity_sentiment is set to |
| /// true, this field will contain the aggregate sentiment expressed for this |
| /// entity in the provided document. |
| Sentiment sentiment; |
| |
| /// The entity type. |
| /// Possible string values are: |
| /// - "UNKNOWN" : Unknown |
| /// - "PERSON" : Person |
| /// - "LOCATION" : Location |
| /// - "ORGANIZATION" : Organization |
| /// - "EVENT" : Event |
| /// - "WORK_OF_ART" : Work of art |
| /// - "CONSUMER_GOOD" : Consumer goods |
| /// - "OTHER" : Other types |
| core.String type; |
| |
| Entity(); |
| |
| Entity.fromJson(core.Map _json) { |
| if (_json.containsKey("mentions")) { |
| mentions = _json["mentions"] |
| .map<EntityMention>((value) => new EntityMention.fromJson(value)) |
| .toList(); |
| } |
| if (_json.containsKey("metadata")) { |
| metadata = _json["metadata"]; |
| } |
| if (_json.containsKey("name")) { |
| name = _json["name"]; |
| } |
| if (_json.containsKey("salience")) { |
| salience = _json["salience"]; |
| } |
| if (_json.containsKey("sentiment")) { |
| sentiment = new Sentiment.fromJson(_json["sentiment"]); |
| } |
| if (_json.containsKey("type")) { |
| type = _json["type"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (mentions != null) { |
| _json["mentions"] = mentions.map((value) => (value).toJson()).toList(); |
| } |
| if (metadata != null) { |
| _json["metadata"] = metadata; |
| } |
| if (name != null) { |
| _json["name"] = name; |
| } |
| if (salience != null) { |
| _json["salience"] = salience; |
| } |
| if (sentiment != null) { |
| _json["sentiment"] = (sentiment).toJson(); |
| } |
| if (type != null) { |
| _json["type"] = type; |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents a mention for an entity in the text. Currently, proper noun |
| /// mentions are supported. |
| class EntityMention { |
| /// For calls to AnalyzeEntitySentiment or if |
| /// AnnotateTextRequest.Features.extract_entity_sentiment is set to |
| /// true, this field will contain the sentiment expressed for this mention of |
| /// the entity in the provided document. |
| Sentiment sentiment; |
| |
| /// The mention text. |
| TextSpan text; |
| |
| /// The type of the entity mention. |
| /// Possible string values are: |
| /// - "TYPE_UNKNOWN" : Unknown |
| /// - "PROPER" : Proper name |
| /// - "COMMON" : Common noun (or noun compound) |
| core.String type; |
| |
| EntityMention(); |
| |
| EntityMention.fromJson(core.Map _json) { |
| if (_json.containsKey("sentiment")) { |
| sentiment = new Sentiment.fromJson(_json["sentiment"]); |
| } |
| if (_json.containsKey("text")) { |
| text = new TextSpan.fromJson(_json["text"]); |
| } |
| if (_json.containsKey("type")) { |
| type = _json["type"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (sentiment != null) { |
| _json["sentiment"] = (sentiment).toJson(); |
| } |
| if (text != null) { |
| _json["text"] = (text).toJson(); |
| } |
| if (type != null) { |
| _json["type"] = type; |
| } |
| return _json; |
| } |
| } |
| |
| /// All available features for sentiment, syntax, and semantic analysis. |
| /// Setting each one to true will enable that specific analysis for the input. |
| class Features { |
| /// Classify the full document into categories. |
| core.bool classifyText; |
| |
| /// Extract document-level sentiment. |
| core.bool extractDocumentSentiment; |
| |
| /// Extract entities. |
| core.bool extractEntities; |
| |
| /// Extract entities and their associated sentiment. |
| core.bool extractEntitySentiment; |
| |
| /// Extract syntax information. |
| core.bool extractSyntax; |
| |
| Features(); |
| |
| Features.fromJson(core.Map _json) { |
| if (_json.containsKey("classifyText")) { |
| classifyText = _json["classifyText"]; |
| } |
| if (_json.containsKey("extractDocumentSentiment")) { |
| extractDocumentSentiment = _json["extractDocumentSentiment"]; |
| } |
| if (_json.containsKey("extractEntities")) { |
| extractEntities = _json["extractEntities"]; |
| } |
| if (_json.containsKey("extractEntitySentiment")) { |
| extractEntitySentiment = _json["extractEntitySentiment"]; |
| } |
| if (_json.containsKey("extractSyntax")) { |
| extractSyntax = _json["extractSyntax"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (classifyText != null) { |
| _json["classifyText"] = classifyText; |
| } |
| if (extractDocumentSentiment != null) { |
| _json["extractDocumentSentiment"] = extractDocumentSentiment; |
| } |
| if (extractEntities != null) { |
| _json["extractEntities"] = extractEntities; |
| } |
| if (extractEntitySentiment != null) { |
| _json["extractEntitySentiment"] = extractEntitySentiment; |
| } |
| if (extractSyntax != null) { |
| _json["extractSyntax"] = extractSyntax; |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents part of speech information for a token. Parts of speech |
| /// are as defined in |
| /// http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf |
| class PartOfSpeech { |
| /// The grammatical aspect. |
| /// Possible string values are: |
| /// - "ASPECT_UNKNOWN" : Aspect is not applicable in the analyzed language or |
| /// is not predicted. |
| /// - "PERFECTIVE" : Perfective |
| /// - "IMPERFECTIVE" : Imperfective |
| /// - "PROGRESSIVE" : Progressive |
| core.String aspect; |
| |
| /// The grammatical case. |
| /// Possible string values are: |
| /// - "CASE_UNKNOWN" : Case is not applicable in the analyzed language or is |
| /// not predicted. |
| /// - "ACCUSATIVE" : Accusative |
| /// - "ADVERBIAL" : Adverbial |
| /// - "COMPLEMENTIVE" : Complementive |
| /// - "DATIVE" : Dative |
| /// - "GENITIVE" : Genitive |
| /// - "INSTRUMENTAL" : Instrumental |
| /// - "LOCATIVE" : Locative |
| /// - "NOMINATIVE" : Nominative |
| /// - "OBLIQUE" : Oblique |
| /// - "PARTITIVE" : Partitive |
| /// - "PREPOSITIONAL" : Prepositional |
| /// - "REFLEXIVE_CASE" : Reflexive |
| /// - "RELATIVE_CASE" : Relative |
| /// - "VOCATIVE" : Vocative |
| core.String case_; |
| |
| /// The grammatical form. |
| /// Possible string values are: |
| /// - "FORM_UNKNOWN" : Form is not applicable in the analyzed language or is |
| /// not predicted. |
| /// - "ADNOMIAL" : Adnomial |
| /// - "AUXILIARY" : Auxiliary |
| /// - "COMPLEMENTIZER" : Complementizer |
| /// - "FINAL_ENDING" : Final ending |
| /// - "GERUND" : Gerund |
| /// - "REALIS" : Realis |
| /// - "IRREALIS" : Irrealis |
| /// - "SHORT" : Short form |
| /// - "LONG" : Long form |
| /// - "ORDER" : Order form |
| /// - "SPECIFIC" : Specific form |
| core.String form; |
| |
| /// The grammatical gender. |
| /// Possible string values are: |
| /// - "GENDER_UNKNOWN" : Gender is not applicable in the analyzed language or |
| /// is not predicted. |
| /// - "FEMININE" : Feminine |
| /// - "MASCULINE" : Masculine |
| /// - "NEUTER" : Neuter |
| core.String gender; |
| |
| /// The grammatical mood. |
| /// Possible string values are: |
| /// - "MOOD_UNKNOWN" : Mood is not applicable in the analyzed language or is |
| /// not predicted. |
| /// - "CONDITIONAL_MOOD" : Conditional |
| /// - "IMPERATIVE" : Imperative |
| /// - "INDICATIVE" : Indicative |
| /// - "INTERROGATIVE" : Interrogative |
| /// - "JUSSIVE" : Jussive |
| /// - "SUBJUNCTIVE" : Subjunctive |
| core.String mood; |
| |
| /// The grammatical number. |
| /// Possible string values are: |
| /// - "NUMBER_UNKNOWN" : Number is not applicable in the analyzed language or |
| /// is not predicted. |
| /// - "SINGULAR" : Singular |
| /// - "PLURAL" : Plural |
| /// - "DUAL" : Dual |
| core.String number; |
| |
| /// The grammatical person. |
| /// Possible string values are: |
| /// - "PERSON_UNKNOWN" : Person is not applicable in the analyzed language or |
| /// is not predicted. |
| /// - "FIRST" : First |
| /// - "SECOND" : Second |
| /// - "THIRD" : Third |
| /// - "REFLEXIVE_PERSON" : Reflexive |
| core.String person; |
| |
| /// The grammatical properness. |
| /// Possible string values are: |
| /// - "PROPER_UNKNOWN" : Proper is not applicable in the analyzed language or |
| /// is not predicted. |
| /// - "PROPER" : Proper |
| /// - "NOT_PROPER" : Not proper |
| core.String proper; |
| |
| /// The grammatical reciprocity. |
| /// Possible string values are: |
| /// - "RECIPROCITY_UNKNOWN" : Reciprocity is not applicable in the analyzed |
| /// language or is not |
| /// predicted. |
| /// - "RECIPROCAL" : Reciprocal |
| /// - "NON_RECIPROCAL" : Non-reciprocal |
| core.String reciprocity; |
| |
| /// The part of speech tag. |
| /// Possible string values are: |
| /// - "UNKNOWN" : Unknown |
| /// - "ADJ" : Adjective |
| /// - "ADP" : Adposition (preposition and postposition) |
| /// - "ADV" : Adverb |
| /// - "CONJ" : Conjunction |
| /// - "DET" : Determiner |
| /// - "NOUN" : Noun (common and proper) |
| /// - "NUM" : Cardinal number |
| /// - "PRON" : Pronoun |
| /// - "PRT" : Particle or other function word |
| /// - "PUNCT" : Punctuation |
| /// - "VERB" : Verb (all tenses and modes) |
| /// - "X" : Other: foreign words, typos, abbreviations |
| /// - "AFFIX" : Affix |
| core.String tag; |
| |
| /// The grammatical tense. |
| /// Possible string values are: |
| /// - "TENSE_UNKNOWN" : Tense is not applicable in the analyzed language or is |
| /// not predicted. |
| /// - "CONDITIONAL_TENSE" : Conditional |
| /// - "FUTURE" : Future |
| /// - "PAST" : Past |
| /// - "PRESENT" : Present |
| /// - "IMPERFECT" : Imperfect |
| /// - "PLUPERFECT" : Pluperfect |
| core.String tense; |
| |
| /// The grammatical voice. |
| /// Possible string values are: |
| /// - "VOICE_UNKNOWN" : Voice is not applicable in the analyzed language or is |
| /// not predicted. |
| /// - "ACTIVE" : Active |
| /// - "CAUSATIVE" : Causative |
| /// - "PASSIVE" : Passive |
| core.String voice; |
| |
| PartOfSpeech(); |
| |
| PartOfSpeech.fromJson(core.Map _json) { |
| if (_json.containsKey("aspect")) { |
| aspect = _json["aspect"]; |
| } |
| if (_json.containsKey("case")) { |
| case_ = _json["case"]; |
| } |
| if (_json.containsKey("form")) { |
| form = _json["form"]; |
| } |
| if (_json.containsKey("gender")) { |
| gender = _json["gender"]; |
| } |
| if (_json.containsKey("mood")) { |
| mood = _json["mood"]; |
| } |
| if (_json.containsKey("number")) { |
| number = _json["number"]; |
| } |
| if (_json.containsKey("person")) { |
| person = _json["person"]; |
| } |
| if (_json.containsKey("proper")) { |
| proper = _json["proper"]; |
| } |
| if (_json.containsKey("reciprocity")) { |
| reciprocity = _json["reciprocity"]; |
| } |
| if (_json.containsKey("tag")) { |
| tag = _json["tag"]; |
| } |
| if (_json.containsKey("tense")) { |
| tense = _json["tense"]; |
| } |
| if (_json.containsKey("voice")) { |
| voice = _json["voice"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (aspect != null) { |
| _json["aspect"] = aspect; |
| } |
| if (case_ != null) { |
| _json["case"] = case_; |
| } |
| if (form != null) { |
| _json["form"] = form; |
| } |
| if (gender != null) { |
| _json["gender"] = gender; |
| } |
| if (mood != null) { |
| _json["mood"] = mood; |
| } |
| if (number != null) { |
| _json["number"] = number; |
| } |
| if (person != null) { |
| _json["person"] = person; |
| } |
| if (proper != null) { |
| _json["proper"] = proper; |
| } |
| if (reciprocity != null) { |
| _json["reciprocity"] = reciprocity; |
| } |
| if (tag != null) { |
| _json["tag"] = tag; |
| } |
| if (tense != null) { |
| _json["tense"] = tense; |
| } |
| if (voice != null) { |
| _json["voice"] = voice; |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents a sentence in the input document. |
| class Sentence { |
| /// For calls to AnalyzeSentiment or if |
| /// AnnotateTextRequest.Features.extract_document_sentiment is set to |
| /// true, this field will contain the sentiment for the sentence. |
| Sentiment sentiment; |
| |
| /// The sentence text. |
| TextSpan text; |
| |
| Sentence(); |
| |
| Sentence.fromJson(core.Map _json) { |
| if (_json.containsKey("sentiment")) { |
| sentiment = new Sentiment.fromJson(_json["sentiment"]); |
| } |
| if (_json.containsKey("text")) { |
| text = new TextSpan.fromJson(_json["text"]); |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (sentiment != null) { |
| _json["sentiment"] = (sentiment).toJson(); |
| } |
| if (text != null) { |
| _json["text"] = (text).toJson(); |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents the feeling associated with the entire text or entities in |
| /// the text. |
| class Sentiment { |
| /// A non-negative number in the [0, +inf) range, which represents |
| /// the absolute magnitude of sentiment regardless of score (positive or |
| /// negative). |
| core.double magnitude; |
| |
| /// Sentiment score between -1.0 (negative sentiment) and 1.0 |
| /// (positive sentiment). |
| core.double score; |
| |
| Sentiment(); |
| |
| Sentiment.fromJson(core.Map _json) { |
| if (_json.containsKey("magnitude")) { |
| magnitude = _json["magnitude"]; |
| } |
| if (_json.containsKey("score")) { |
| score = _json["score"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (magnitude != null) { |
| _json["magnitude"] = magnitude; |
| } |
| if (score != null) { |
| _json["score"] = score; |
| } |
| return _json; |
| } |
| } |
| |
| /// The `Status` type defines a logical error model that is suitable for |
| /// different |
| /// programming environments, including REST APIs and RPC APIs. It is used by |
| /// [gRPC](https://github.com/grpc). The error model is designed to be: |
| /// |
| /// - Simple to use and understand for most users |
| /// - Flexible enough to meet unexpected needs |
| /// |
| /// # Overview |
| /// |
| /// The `Status` message contains three pieces of data: error code, error |
| /// message, |
| /// and error details. The error code should be an enum value of |
| /// google.rpc.Code, but it may accept additional error codes if needed. The |
| /// error message should be a developer-facing English message that helps |
| /// developers *understand* and *resolve* the error. If a localized user-facing |
| /// error message is needed, put the localized message in the error details or |
| /// localize it in the client. The optional error details may contain arbitrary |
| /// information about the error. There is a predefined set of error detail types |
| /// in the package `google.rpc` that can be used for common error conditions. |
| /// |
| /// # Language mapping |
| /// |
| /// The `Status` message is the logical representation of the error model, but |
| /// it |
| /// is not necessarily the actual wire format. When the `Status` message is |
| /// exposed in different client libraries and different wire protocols, it can |
| /// be |
| /// mapped differently. For example, it will likely be mapped to some exceptions |
| /// in Java, but more likely mapped to some error codes in C. |
| /// |
| /// # Other uses |
| /// |
| /// The error model and the `Status` message can be used in a variety of |
| /// environments, either with or without APIs, to provide a |
| /// consistent developer experience across different environments. |
| /// |
| /// Example uses of this error model include: |
| /// |
| /// - Partial errors. If a service needs to return partial errors to the client, |
| /// it may embed the `Status` in the normal response to indicate the partial |
| /// errors. |
| /// |
| /// - Workflow errors. A typical workflow has multiple steps. Each step may |
| /// have a `Status` message for error reporting. |
| /// |
| /// - Batch operations. If a client uses batch request and batch response, the |
| /// `Status` message should be used directly inside batch response, one for |
| /// each error sub-response. |
| /// |
| /// - Asynchronous operations. If an API call embeds asynchronous operation |
| /// results in its response, the status of those operations should be |
| /// represented directly using the `Status` message. |
| /// |
| /// - Logging. If some API errors are stored in logs, the message `Status` could |
| /// be used directly after any stripping needed for security/privacy reasons. |
| class Status { |
| /// The status code, which should be an enum value of google.rpc.Code. |
| core.int code; |
| |
| /// A list of messages that carry the error details. There is a common set of |
| /// message types for APIs to use. |
| /// |
| /// The values for Object must be JSON objects. It can consist of `num`, |
| /// `String`, `bool` and `null` as well as `Map` and `List` values. |
| core.List<core.Map<core.String, core.Object>> details; |
| |
| /// A developer-facing error message, which should be in English. Any |
| /// user-facing error message should be localized and sent in the |
| /// google.rpc.Status.details field, or localized by the client. |
| core.String message; |
| |
| Status(); |
| |
| Status.fromJson(core.Map _json) { |
| if (_json.containsKey("code")) { |
| code = _json["code"]; |
| } |
| if (_json.containsKey("details")) { |
| details = _json["details"]; |
| } |
| if (_json.containsKey("message")) { |
| message = _json["message"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (code != null) { |
| _json["code"] = code; |
| } |
| if (details != null) { |
| _json["details"] = details; |
| } |
| if (message != null) { |
| _json["message"] = message; |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents an output piece of text. |
| class TextSpan { |
| /// The API calculates the beginning offset of the content in the original |
| /// document according to the EncodingType specified in the API request. |
| core.int beginOffset; |
| |
| /// The content of the output text. |
| core.String content; |
| |
| TextSpan(); |
| |
| TextSpan.fromJson(core.Map _json) { |
| if (_json.containsKey("beginOffset")) { |
| beginOffset = _json["beginOffset"]; |
| } |
| if (_json.containsKey("content")) { |
| content = _json["content"]; |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (beginOffset != null) { |
| _json["beginOffset"] = beginOffset; |
| } |
| if (content != null) { |
| _json["content"] = content; |
| } |
| return _json; |
| } |
| } |
| |
| /// Represents the smallest syntactic building block of the text. |
| class Token { |
| /// Dependency tree parse for this token. |
| DependencyEdge dependencyEdge; |
| |
| /// [Lemma](https://en.wikipedia.org/wiki/Lemma_%28morphology%29) of the |
| /// token. |
| core.String lemma; |
| |
| /// Parts of speech tag for this token. |
| PartOfSpeech partOfSpeech; |
| |
| /// The token text. |
| TextSpan text; |
| |
| Token(); |
| |
| Token.fromJson(core.Map _json) { |
| if (_json.containsKey("dependencyEdge")) { |
| dependencyEdge = new DependencyEdge.fromJson(_json["dependencyEdge"]); |
| } |
| if (_json.containsKey("lemma")) { |
| lemma = _json["lemma"]; |
| } |
| if (_json.containsKey("partOfSpeech")) { |
| partOfSpeech = new PartOfSpeech.fromJson(_json["partOfSpeech"]); |
| } |
| if (_json.containsKey("text")) { |
| text = new TextSpan.fromJson(_json["text"]); |
| } |
| } |
| |
| core.Map<core.String, core.Object> toJson() { |
| final core.Map<core.String, core.Object> _json = |
| new core.Map<core.String, core.Object>(); |
| if (dependencyEdge != null) { |
| _json["dependencyEdge"] = (dependencyEdge).toJson(); |
| } |
| if (lemma != null) { |
| _json["lemma"] = lemma; |
| } |
| if (partOfSpeech != null) { |
| _json["partOfSpeech"] = (partOfSpeech).toJson(); |
| } |
| if (text != null) { |
| _json["text"] = (text).toJson(); |
| } |
| return _json; |
| } |
| } |