| /* |
| * Copyright © 2023 Behdad Esfahbod |
| * |
| * This is part of HarfBuzz, a text shaping library. |
| * |
| * Permission is hereby granted, without written agreement and without |
| * license or royalty fees, to use, copy, modify, and distribute this |
| * software and its documentation for any purpose, provided that the |
| * above copyright notice and the following two paragraphs appear in |
| * all copies of this software. |
| * |
| * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR |
| * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES |
| * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN |
| * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH |
| * DAMAGE. |
| * |
| * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, |
| * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS |
| * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO |
| * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. |
| */ |
| |
| #include "hb-subset-instancer-solver.hh" |
| |
| /* This file is a straight port of the following: |
| * |
| * https://github.com/fonttools/fonttools/blob/f73220816264fc383b8a75f2146e8d69e455d398/Lib/fontTools/varLib/instancer/solver.py |
| * |
| * Where that file returns None for a triple, we return Triple{}. |
| * This should be safe. |
| */ |
| |
| constexpr static float EPSILON = 1.f / (1 << 14); |
| constexpr static float MAX_F2DOT14 = float (0x7FFF) / (1 << 14); |
| |
| static inline Triple _reverse_negate(const Triple &v) |
| { return {-v.maximum, -v.middle, -v.minimum}; } |
| |
| |
| static inline float supportScalar (float coord, const Triple &tent) |
| { |
| /* Copied from VarRegionAxis::evaluate() */ |
| float start = tent.minimum, peak = tent.middle, end = tent.maximum; |
| |
| if (unlikely (start > peak || peak > end)) |
| return 1.; |
| if (unlikely (start < 0 && end > 0 && peak != 0)) |
| return 1.; |
| |
| if (peak == 0 || coord == peak) |
| return 1.; |
| |
| if (coord <= start || end <= coord) |
| return 0.; |
| |
| /* Interpolate */ |
| if (coord < peak) |
| return (coord - start) / (peak - start); |
| else |
| return (end - coord) / (end - peak); |
| } |
| |
| static inline result_t |
| _solve (Triple tent, Triple axisLimit, bool negative = false) |
| { |
| float axisMin = axisLimit.minimum; |
| float axisDef = axisLimit.middle; |
| float axisMax = axisLimit.maximum; |
| float lower = tent.minimum; |
| float peak = tent.middle; |
| float upper = tent.maximum; |
| |
| // Mirror the problem such that axisDef <= peak |
| if (axisDef > peak) |
| { |
| result_t vec = _solve (_reverse_negate (tent), |
| _reverse_negate (axisLimit), |
| !negative); |
| |
| for (auto &p : vec) |
| p = hb_pair (p.first, _reverse_negate (p.second)); |
| |
| return vec; |
| } |
| // axisDef <= peak |
| |
| /* case 1: The whole deltaset falls outside the new limit; we can drop it |
| * |
| * peak |
| * 1.........................................o.......... |
| * / \ |
| * / \ |
| * / \ |
| * / \ |
| * 0---|-----------|----------|-------- o o----1 |
| * axisMin axisDef axisMax lower upper |
| */ |
| if (axisMax <= lower && axisMax < peak) |
| return result_t{}; // No overlap |
| |
| /* case 2: Only the peak and outermost bound fall outside the new limit; |
| * we keep the deltaset, update peak and outermost bound and scale deltas |
| * by the scalar value for the restricted axis at the new limit, and solve |
| * recursively. |
| * |
| * |peak |
| * 1...............................|.o.......... |
| * |/ \ |
| * / \ |
| * /| \ |
| * / | \ |
| * 0--------------------------- o | o----1 |
| * lower | upper |
| * | |
| * axisMax |
| * |
| * Convert to: |
| * |
| * 1............................................ |
| * | |
| * o peak |
| * /| |
| * /x| |
| * 0--------------------------- o o upper ----1 |
| * lower | |
| * | |
| * axisMax |
| */ |
| if (axisMax < peak) |
| { |
| float mult = supportScalar (axisMax, tent); |
| tent = Triple{lower, axisMax, axisMax}; |
| |
| result_t vec = _solve (tent, axisLimit); |
| |
| for (auto &p : vec) |
| p = hb_pair (p.first * mult, p.second); |
| |
| return vec; |
| } |
| |
| // lower <= axisDef <= peak <= axisMax |
| |
| float gain = supportScalar (axisDef, tent); |
| result_t out {hb_pair (gain, Triple{})}; |
| |
| // First, the positive side |
| |
| // outGain is the scalar of axisMax at the tent. |
| float outGain = supportScalar (axisMax, tent); |
| |
| /* Case 3a: Gain is more than outGain. The tent down-slope crosses |
| * the axis into negative. We have to split it into multiples. |
| * |
| * | peak | |
| * 1...................|.o.....|.............. |
| * |/x\_ | |
| * gain................+....+_.|.............. |
| * /| |y\| |
| * ................../.|....|..+_......outGain |
| * / | | | \ |
| * 0---|-----------o | | | o----------1 |
| * axisMin lower | | | upper |
| * | | | |
| * axisDef | axisMax |
| * | |
| * crossing |
| */ |
| if (gain > outGain) |
| { |
| // Crossing point on the axis. |
| float crossing = peak + (1 - gain) * (upper - peak); |
| |
| Triple loc{axisDef, peak, crossing}; |
| float scalar = 1.f; |
| |
| // The part before the crossing point. |
| out.push (hb_pair (scalar - gain, loc)); |
| |
| /* The part after the crossing point may use one or two tents, |
| * depending on whether upper is before axisMax or not, in one |
| * case we need to keep it down to eternity. |
| * |
| * Case 3a1, similar to case 1neg; just one tent needed, as in |
| * the drawing above. |
| */ |
| if (upper >= axisMax) |
| { |
| Triple loc {crossing, axisMax, axisMax}; |
| float scalar = outGain; |
| |
| out.push (hb_pair (scalar - gain, loc)); |
| } |
| |
| /* Case 3a2: Similar to case 2neg; two tents needed, to keep |
| * down to eternity. |
| * |
| * | peak | |
| * 1...................|.o................|... |
| * |/ \_ | |
| * gain................+....+_............|... |
| * /| | \xxxxxxxxxxy| |
| * / | | \_xxxxxyyyy| |
| * / | | \xxyyyyyy| |
| * 0---|-----------o | | o-------|--1 |
| * axisMin lower | | upper | |
| * | | | |
| * axisDef | axisMax |
| * | |
| * crossing |
| */ |
| else |
| { |
| // A tent's peak cannot fall on axis default. Nudge it. |
| if (upper == axisDef) |
| upper += EPSILON; |
| |
| // Downslope. |
| Triple loc1 {crossing, upper, axisMax}; |
| float scalar1 = 0.f; |
| |
| // Eternity justify. |
| Triple loc2 {upper, axisMax, axisMax}; |
| float scalar2 = 0.f; |
| |
| out.push (hb_pair (scalar1 - gain, loc1)); |
| out.push (hb_pair (scalar2 - gain, loc2)); |
| } |
| } |
| |
| else |
| { |
| // Special-case if peak is at axisMax. |
| if (axisMax == peak) |
| upper = peak; |
| |
| /* Case 3: |
| * we keep deltas as is and only scale the axis upper to achieve |
| * the desired new tent if feasible. |
| * |
| * peak |
| * 1.....................o.................... |
| * / \_| |
| * ..................../....+_.........outGain |
| * / | \ |
| * gain..............+......|..+_............. |
| * /| | | \ |
| * 0---|-----------o | | | o----------1 |
| * axisMin lower| | | upper |
| * | | newUpper |
| * axisDef axisMax |
| */ |
| float newUpper = peak + (1 - gain) * (upper - peak); |
| assert (axisMax <= newUpper); // Because outGain >= gain |
| if (newUpper <= axisDef + (axisMax - axisDef) * 2) |
| { |
| upper = newUpper; |
| if (!negative && axisDef + (axisMax - axisDef) * MAX_F2DOT14 < upper) |
| { |
| // we clamp +2.0 to the max F2Dot14 (~1.99994) for convenience |
| upper = axisDef + (axisMax - axisDef) * MAX_F2DOT14; |
| assert (peak < upper); |
| } |
| |
| Triple loc {hb_max (axisDef, lower), peak, upper}; |
| float scalar = 1.f; |
| |
| out.push (hb_pair (scalar - gain, loc)); |
| } |
| |
| /* Case 4: New limit doesn't fit; we need to chop into two tents, |
| * because the shape of a triangle with part of one side cut off |
| * cannot be represented as a triangle itself. |
| * |
| * | peak | |
| * 1.........|......o.|.................... |
| * ..........|...../x\|.............outGain |
| * | |xxy|\_ |
| * | /xxxy| \_ |
| * | |xxxxy| \_ |
| * | /xxxxy| \_ |
| * 0---|-----|-oxxxxxx| o----------1 |
| * axisMin | lower | upper |
| * | | |
| * axisDef axisMax |
| */ |
| else |
| { |
| Triple loc1 {hb_max (axisDef, lower), peak, axisMax}; |
| float scalar1 = 1.f; |
| |
| Triple loc2 {peak, axisMax, axisMax}; |
| float scalar2 = outGain; |
| |
| out.push (hb_pair (scalar1 - gain, loc1)); |
| // Don't add a dirac delta! |
| if (peak < axisMax) |
| out.push (hb_pair (scalar2 - gain, loc2)); |
| } |
| } |
| |
| /* Now, the negative side |
| * |
| * Case 1neg: Lower extends beyond axisMin: we chop. Simple. |
| * |
| * | |peak |
| * 1..................|...|.o................. |
| * | |/ \ |
| * gain...............|...+...\............... |
| * |x_/| \ |
| * |/ | \ |
| * _/| | \ |
| * 0---------------o | | o----------1 |
| * lower | | upper |
| * | | |
| * axisMin axisDef |
| */ |
| if (lower <= axisMin) |
| { |
| Triple loc {axisMin, axisMin, axisDef}; |
| float scalar = supportScalar (axisMin, tent); |
| |
| out.push (hb_pair (scalar - gain, loc)); |
| } |
| |
| /* Case 2neg: Lower is betwen axisMin and axisDef: we add two |
| * tents to keep it down all the way to eternity. |
| * |
| * | |peak |
| * 1...|...............|.o................. |
| * | |/ \ |
| * gain|...............+...\............... |
| * |yxxxxxxxxxxxxx/| \ |
| * |yyyyyyxxxxxxx/ | \ |
| * |yyyyyyyyyyyx/ | \ |
| * 0---|-----------o | o----------1 |
| * axisMin lower | upper |
| * | |
| * axisDef |
| */ |
| else |
| { |
| // A tent's peak cannot fall on axis default. Nudge it. |
| if (lower == axisDef) |
| lower -= EPSILON; |
| |
| // Downslope. |
| Triple loc1 {axisMin, lower, axisDef}; |
| float scalar1 = 0.f; |
| |
| // Eternity justify. |
| Triple loc2 {axisMin, axisMin, lower}; |
| float scalar2 = 0.f; |
| |
| out.push (hb_pair (scalar1 - gain, loc1)); |
| out.push (hb_pair (scalar2 - gain, loc2)); |
| } |
| |
| return out; |
| } |
| |
| static inline TripleDistances _reverse_triple_distances (const TripleDistances &v) |
| { return TripleDistances (v.positive, v.negative); } |
| |
| float renormalizeValue (float v, const Triple &triple, |
| const TripleDistances &triple_distances, bool extrapolate) |
| { |
| float lower = triple.minimum, def = triple.middle, upper = triple.maximum; |
| assert (lower <= def && def <= upper); |
| |
| if (!extrapolate) |
| v = hb_max (hb_min (v, upper), lower); |
| |
| if (v == def) |
| return 0.f; |
| |
| if (def < 0.f) |
| return -renormalizeValue (-v, _reverse_negate (triple), |
| _reverse_triple_distances (triple_distances), extrapolate); |
| |
| /* default >= 0 and v != default */ |
| if (v > def) |
| return (v - def) / (upper - def); |
| |
| /* v < def */ |
| if (lower >= 0.f) |
| return (v - def) / (def - lower); |
| |
| /* lower < 0 and v < default */ |
| float total_distance = triple_distances.negative * (-lower) + triple_distances.positive * def; |
| |
| float v_distance; |
| if (v >= 0.f) |
| v_distance = (def - v) * triple_distances.positive; |
| else |
| v_distance = (-v) * triple_distances.negative + triple_distances.positive * def; |
| |
| return (-v_distance) /total_distance; |
| } |
| |
| result_t |
| rebase_tent (Triple tent, Triple axisLimit, TripleDistances axis_triple_distances) |
| { |
| assert (-1.f <= axisLimit.minimum && axisLimit.minimum <= axisLimit.middle && axisLimit.middle <= axisLimit.maximum && axisLimit.maximum <= +1.f); |
| assert (-2.f <= tent.minimum && tent.minimum <= tent.middle && tent.middle <= tent.maximum && tent.maximum <= +2.f); |
| assert (tent.middle != 0.f); |
| |
| result_t sols = _solve (tent, axisLimit); |
| |
| auto n = [&axisLimit, &axis_triple_distances] (float v) { return renormalizeValue (v, axisLimit, axis_triple_distances); }; |
| |
| result_t out; |
| for (auto &p : sols) |
| { |
| if (!p.first) continue; |
| if (p.second == Triple{}) |
| { |
| out.push (p); |
| continue; |
| } |
| Triple t = p.second; |
| out.push (hb_pair (p.first, |
| Triple{n (t.minimum), n (t.middle), n (t.maximum)})); |
| } |
| |
| return out; |
| } |