| /* | 
 |  * Copyright © 2023  Behdad Esfahbod | 
 |  * | 
 |  *  This is part of HarfBuzz, a text shaping library. | 
 |  * | 
 |  * Permission is hereby granted, without written agreement and without | 
 |  * license or royalty fees, to use, copy, modify, and distribute this | 
 |  * software and its documentation for any purpose, provided that the | 
 |  * above copyright notice and the following two paragraphs appear in | 
 |  * all copies of this software. | 
 |  * | 
 |  * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR | 
 |  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES | 
 |  * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN | 
 |  * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH | 
 |  * DAMAGE. | 
 |  * | 
 |  * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, | 
 |  * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS | 
 |  * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO | 
 |  * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. | 
 |  */ | 
 |  | 
 | #include "hb.hh" | 
 |  | 
 | /* This file is a straight port of the following: | 
 |  * | 
 |  * https://github.com/fonttools/fonttools/blob/f73220816264fc383b8a75f2146e8d69e455d398/Lib/fontTools/varLib/instancer/solver.py | 
 |  * | 
 |  * Where that file returns None for a triple, we return Triple{}. | 
 |  * This should be safe. | 
 |  */ | 
 |  | 
 | constexpr static float EPSILON = 1.f / (1 << 14); | 
 | constexpr static float MAX_F2DOT14 = float (0x7FFF) / (1 << 14); | 
 |  | 
 | struct Triple { | 
 |  | 
 |   Triple () : | 
 |     minimum (0.f), middle (0.f), maximum (0.f) {} | 
 |  | 
 |   Triple (float minimum_, float middle_, float maximum_) : | 
 |     minimum (minimum_), middle (middle_), maximum (maximum_) {} | 
 |  | 
 |   bool operator == (const Triple &o) const | 
 |   { | 
 |     return minimum == o.minimum && | 
 | 	   middle  == o.middle  && | 
 | 	   maximum == o.maximum; | 
 |   } | 
 |  | 
 |   float minimum; | 
 |   float middle; | 
 |   float maximum; | 
 | }; | 
 |  | 
 | static inline Triple _reverse_negate(const Triple &v) | 
 | { return {-v.maximum, -v.middle, -v.minimum}; } | 
 |  | 
 |  | 
 | static inline float supportScalar (float coord, const Triple &tent) | 
 | { | 
 |   /* Copied from VarRegionAxis::evaluate() */ | 
 |   float start = tent.minimum, peak = tent.middle, end = tent.maximum; | 
 |  | 
 |   if (unlikely (start > peak || peak > end)) | 
 |     return 1.; | 
 |   if (unlikely (start < 0 && end > 0 && peak != 0)) | 
 |     return 1.; | 
 |  | 
 |   if (peak == 0 || coord == peak) | 
 |     return 1.; | 
 |  | 
 |   if (coord <= start || end <= coord) | 
 |     return 0.; | 
 |  | 
 |   /* Interpolate */ | 
 |   if (coord < peak) | 
 |     return (coord - start) / (peak - start); | 
 |   else | 
 |     return  (end - coord) / (end - peak); | 
 | } | 
 |  | 
 |  | 
 | using result_item_t = hb_pair_t<float, Triple>; | 
 | using result_t = hb_vector_t<result_item_t>; | 
 |  | 
 | static inline result_t | 
 | _solve (Triple tent, Triple axisLimit, bool negative = false) | 
 | { | 
 |   float axisMin = axisLimit.minimum; | 
 |   float axisDef = axisLimit.middle; | 
 |   float axisMax = axisLimit.maximum; | 
 |   float lower = tent.minimum; | 
 |   float peak  = tent.middle; | 
 |   float upper = tent.maximum; | 
 |  | 
 |   // Mirror the problem such that axisDef <= peak | 
 |   if (axisDef > peak) | 
 |   { | 
 |     result_t vec = _solve (_reverse_negate (tent), | 
 | 			   _reverse_negate (axisLimit), | 
 | 			   !negative); | 
 |  | 
 |     for (auto &p : vec) | 
 |       p = hb_pair (p.first, _reverse_negate (p.second)); | 
 |  | 
 |     return vec; | 
 |   } | 
 |   // axisDef <= peak | 
 |  | 
 |   /* case 1: The whole deltaset falls outside the new limit; we can drop it | 
 |    * | 
 |    *                                          peak | 
 |    *  1.........................................o.......... | 
 |    *                                           / \ | 
 |    *                                          /   \ | 
 |    *                                         /     \ | 
 |    *                                        /       \ | 
 |    *  0---|-----------|----------|-------- o         o----1 | 
 |    *    axisMin     axisDef    axisMax   lower     upper | 
 |    */ | 
 |   if (axisMax <= lower && axisMax < peak) | 
 |       return result_t{};  // No overlap | 
 |  | 
 |   /* case 2: Only the peak and outermost bound fall outside the new limit; | 
 |    * we keep the deltaset, update peak and outermost bound and and scale deltas | 
 |    * by the scalar value for the restricted axis at the new limit, and solve | 
 |    * recursively. | 
 |    * | 
 |    *                                  |peak | 
 |    *  1...............................|.o.......... | 
 |    *                                  |/ \ | 
 |    *                                  /   \ | 
 |    *                                 /|    \ | 
 |    *                                / |     \ | 
 |    *  0--------------------------- o  |      o----1 | 
 |    *                           lower  |      upper | 
 |    *                                  | | 
 |    *                                axisMax | 
 |    * | 
 |    * Convert to: | 
 |    * | 
 |    *  1............................................ | 
 |    *                                  | | 
 |    *                                  o peak | 
 |    *                                 /| | 
 |    *                                /x| | 
 |    *  0--------------------------- o  o upper ----1 | 
 |    *                           lower  | | 
 |    *                                  | | 
 |    *                                axisMax | 
 |    */ | 
 |   if (axisMax < peak) | 
 |   { | 
 |     float mult = supportScalar (axisMax, tent); | 
 |     tent = Triple{lower, axisMax, axisMax}; | 
 |  | 
 |     result_t vec = _solve (tent, axisLimit); | 
 |  | 
 |     for (auto &p : vec) | 
 |       p = hb_pair (p.first * mult, p.second); | 
 |  | 
 |     return vec; | 
 |   } | 
 |  | 
 |   // lower <= axisDef <= peak <= axisMax | 
 |  | 
 |   float gain = supportScalar (axisDef, tent); | 
 |   result_t out {hb_pair (gain, Triple{})}; | 
 |  | 
 |   // First, the positive side | 
 |  | 
 |   // outGain is the scalar of axisMax at the tent. | 
 |   float outGain = supportScalar (axisMax, tent); | 
 |  | 
 |   /* Case 3a: Gain is more than outGain. The tent down-slope crosses | 
 |    * the axis into negative. We have to split it into multiples. | 
 |    * | 
 |    *                      | peak  | | 
 |    *  1...................|.o.....|.............. | 
 |    *                      |/x\_   | | 
 |    *  gain................+....+_.|.............. | 
 |    *                     /|    |y\| | 
 |    *  ................../.|....|..+_......outGain | 
 |    *                   /  |    |  | \ | 
 |    *  0---|-----------o   |    |  |  o----------1 | 
 |    *    axisMin    lower  |    |  |   upper | 
 |    *                      |    |  | | 
 |    *                axisDef    |  axisMax | 
 |    *                           | | 
 |    *                      crossing | 
 |    */ | 
 |   if (gain > outGain) | 
 |   { | 
 |     // Crossing point on the axis. | 
 |     float crossing = peak + ((1 - gain) * (upper - peak) / (1 - outGain)); | 
 |  | 
 |     Triple loc{peak, peak, crossing}; | 
 |     float scalar = 1.f; | 
 |  | 
 |     // The part before the crossing point. | 
 |     out.push (hb_pair (scalar - gain, loc)); | 
 |  | 
 |     /* The part after the crossing point may use one or two tents, | 
 |      * depending on whether upper is before axisMax or not, in one | 
 |      * case we need to keep it down to eternity. | 
 |      * | 
 |      * Case 3a1, similar to case 1neg; just one tent needed, as in | 
 |      * the drawing above. | 
 |      */ | 
 |     if (upper >= axisMax) | 
 |     { | 
 |       Triple loc {crossing, axisMax, axisMax}; | 
 |       float scalar = supportScalar (axisMax, tent); | 
 |  | 
 |       out.push (hb_pair (scalar - gain, loc)); | 
 |     } | 
 |  | 
 |     /* Case 3a2: Similar to case 2neg; two tents needed, to keep | 
 |      * down to eternity. | 
 |      * | 
 |      *                      | peak             | | 
 |      *  1...................|.o................|... | 
 |      *                      |/ \_              | | 
 |      *  gain................+....+_............|... | 
 |      *                     /|    | \xxxxxxxxxxy| | 
 |      *                    / |    |  \_xxxxxyyyy| | 
 |      *                   /  |    |    \xxyyyyyy| | 
 |      *  0---|-----------o   |    |     o-------|--1 | 
 |      *    axisMin    lower  |    |      upper  | | 
 |      *                      |    |             | | 
 |      *                axisDef    |             axisMax | 
 |      *                           | | 
 |      *                      crossing | 
 |      */ | 
 |     else | 
 |     { | 
 |       // A tent's peak cannot fall on axis default. Nudge it. | 
 |       if (upper == axisDef) | 
 | 	upper += EPSILON; | 
 |  | 
 |       // Downslope. | 
 |       Triple loc1 {crossing, upper, axisMax}; | 
 |       float scalar1 = 0.f; | 
 |  | 
 |       // Eternity justify. | 
 |       Triple loc2 {upper, axisMax, axisMax}; | 
 |       float scalar2 = 1.f; // supportScalar({"tag": axisMax}, {"tag": tent}) | 
 |  | 
 |       out.push (hb_pair (scalar1 - gain, loc1)); | 
 |       out.push (hb_pair (scalar2 - gain, loc2)); | 
 |     } | 
 |   } | 
 |  | 
 |   /* Case 3: Outermost limit still fits within F2Dot14 bounds; | 
 |    * we keep deltas as is and only scale the axes bounds. Deltas beyond -1.0 | 
 |    * or +1.0 will never be applied as implementations must clamp to that range. | 
 |    * | 
 |    * A second tent is needed for cases when gain is positive, though we add it | 
 |    * unconditionally and it will be dropped because scalar ends up 0. | 
 |    * | 
 |    * TODO: See if we can just move upper closer to adjust the slope, instead of | 
 |    * second tent. | 
 |    * | 
 |    *            |           peak | | 
 |    *  1.........|............o...|.................. | 
 |    *            |           /x\  | | 
 |    *            |          /xxx\ | | 
 |    *            |         /xxxxx\| | 
 |    *            |        /xxxxxxx+ | 
 |    *            |       /xxxxxxxx|\ | 
 |    *  0---|-----|------oxxxxxxxxx|xo---------------1 | 
 |    *    axisMin |  lower         | upper | 
 |    *            |                | | 
 |    *          axisDef          axisMax | 
 |    */ | 
 |   else if (axisDef + (axisMax - axisDef) * 2 >= upper) | 
 |   { | 
 |     if (!negative && axisDef + (axisMax - axisDef) * MAX_F2DOT14 < upper) | 
 |     { | 
 |       // we clamp +2.0 to the max F2Dot14 (~1.99994) for convenience | 
 |       upper = axisDef + (axisMax - axisDef) * MAX_F2DOT14; | 
 |       assert (peak < upper); | 
 |     } | 
 |  | 
 |     // Special-case if peak is at axisMax. | 
 |     if (axisMax == peak) | 
 | 	upper = peak; | 
 |  | 
 |     Triple loc1 {hb_max (axisDef, lower), peak, upper}; | 
 |     float scalar1 = 1.f; | 
 |  | 
 |     Triple loc2 {peak, upper, upper}; | 
 |     float scalar2 = 0.f; | 
 |  | 
 |     // Don't add a dirac delta! | 
 |     if (axisDef < upper) | 
 | 	out.push (hb_pair (scalar1 - gain, loc1)); | 
 |     if (peak < upper) | 
 | 	out.push (hb_pair (scalar2 - gain, loc2)); | 
 |   } | 
 |  | 
 |   /* Case 4: New limit doesn't fit; we need to chop into two tents, | 
 |    * because the shape of a triangle with part of one side cut off | 
 |    * cannot be represented as a triangle itself. | 
 |    * | 
 |    *            |   peak | | 
 |    *  1.........|......o.|................... | 
 |    *            |     /x\| | 
 |    *            |    |xxy|\_ | 
 |    *            |   /xxxy|  \_ | 
 |    *            |  |xxxxy|    \_ | 
 |    *            |  /xxxxy|      \_ | 
 |    *  0---|-----|-oxxxxxx|        o----------1 | 
 |    *    axisMin | lower  |        upper | 
 |    *            |        | | 
 |    *          axisDef  axisMax | 
 |    */ | 
 |   else | 
 |   { | 
 |     Triple loc1 {hb_max (axisDef, lower), peak, axisMax}; | 
 |     float scalar1 = 1.f; | 
 |  | 
 |     Triple loc2 {peak, axisMax, axisMax}; | 
 |     float scalar2 = supportScalar (axisMax, tent); | 
 |  | 
 |     out.push (hb_pair (scalar1 - gain, loc1)); | 
 |     // Don't add a dirac delta! | 
 |     if (peak < axisMax) | 
 |       out.push (hb_pair (scalar2 - gain, loc2)); | 
 |   } | 
 |  | 
 |   /* Now, the negative side | 
 |    * | 
 |    * Case 1neg: Lower extends beyond axisMin: we chop. Simple. | 
 |    * | 
 |    *                     |   |peak | 
 |    *  1..................|...|.o................. | 
 |    *                     |   |/ \ | 
 |    *  gain...............|...+...\............... | 
 |    *                     |x_/|    \ | 
 |    *                     |/  |     \ | 
 |    *                   _/|   |      \ | 
 |    *  0---------------o  |   |       o----------1 | 
 |    *              lower  |   |       upper | 
 |    *                     |   | | 
 |    *               axisMin   axisDef | 
 |    */ | 
 |   if (lower <= axisMin) | 
 |   { | 
 |     Triple loc {axisMin, axisMin, axisDef}; | 
 |     float scalar = supportScalar (axisMin, tent); | 
 |  | 
 |     out.push (hb_pair (scalar - gain, loc)); | 
 |   } | 
 |  | 
 |   /* Case 2neg: Lower is betwen axisMin and axisDef: we add two | 
 |    * tents to keep it down all the way to eternity. | 
 |    * | 
 |    *      |               |peak | 
 |    *  1...|...............|.o................. | 
 |    *      |               |/ \ | 
 |    *  gain|...............+...\............... | 
 |    *      |yxxxxxxxxxxxxx/|    \ | 
 |    *      |yyyyyyxxxxxxx/ |     \ | 
 |    *      |yyyyyyyyyyyx/  |      \ | 
 |    *  0---|-----------o   |       o----------1 | 
 |    *    axisMin    lower  |       upper | 
 |    *                      | | 
 |    *                    axisDef | 
 |    */ | 
 |   else | 
 |   { | 
 |     // A tent's peak cannot fall on axis default. Nudge it. | 
 |     if (lower == axisDef) | 
 |       lower -= EPSILON; | 
 |  | 
 |     // Downslope. | 
 |     Triple loc1 {axisMin, lower, axisDef}; | 
 |     float scalar1 = 0.f; | 
 |  | 
 |     // Eternity justify. | 
 |     Triple loc2 {axisMin, axisMin, lower}; | 
 |     float scalar2 = 0.f; | 
 |  | 
 |     out.push (hb_pair (scalar1 - gain, loc1)); | 
 |     out.push (hb_pair (scalar2 - gain, loc2)); | 
 |   } | 
 |  | 
 |   return out; | 
 | } | 
 |  | 
 | /* Normalizes value based on a min/default/max triple. */ | 
 | static inline float normalizeValue (float v, const Triple &triple, bool extrapolate = false) | 
 | { | 
 |   /* | 
 |   >>> normalizeValue(400, (100, 400, 900)) | 
 |   0.0 | 
 |   >>> normalizeValue(100, (100, 400, 900)) | 
 |   -1.0 | 
 |   >>> normalizeValue(650, (100, 400, 900)) | 
 |   0.5 | 
 |   */ | 
 |   float lower = triple.minimum, def = triple.middle, upper = triple.maximum; | 
 |   assert (lower <= def && def <= upper); | 
 |  | 
 |   if (!extrapolate) | 
 |       v = hb_max (hb_min (v, upper), lower); | 
 |  | 
 |   if ((v == def) || (lower == upper)) | 
 |     return 0.f; | 
 |  | 
 |   if ((v < def && lower != def) || (v > def && upper == def)) | 
 |     return (v - def) / (def - lower); | 
 |   else | 
 |   { | 
 |     assert ((v > def && upper != def) || | 
 | 	    (v < def && lower == def)); | 
 |     return (v - def) / (upper - def); | 
 |   } | 
 | } | 
 |  | 
 | /* Given a tuple (lower,peak,upper) "tent" and new axis limits | 
 |  * (axisMin,axisDefault,axisMax), solves how to represent the tent | 
 |  * under the new axis configuration.  All values are in normalized | 
 |  * -1,0,+1 coordinate system. Tent values can be outside this range. | 
 |  * | 
 |  * Return value: a list of tuples. Each tuple is of the form | 
 |  * (scalar,tent), where scalar is a multipler to multiply any | 
 |  * delta-sets by, and tent is a new tent for that output delta-set. | 
 |  * If tent value is Triple{}, that is a special deltaset that should | 
 |  * be always-enabled (called "gain"). | 
 |  */ | 
 | HB_INTERNAL result_t rebase_tent (Triple tent, Triple axisLimit); | 
 |  | 
 | result_t | 
 | rebase_tent (Triple tent, Triple axisLimit) | 
 | { | 
 |   assert (-1.f <= axisLimit.minimum && axisLimit.minimum <= axisLimit.middle && axisLimit.middle <= axisLimit.maximum && axisLimit.maximum <= +1.f); | 
 |   assert (-2.f <= tent.minimum && tent.minimum <= tent.middle && tent.middle <= tent.maximum && tent.maximum <= +2.f); | 
 |   assert (tent.middle != 0.f); | 
 |  | 
 |   result_t sols = _solve (tent, axisLimit); | 
 |  | 
 |   auto n = [&axisLimit] (float v) { return normalizeValue (v, axisLimit, true); }; | 
 |  | 
 |   result_t out; | 
 |   for (auto &p : sols) | 
 |   { | 
 |     if (!p.first) continue; | 
 |     if (p.second == Triple{}) | 
 |     { | 
 |       out.push (p); | 
 |       continue; | 
 |     } | 
 |     Triple t = p.second; | 
 |     out.push (hb_pair (p.first, | 
 | 		       Triple{n (t.minimum), n (t.middle), n (t.maximum)})); | 
 |   } | 
 |  | 
 |   return sols; | 
 | } |