|  | /* | 
|  | * Copyright © 2018  Google, Inc. | 
|  | * Copyright © 2019  Facebook, Inc. | 
|  | * | 
|  | *  This is part of HarfBuzz, a text shaping library. | 
|  | * | 
|  | * Permission is hereby granted, without written agreement and without | 
|  | * license or royalty fees, to use, copy, modify, and distribute this | 
|  | * software and its documentation for any purpose, provided that the | 
|  | * above copyright notice and the following two paragraphs appear in | 
|  | * all copies of this software. | 
|  | * | 
|  | * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR | 
|  | * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES | 
|  | * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN | 
|  | * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH | 
|  | * DAMAGE. | 
|  | * | 
|  | * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, | 
|  | * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS | 
|  | * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO | 
|  | * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. | 
|  | * | 
|  | * Google Author(s): Behdad Esfahbod | 
|  | * Facebook Author(s): Behdad Esfahbod | 
|  | */ | 
|  |  | 
|  | #ifndef HB_ITER_HH | 
|  | #define HB_ITER_HH | 
|  |  | 
|  | #include "hb.hh" | 
|  | #include "hb-algs.hh" | 
|  | #include "hb-meta.hh" | 
|  |  | 
|  |  | 
|  | /* Unified iterator object. | 
|  | * | 
|  | * The goal of this template is to make the same iterator interface | 
|  | * available to all types, and make it very easy and compact to use. | 
|  | * hb_iter_tator objects are small, light-weight, objects that can be | 
|  | * copied by value.  If the collection / object being iterated on | 
|  | * is writable, then the iterator returns lvalues, otherwise it | 
|  | * returns rvalues. | 
|  | * | 
|  | * If iterator implementation implements operator!=, then it can be | 
|  | * used in range-based for loop.  That already happens if the iterator | 
|  | * is random-access.  Otherwise, the range-based for loop incurs | 
|  | * one traversal to find end(), which can be avoided if written | 
|  | * as a while-style for loop, or if iterator implements a faster | 
|  | * __end__() method. */ | 
|  |  | 
|  | /* | 
|  | * Base classes for iterators. | 
|  | */ | 
|  |  | 
|  | /* Base class for all iterators. */ | 
|  | template <typename iter_t, typename Item = typename iter_t::__item_t__> | 
|  | struct hb_iter_t | 
|  | { | 
|  | typedef Item item_t; | 
|  | constexpr unsigned get_item_size () const { return hb_static_size (Item); } | 
|  | static constexpr bool is_iterator = true; | 
|  | static constexpr bool is_random_access_iterator = false; | 
|  | static constexpr bool is_sorted_iterator = false; | 
|  |  | 
|  | private: | 
|  | /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */ | 
|  | const iter_t* thiz () const { return static_cast<const iter_t *> (this); } | 
|  | iter_t* thiz ()       { return static_cast<      iter_t *> (this); } | 
|  | public: | 
|  |  | 
|  | /* Operators. */ | 
|  | iter_t iter () const { return *thiz(); } | 
|  | iter_t operator + () const { return *thiz(); } | 
|  | iter_t _begin () const { return *thiz(); } | 
|  | iter_t begin () const { return _begin (); } | 
|  | iter_t _end () const { return thiz()->__end__ (); } | 
|  | iter_t end () const { return _end (); } | 
|  | explicit operator bool () const { return thiz()->__more__ (); } | 
|  | unsigned len () const { return thiz()->__len__ (); } | 
|  | /* The following can only be enabled if item_t is reference type.  Otherwise | 
|  | * it will be returning pointer to temporary rvalue. */ | 
|  | template <typename T = item_t, | 
|  | hb_enable_if (std::is_reference<T>::value)> | 
|  | hb_remove_reference<item_t>* operator -> () const { return std::addressof (**thiz()); } | 
|  | item_t operator * () const { return thiz()->__item__ (); } | 
|  | item_t operator * () { return thiz()->__item__ (); } | 
|  | item_t operator [] (unsigned i) const { return thiz()->__item_at__ (i); } | 
|  | item_t operator [] (unsigned i) { return thiz()->__item_at__ (i); } | 
|  | iter_t& operator += (unsigned count) &  { thiz()->__forward__ (count); return *thiz(); } | 
|  | iter_t  operator += (unsigned count) && { thiz()->__forward__ (count); return *thiz(); } | 
|  | iter_t& operator ++ () &  { thiz()->__next__ (); return *thiz(); } | 
|  | iter_t  operator ++ () && { thiz()->__next__ (); return *thiz(); } | 
|  | iter_t& operator -= (unsigned count) &  { thiz()->__rewind__ (count); return *thiz(); } | 
|  | iter_t  operator -= (unsigned count) && { thiz()->__rewind__ (count); return *thiz(); } | 
|  | iter_t& operator -- () &  { thiz()->__prev__ (); return *thiz(); } | 
|  | iter_t  operator -- () && { thiz()->__prev__ (); return *thiz(); } | 
|  | iter_t operator + (unsigned count) const { auto c = thiz()->iter (); c += count; return c; } | 
|  | friend iter_t operator + (unsigned count, const iter_t &it) { return it + count; } | 
|  | iter_t operator ++ (int) { iter_t c (*thiz()); ++*thiz(); return c; } | 
|  | iter_t operator - (unsigned count) const { auto c = thiz()->iter (); c -= count; return c; } | 
|  | iter_t operator -- (int) { iter_t c (*thiz()); --*thiz(); return c; } | 
|  | template <typename T> | 
|  | iter_t& operator >> (T &v) &  { v = **thiz(); ++*thiz(); return *thiz(); } | 
|  | template <typename T> | 
|  | iter_t  operator >> (T &v) && { v = **thiz(); ++*thiz(); return *thiz(); } | 
|  | template <typename T> | 
|  | iter_t& operator << (const T v) &  { **thiz() = v; ++*thiz(); return *thiz(); } | 
|  | template <typename T> | 
|  | iter_t  operator << (const T v) && { **thiz() = v; ++*thiz(); return *thiz(); } | 
|  |  | 
|  | protected: | 
|  | hb_iter_t () = default; | 
|  | hb_iter_t (const hb_iter_t &o HB_UNUSED) = default; | 
|  | hb_iter_t (hb_iter_t &&o HB_UNUSED) = default; | 
|  | hb_iter_t& operator = (const hb_iter_t &o HB_UNUSED) = default; | 
|  | hb_iter_t& operator = (hb_iter_t &&o HB_UNUSED) = default; | 
|  | }; | 
|  |  | 
|  | #define HB_ITER_USING(Name) \ | 
|  | using item_t = typename Name::item_t; \ | 
|  | using Name::_begin; \ | 
|  | using Name::begin; \ | 
|  | using Name::_end; \ | 
|  | using Name::end; \ | 
|  | using Name::get_item_size; \ | 
|  | using Name::is_iterator; \ | 
|  | using Name::iter; \ | 
|  | using Name::operator bool; \ | 
|  | using Name::len; \ | 
|  | using Name::operator ->; \ | 
|  | using Name::operator *; \ | 
|  | using Name::operator []; \ | 
|  | using Name::operator +=; \ | 
|  | using Name::operator ++; \ | 
|  | using Name::operator -=; \ | 
|  | using Name::operator --; \ | 
|  | using Name::operator +; \ | 
|  | using Name::operator -; \ | 
|  | using Name::operator >>; \ | 
|  | using Name::operator <<; \ | 
|  | static_assert (true, "") | 
|  |  | 
|  | /* Returns iterator / item type of a type. */ | 
|  | template <typename Iterable> | 
|  | using hb_iter_type = decltype (hb_deref (hb_declval (Iterable)).iter ()); | 
|  | template <typename Iterable> | 
|  | using hb_item_type = decltype (*hb_deref (hb_declval (Iterable)).iter ()); | 
|  |  | 
|  |  | 
|  | template <typename> struct hb_array_t; | 
|  | template <typename> struct hb_sorted_array_t; | 
|  |  | 
|  | struct | 
|  | { | 
|  | template <typename T> hb_iter_type<T> | 
|  | operator () (T&& c) const | 
|  | { return hb_deref (std::forward<T> (c)).iter (); } | 
|  |  | 
|  | /* Specialization for C arrays. */ | 
|  |  | 
|  | template <typename Type> inline hb_array_t<Type> | 
|  | operator () (Type *array, unsigned int length) const | 
|  | { return hb_array_t<Type> (array, length); } | 
|  |  | 
|  | template <typename Type, unsigned int length> hb_array_t<Type> | 
|  | operator () (Type (&array)[length]) const | 
|  | { return hb_array_t<Type> (array, length); } | 
|  |  | 
|  | } | 
|  | HB_FUNCOBJ (hb_iter); | 
|  | struct | 
|  | { | 
|  | template <typename T> auto | 
|  | impl (T&& c, hb_priority<1>) const HB_RETURN (unsigned, c.len ()) | 
|  |  | 
|  | template <typename T> auto | 
|  | impl (T&& c, hb_priority<0>) const HB_RETURN (unsigned, c.len) | 
|  |  | 
|  | public: | 
|  |  | 
|  | template <typename T> auto | 
|  | operator () (T&& c) const HB_RETURN (unsigned, impl (std::forward<T> (c), hb_prioritize)) | 
|  | } | 
|  | HB_FUNCOBJ (hb_len); | 
|  |  | 
|  | /* Mixin to fill in what the subclass doesn't provide. */ | 
|  | template <typename iter_t, typename item_t = typename iter_t::__item_t__> | 
|  | struct hb_iter_fallback_mixin_t | 
|  | { | 
|  | private: | 
|  | /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */ | 
|  | const iter_t* thiz () const { return static_cast<const iter_t *> (this); } | 
|  | iter_t* thiz ()       { return static_cast<      iter_t *> (this); } | 
|  | public: | 
|  |  | 
|  | /* Access: Implement __item__(), or __item_at__() if random-access. */ | 
|  | item_t __item__ () const { return (*thiz())[0]; } | 
|  | item_t __item_at__ (unsigned i) const { return *(*thiz() + i); } | 
|  |  | 
|  | /* Termination: Implement __more__(), or __len__() if random-access. */ | 
|  | bool __more__ () const { return bool (thiz()->len ()); } | 
|  | unsigned __len__ () const | 
|  | { iter_t c (*thiz()); unsigned l = 0; while (c) { c++; l++; } return l; } | 
|  |  | 
|  | /* Advancing: Implement __next__(), or __forward__() if random-access. */ | 
|  | void __next__ () { *thiz() += 1; } | 
|  | void __forward__ (unsigned n) { while (*thiz() && n--) ++*thiz(); } | 
|  |  | 
|  | /* Rewinding: Implement __prev__() or __rewind__() if bidirectional. */ | 
|  | void __prev__ () { *thiz() -= 1; } | 
|  | void __rewind__ (unsigned n) { while (*thiz() && n--) --*thiz(); } | 
|  |  | 
|  | /* Range-based for: Implement __end__() if can be done faster, | 
|  | * and operator!=. */ | 
|  | iter_t __end__ () const | 
|  | { | 
|  | if (thiz()->is_random_access_iterator) | 
|  | return *thiz() + thiz()->len (); | 
|  | /* Above expression loops twice. Following loops once. */ | 
|  | auto it = *thiz(); | 
|  | while (it) ++it; | 
|  | return it; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | hb_iter_fallback_mixin_t () = default; | 
|  | hb_iter_fallback_mixin_t (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default; | 
|  | hb_iter_fallback_mixin_t (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default; | 
|  | hb_iter_fallback_mixin_t& operator = (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default; | 
|  | hb_iter_fallback_mixin_t& operator = (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default; | 
|  | }; | 
|  |  | 
|  | template <typename iter_t, typename item_t = typename iter_t::__item_t__> | 
|  | struct hb_iter_with_fallback_t : | 
|  | hb_iter_t<iter_t, item_t>, | 
|  | hb_iter_fallback_mixin_t<iter_t, item_t> | 
|  | { | 
|  | protected: | 
|  | hb_iter_with_fallback_t () = default; | 
|  | hb_iter_with_fallback_t (const hb_iter_with_fallback_t &o HB_UNUSED) = default; | 
|  | hb_iter_with_fallback_t (hb_iter_with_fallback_t &&o HB_UNUSED) = default; | 
|  | hb_iter_with_fallback_t& operator = (const hb_iter_with_fallback_t &o HB_UNUSED) = default; | 
|  | hb_iter_with_fallback_t& operator = (hb_iter_with_fallback_t &&o HB_UNUSED) = default; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Meta-programming predicates. | 
|  | */ | 
|  |  | 
|  | /* hb_is_iterator() / hb_is_iterator_of() */ | 
|  |  | 
|  | template<typename Iter, typename Item> | 
|  | struct hb_is_iterator_of | 
|  | { | 
|  | template <typename Item2 = Item> | 
|  | static hb_true_type impl (hb_priority<2>, hb_iter_t<Iter, hb_type_identity<Item2>> *); | 
|  | static hb_false_type impl (hb_priority<0>, const void *); | 
|  |  | 
|  | public: | 
|  | static constexpr bool value = decltype (impl (hb_prioritize, hb_declval (Iter*)))::value; | 
|  | }; | 
|  | #define hb_is_iterator_of(Iter, Item) hb_is_iterator_of<Iter, Item>::value | 
|  | #define hb_is_iterator(Iter) hb_is_iterator_of (Iter, typename Iter::item_t) | 
|  | #define hb_is_sorted_iterator_of(Iter, Item) (hb_is_iterator_of<Iter, Item>::value && Iter::is_sorted_iterator) | 
|  | #define hb_is_sorted_iterator(Iter) hb_is_sorted_iterator_of (Iter, typename Iter::item_t) | 
|  |  | 
|  | /* hb_is_iterable() */ | 
|  |  | 
|  | template <typename T> | 
|  | struct hb_is_iterable | 
|  | { | 
|  | private: | 
|  |  | 
|  | template <typename U> | 
|  | static auto impl (hb_priority<1>) -> decltype (hb_declval (U).iter (), hb_true_type ()); | 
|  |  | 
|  | template <typename> | 
|  | static hb_false_type impl (hb_priority<0>); | 
|  |  | 
|  | public: | 
|  | static constexpr bool value = decltype (impl<T> (hb_prioritize))::value; | 
|  | }; | 
|  | #define hb_is_iterable(Iterable) hb_is_iterable<Iterable>::value | 
|  |  | 
|  | /* hb_is_source_of() / hb_is_sink_of() */ | 
|  |  | 
|  | template<typename Iter, typename Item> | 
|  | struct hb_is_source_of | 
|  | { | 
|  | private: | 
|  | template <typename Iter2 = Iter, | 
|  | hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<const Item>))> | 
|  | static hb_true_type impl (hb_priority<2>); | 
|  | template <typename Iter2 = Iter> | 
|  | static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) >> hb_declval (Item &), hb_true_type ()); | 
|  | static hb_false_type impl (hb_priority<0>); | 
|  |  | 
|  | public: | 
|  | static constexpr bool value = decltype (impl (hb_prioritize))::value; | 
|  | }; | 
|  | #define hb_is_source_of(Iter, Item) hb_is_source_of<Iter, Item>::value | 
|  |  | 
|  | template<typename Iter, typename Item> | 
|  | struct hb_is_sink_of | 
|  | { | 
|  | private: | 
|  | template <typename Iter2 = Iter, | 
|  | hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<Item>))> | 
|  | static hb_true_type impl (hb_priority<2>); | 
|  | template <typename Iter2 = Iter> | 
|  | static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) << hb_declval (Item), hb_true_type ()); | 
|  | static hb_false_type impl (hb_priority<0>); | 
|  |  | 
|  | public: | 
|  | static constexpr bool value = decltype (impl (hb_prioritize))::value; | 
|  | }; | 
|  | #define hb_is_sink_of(Iter, Item) hb_is_sink_of<Iter, Item>::value | 
|  |  | 
|  | /* This is commonly used, so define: */ | 
|  | #define hb_is_sorted_source_of(Iter, Item) \ | 
|  | (hb_is_source_of(Iter, Item) && Iter::is_sorted_iterator) | 
|  |  | 
|  |  | 
|  | /* Range-based 'for' for iterables. */ | 
|  |  | 
|  | template <typename Iterable, | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ()) | 
|  |  | 
|  | template <typename Iterable, | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ()) | 
|  |  | 
|  | /* begin()/end() are NOT looked up non-ADL.  So each namespace must declare them. | 
|  | * Do it for namespace OT. */ | 
|  | namespace OT { | 
|  |  | 
|  | template <typename Iterable, | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ()) | 
|  |  | 
|  | template <typename Iterable, | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ()) | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Adaptors, combiners, etc. | 
|  | */ | 
|  |  | 
|  | template <typename Lhs, typename Rhs, | 
|  | hb_requires (hb_is_iterator (Lhs))> | 
|  | static inline auto | 
|  | operator | (Lhs&& lhs, Rhs&& rhs) HB_AUTO_RETURN (std::forward<Rhs> (rhs) (std::forward<Lhs> (lhs))) | 
|  |  | 
|  | /* hb_map(), hb_filter(), hb_reduce() */ | 
|  |  | 
|  | enum  class hb_function_sortedness_t { | 
|  | NOT_SORTED, | 
|  | RETAINS_SORTING, | 
|  | SORTED, | 
|  | }; | 
|  |  | 
|  | template <typename Iter, typename Proj, hb_function_sortedness_t Sorted, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | struct hb_map_iter_t : | 
|  | hb_iter_t<hb_map_iter_t<Iter, Proj, Sorted>, | 
|  | decltype (hb_get (hb_declval (Proj), *hb_declval (Iter)))> | 
|  | { | 
|  | hb_map_iter_t (const Iter& it, Proj f_) : it (it), f (f_) {} | 
|  |  | 
|  | typedef decltype (hb_get (hb_declval (Proj), *hb_declval (Iter))) __item_t__; | 
|  | static constexpr bool is_random_access_iterator = Iter::is_random_access_iterator; | 
|  | static constexpr bool is_sorted_iterator = | 
|  | Sorted == hb_function_sortedness_t::SORTED ? true : | 
|  | Sorted == hb_function_sortedness_t::RETAINS_SORTING ? Iter::is_sorted_iterator : | 
|  | false; | 
|  | __item_t__ __item__ () const { return hb_get (f.get (), *it); } | 
|  | __item_t__ __item_at__ (unsigned i) const { return hb_get (f.get (), it[i]); } | 
|  | bool __more__ () const { return bool (it); } | 
|  | unsigned __len__ () const { return it.len (); } | 
|  | void __next__ () { ++it; } | 
|  | void __forward__ (unsigned n) { it += n; } | 
|  | void __prev__ () { --it; } | 
|  | void __rewind__ (unsigned n) { it -= n; } | 
|  | hb_map_iter_t __end__ () const { return hb_map_iter_t (it._end (), f); } | 
|  | bool operator != (const hb_map_iter_t& o) const | 
|  | { return it != o.it; } | 
|  |  | 
|  | private: | 
|  | Iter it; | 
|  | hb_reference_wrapper<Proj> f; | 
|  | }; | 
|  |  | 
|  | template <typename Proj, hb_function_sortedness_t Sorted> | 
|  | struct hb_map_iter_factory_t | 
|  | { | 
|  | hb_map_iter_factory_t (Proj f) : f (f) {} | 
|  |  | 
|  | template <typename Iter, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | hb_map_iter_t<Iter, Proj, Sorted> | 
|  | operator () (Iter it) | 
|  | { return hb_map_iter_t<Iter, Proj, Sorted> (it, f); } | 
|  |  | 
|  | private: | 
|  | Proj f; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename Proj> | 
|  | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> | 
|  | operator () (Proj&& f) const | 
|  | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> (f); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_map); | 
|  | struct | 
|  | { | 
|  | template <typename Proj> | 
|  | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> | 
|  | operator () (Proj&& f) const | 
|  | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> (f); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_map_retains_sorting); | 
|  | struct | 
|  | { | 
|  | template <typename Proj> | 
|  | hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> | 
|  | operator () (Proj&& f) const | 
|  | { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> (f); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_map_sorted); | 
|  |  | 
|  | template <typename Iter, typename Pred, typename Proj, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | struct hb_filter_iter_t : | 
|  | hb_iter_with_fallback_t<hb_filter_iter_t<Iter, Pred, Proj>, | 
|  | typename Iter::item_t> | 
|  | { | 
|  | hb_filter_iter_t (const Iter& it_, Pred p_, Proj f_) : it (it_), p (p_), f (f_) | 
|  | { while (it && !hb_has (p.get (), hb_get (f.get (), *it))) ++it; } | 
|  |  | 
|  | typedef typename Iter::item_t __item_t__; | 
|  | static constexpr bool is_sorted_iterator = Iter::is_sorted_iterator; | 
|  | __item_t__ __item__ () const { return *it; } | 
|  | bool __more__ () const { return bool (it); } | 
|  | void __next__ () { do ++it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); } | 
|  | void __prev__ () { do --it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); } | 
|  | hb_filter_iter_t __end__ () const { return hb_filter_iter_t (it._end (), p, f); } | 
|  | bool operator != (const hb_filter_iter_t& o) const | 
|  | { return it != o.it; } | 
|  |  | 
|  | private: | 
|  | Iter it; | 
|  | hb_reference_wrapper<Pred> p; | 
|  | hb_reference_wrapper<Proj> f; | 
|  | }; | 
|  | template <typename Pred, typename Proj> | 
|  | struct hb_filter_iter_factory_t | 
|  | { | 
|  | hb_filter_iter_factory_t (Pred p, Proj f) : p (p), f (f) {} | 
|  |  | 
|  | template <typename Iter, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | hb_filter_iter_t<Iter, Pred, Proj> | 
|  | operator () (Iter it) | 
|  | { return hb_filter_iter_t<Iter, Pred, Proj> (it, p, f); } | 
|  |  | 
|  | private: | 
|  | Pred p; | 
|  | Proj f; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename Pred = decltype ((hb_identity)), | 
|  | typename Proj = decltype ((hb_identity))> | 
|  | hb_filter_iter_factory_t<Pred, Proj> | 
|  | operator () (Pred&& p = hb_identity, Proj&& f = hb_identity) const | 
|  | { return hb_filter_iter_factory_t<Pred, Proj> (p, f); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_filter); | 
|  |  | 
|  | template <typename Redu, typename InitT> | 
|  | struct hb_reduce_t | 
|  | { | 
|  | hb_reduce_t (Redu r, InitT init_value) : r (r), init_value (init_value) {} | 
|  |  | 
|  | template <typename Iter, | 
|  | hb_requires (hb_is_iterator (Iter)), | 
|  | typename AccuT = hb_decay<decltype (hb_declval (Redu) (hb_declval (InitT), hb_declval (typename Iter::item_t)))>> | 
|  | AccuT | 
|  | operator () (Iter it) | 
|  | { | 
|  | AccuT value = init_value; | 
|  | for (; it; ++it) | 
|  | value = r (value, *it); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | private: | 
|  | Redu r; | 
|  | InitT init_value; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename Redu, typename InitT> | 
|  | hb_reduce_t<Redu, InitT> | 
|  | operator () (Redu&& r, InitT init_value) const | 
|  | { return hb_reduce_t<Redu, InitT> (r, init_value); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_reduce); | 
|  |  | 
|  |  | 
|  | /* hb_zip() */ | 
|  |  | 
|  | template <typename A, typename B> | 
|  | struct hb_zip_iter_t : | 
|  | hb_iter_t<hb_zip_iter_t<A, B>, | 
|  | hb_pair_t<typename A::item_t, typename B::item_t>> | 
|  | { | 
|  | hb_zip_iter_t () {} | 
|  | hb_zip_iter_t (const A& a, const B& b) : a (a), b (b) {} | 
|  |  | 
|  | typedef hb_pair_t<typename A::item_t, typename B::item_t> __item_t__; | 
|  | static constexpr bool is_random_access_iterator = | 
|  | A::is_random_access_iterator && | 
|  | B::is_random_access_iterator; | 
|  | /* Note.  The following categorization is only valid if A is strictly sorted, | 
|  | * ie. does NOT have duplicates.  Previously I tried to categorize sortedness | 
|  | * more granularly, see commits: | 
|  | * | 
|  | *   513762849a683914fc266a17ddf38f133cccf072 | 
|  | *   4d3cf2adb669c345cc43832d11689271995e160a | 
|  | * | 
|  | * However, that was not enough, since hb_sorted_array_t, hb_sorted_vector_t, | 
|  | * SortedArrayOf, etc all needed to be updated to add more variants.  At that | 
|  | * point I saw it not worth the effort, and instead we now deem all sorted | 
|  | * collections as essentially strictly-sorted for the purposes of zip. | 
|  | * | 
|  | * The above assumption is not as bad as it sounds.  Our "sorted" comes with | 
|  | * no guarantees.  It's just a contract, put in place to help you remember, | 
|  | * and think about, whether an iterator you receive is expected to be | 
|  | * sorted or not.  As such, it's not perfect by definition, and should not | 
|  | * be treated so.  The inaccuracy here just errs in the direction of being | 
|  | * more permissive, so your code compiles instead of erring on the side of | 
|  | * marking your zipped iterator unsorted in which case your code won't | 
|  | * compile. | 
|  | * | 
|  | * This semantical limitation does NOT affect logic in any other place I | 
|  | * know of as of this writing. | 
|  | */ | 
|  | static constexpr bool is_sorted_iterator = A::is_sorted_iterator; | 
|  |  | 
|  | __item_t__ __item__ () const { return __item_t__ (*a, *b); } | 
|  | __item_t__ __item_at__ (unsigned i) const { return __item_t__ (a[i], b[i]); } | 
|  | bool __more__ () const { return bool (a) && bool (b); } | 
|  | unsigned __len__ () const { return hb_min (a.len (), b.len ()); } | 
|  | void __next__ () { ++a; ++b; } | 
|  | void __forward__ (unsigned n) { a += n; b += n; } | 
|  | void __prev__ () { --a; --b; } | 
|  | void __rewind__ (unsigned n) { a -= n; b -= n; } | 
|  | hb_zip_iter_t __end__ () const { return hb_zip_iter_t (a._end (), b._end ()); } | 
|  | /* Note, we should stop if ANY of the iters reaches end.  As such two compare | 
|  | * unequal if both items are unequal, NOT if either is unequal. */ | 
|  | bool operator != (const hb_zip_iter_t& o) const | 
|  | { return a != o.a && b != o.b; } | 
|  |  | 
|  | private: | 
|  | A a; | 
|  | B b; | 
|  | }; | 
|  | struct | 
|  | { HB_PARTIALIZE(2); | 
|  | template <typename A, typename B, | 
|  | hb_requires (hb_is_iterable (A) && hb_is_iterable (B))> | 
|  | hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> | 
|  | operator () (A&& a, B&& b) const | 
|  | { return hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_zip); | 
|  |  | 
|  | /* hb_concat() */ | 
|  |  | 
|  | template <typename A, typename B> | 
|  | struct hb_concat_iter_t : | 
|  | hb_iter_t<hb_concat_iter_t<A, B>, typename A::item_t> | 
|  | { | 
|  | hb_concat_iter_t () {} | 
|  | hb_concat_iter_t (A& a, B& b) : a (a), b (b) {} | 
|  | hb_concat_iter_t (const A& a, const B& b) : a (a), b (b) {} | 
|  |  | 
|  |  | 
|  | typedef typename A::item_t __item_t__; | 
|  | static constexpr bool is_random_access_iterator = | 
|  | A::is_random_access_iterator && | 
|  | B::is_random_access_iterator; | 
|  | static constexpr bool is_sorted_iterator = false; | 
|  |  | 
|  | __item_t__ __item__ () const | 
|  | { | 
|  | if (!a) | 
|  | return *b; | 
|  | return *a; | 
|  | } | 
|  |  | 
|  | __item_t__ __item_at__ (unsigned i) const | 
|  | { | 
|  | unsigned a_len = a.len (); | 
|  | if (i < a_len) | 
|  | return a[i]; | 
|  | return b[i - a_len]; | 
|  | } | 
|  |  | 
|  | bool __more__ () const { return bool (a) || bool (b); } | 
|  |  | 
|  | unsigned __len__ () const { return a.len () + b.len (); } | 
|  |  | 
|  | void __next__ () | 
|  | { | 
|  | if (a) | 
|  | ++a; | 
|  | else | 
|  | ++b; | 
|  | } | 
|  |  | 
|  | void __forward__ (unsigned n) | 
|  | { | 
|  | if (!n) return; | 
|  | if (!is_random_access_iterator) { | 
|  | while (n-- && *this) { | 
|  | (*this)++; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned a_len = a.len (); | 
|  | if (n > a_len) { | 
|  | n -= a_len; | 
|  | a.__forward__ (a_len); | 
|  | b.__forward__ (n); | 
|  | } else { | 
|  | a.__forward__ (n); | 
|  | } | 
|  | } | 
|  |  | 
|  | hb_concat_iter_t __end__ () const { return hb_concat_iter_t (a._end (), b._end ()); } | 
|  | bool operator != (const hb_concat_iter_t& o) const | 
|  | { | 
|  | return a != o.a | 
|  | || b != o.b; | 
|  | } | 
|  |  | 
|  | private: | 
|  | A a; | 
|  | B b; | 
|  | }; | 
|  | struct | 
|  | { HB_PARTIALIZE(2); | 
|  | template <typename A, typename B, | 
|  | hb_requires (hb_is_iterable (A) && hb_is_iterable (B))> | 
|  | hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>> | 
|  | operator () (A&& a, B&& b) const | 
|  | { return hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_concat); | 
|  |  | 
|  | /* hb_apply() */ | 
|  |  | 
|  | template <typename Appl> | 
|  | struct hb_apply_t | 
|  | { | 
|  | hb_apply_t (Appl a) : a (a) {} | 
|  |  | 
|  | template <typename Iter, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | void operator () (Iter it) | 
|  | { | 
|  | for (; it; ++it) | 
|  | (void) hb_invoke (a, *it); | 
|  | } | 
|  |  | 
|  | private: | 
|  | Appl a; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename Appl> hb_apply_t<Appl> | 
|  | operator () (Appl&& a) const | 
|  | { return hb_apply_t<Appl> (a); } | 
|  |  | 
|  | template <typename Appl> hb_apply_t<Appl&> | 
|  | operator () (Appl *a) const | 
|  | { return hb_apply_t<Appl&> (*a); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_apply); | 
|  |  | 
|  | /* hb_range()/hb_iota()/hb_repeat() */ | 
|  |  | 
|  | template <typename T, typename S> | 
|  | struct hb_range_iter_t : | 
|  | hb_iter_t<hb_range_iter_t<T, S>, T> | 
|  | { | 
|  | hb_range_iter_t (T start, T end_, S step) : v (start), end_ (end_for (start, end_, step)), step (step) {} | 
|  |  | 
|  | typedef T __item_t__; | 
|  | static constexpr bool is_random_access_iterator = true; | 
|  | static constexpr bool is_sorted_iterator = true; | 
|  | __item_t__ __item__ () const { return hb_ridentity (v); } | 
|  | __item_t__ __item_at__ (unsigned j) const { return v + j * step; } | 
|  | bool __more__ () const { return v != end_; } | 
|  | unsigned __len__ () const { return !step ? UINT_MAX : (end_ - v) / step; } | 
|  | void __next__ () { v += step; } | 
|  | void __forward__ (unsigned n) { v += n * step; } | 
|  | void __prev__ () { v -= step; } | 
|  | void __rewind__ (unsigned n) { v -= n * step; } | 
|  | hb_range_iter_t __end__ () const { return hb_range_iter_t (end_, end_, step); } | 
|  | bool operator != (const hb_range_iter_t& o) const | 
|  | { return v != o.v; } | 
|  |  | 
|  | private: | 
|  | static inline T end_for (T start, T end_, S step) | 
|  | { | 
|  | if (!step) | 
|  | return end_; | 
|  | auto res = (end_ - start) % step; | 
|  | if (!res) | 
|  | return end_; | 
|  | end_ += step - res; | 
|  | return end_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | T v; | 
|  | T end_; | 
|  | S step; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename T = unsigned> hb_range_iter_t<T, unsigned> | 
|  | operator () (T end = (unsigned) -1) const | 
|  | { return hb_range_iter_t<T, unsigned> (0, end, 1u); } | 
|  |  | 
|  | template <typename T, typename S = unsigned> hb_range_iter_t<T, S> | 
|  | operator () (T start, T end, S step = 1u) const | 
|  | { return hb_range_iter_t<T, S> (start, end, step); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_range); | 
|  |  | 
|  | template <typename T, typename S> | 
|  | struct hb_iota_iter_t : | 
|  | hb_iter_with_fallback_t<hb_iota_iter_t<T, S>, T> | 
|  | { | 
|  | hb_iota_iter_t (T start, S step) : v (start), step (step) {} | 
|  |  | 
|  | private: | 
|  |  | 
|  | template <typename S2 = S> | 
|  | auto | 
|  | inc (hb_type_identity<S2> s, hb_priority<1>) | 
|  | -> hb_void_t<decltype (hb_invoke (std::forward<S2> (s), hb_declval<T&> ()))> | 
|  | { v = hb_invoke (std::forward<S2> (s), v); } | 
|  |  | 
|  | void | 
|  | inc (S s, hb_priority<0>) | 
|  | { v += s; } | 
|  |  | 
|  | public: | 
|  |  | 
|  | typedef T __item_t__; | 
|  | static constexpr bool is_random_access_iterator = true; | 
|  | static constexpr bool is_sorted_iterator = true; | 
|  | __item_t__ __item__ () const { return hb_ridentity (v); } | 
|  | bool __more__ () const { return true; } | 
|  | unsigned __len__ () const { return UINT_MAX; } | 
|  | void __next__ () { inc (step, hb_prioritize); } | 
|  | void __prev__ () { v -= step; } | 
|  | hb_iota_iter_t __end__ () const { return *this; } | 
|  | bool operator != (const hb_iota_iter_t& o) const { return true; } | 
|  |  | 
|  | private: | 
|  | T v; | 
|  | S step; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename T = unsigned, typename S = unsigned> hb_iota_iter_t<T, S> | 
|  | operator () (T start = 0u, S step = 1u) const | 
|  | { return hb_iota_iter_t<T, S> (start, step); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_iota); | 
|  |  | 
|  | template <typename T> | 
|  | struct hb_repeat_iter_t : | 
|  | hb_iter_t<hb_repeat_iter_t<T>, T> | 
|  | { | 
|  | hb_repeat_iter_t (T value) : v (value) {} | 
|  |  | 
|  | typedef T __item_t__; | 
|  | static constexpr bool is_random_access_iterator = true; | 
|  | static constexpr bool is_sorted_iterator = true; | 
|  | __item_t__ __item__ () const { return v; } | 
|  | __item_t__ __item_at__ (unsigned j) const { return v; } | 
|  | bool __more__ () const { return true; } | 
|  | unsigned __len__ () const { return UINT_MAX; } | 
|  | void __next__ () {} | 
|  | void __forward__ (unsigned) {} | 
|  | void __prev__ () {} | 
|  | void __rewind__ (unsigned) {} | 
|  | hb_repeat_iter_t __end__ () const { return *this; } | 
|  | bool operator != (const hb_repeat_iter_t& o) const { return true; } | 
|  |  | 
|  | private: | 
|  | T v; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename T> hb_repeat_iter_t<T> | 
|  | operator () (T value) const | 
|  | { return hb_repeat_iter_t<T> (value); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_repeat); | 
|  |  | 
|  | /* hb_enumerate()/hb_take() */ | 
|  |  | 
|  | struct | 
|  | { | 
|  | template <typename Iterable, | 
|  | typename Index = unsigned, | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | auto operator () (Iterable&& it, Index start = 0u) const HB_AUTO_RETURN | 
|  | ( hb_zip (hb_iota (start), it) ) | 
|  | } | 
|  | HB_FUNCOBJ (hb_enumerate); | 
|  |  | 
|  | struct | 
|  | { HB_PARTIALIZE(2); | 
|  | template <typename Iterable, | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | auto operator () (Iterable&& it, unsigned count) const HB_AUTO_RETURN | 
|  | ( hb_zip (hb_range (count), it) | hb_map (hb_second) ) | 
|  |  | 
|  | /* Specialization arrays. */ | 
|  |  | 
|  | template <typename Type> inline hb_array_t<Type> | 
|  | operator () (hb_array_t<Type> array, unsigned count) const | 
|  | { return array.sub_array (0, count); } | 
|  |  | 
|  | template <typename Type> inline hb_sorted_array_t<Type> | 
|  | operator () (hb_sorted_array_t<Type> array, unsigned count) const | 
|  | { return array.sub_array (0, count); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_take); | 
|  |  | 
|  | struct | 
|  | { HB_PARTIALIZE(2); | 
|  | template <typename Iter, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | auto operator () (Iter it, unsigned count) const HB_AUTO_RETURN | 
|  | ( | 
|  | + hb_iota (it, hb_add (count)) | 
|  | | hb_map (hb_take (count)) | 
|  | | hb_take ((hb_len (it) + count - 1) / count) | 
|  | ) | 
|  | } | 
|  | HB_FUNCOBJ (hb_chop); | 
|  |  | 
|  | /* hb_sink() */ | 
|  |  | 
|  | template <typename Sink> | 
|  | struct hb_sink_t | 
|  | { | 
|  | hb_sink_t (Sink s) : s (s) {} | 
|  |  | 
|  | template <typename Iter, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | void operator () (Iter it) | 
|  | { | 
|  | for (; it; ++it) | 
|  | s << *it; | 
|  | } | 
|  |  | 
|  | private: | 
|  | Sink s; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename Sink> hb_sink_t<Sink> | 
|  | operator () (Sink&& s) const | 
|  | { return hb_sink_t<Sink> (s); } | 
|  |  | 
|  | template <typename Sink> hb_sink_t<Sink&> | 
|  | operator () (Sink *s) const | 
|  | { return hb_sink_t<Sink&> (*s); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_sink); | 
|  |  | 
|  | /* hb-drain: hb_sink to void / blackhole / /dev/null. */ | 
|  |  | 
|  | struct | 
|  | { | 
|  | template <typename Iter, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | void operator () (Iter it) const | 
|  | { | 
|  | for (; it; ++it) | 
|  | (void) *it; | 
|  | } | 
|  | } | 
|  | HB_FUNCOBJ (hb_drain); | 
|  |  | 
|  | /* hb_unzip(): unzip and sink to two sinks. */ | 
|  |  | 
|  | template <typename Sink1, typename Sink2> | 
|  | struct hb_unzip_t | 
|  | { | 
|  | hb_unzip_t (Sink1 s1, Sink2 s2) : s1 (s1), s2 (s2) {} | 
|  |  | 
|  | template <typename Iter, | 
|  | hb_requires (hb_is_iterator (Iter))> | 
|  | void operator () (Iter it) | 
|  | { | 
|  | for (; it; ++it) | 
|  | { | 
|  | const auto &v = *it; | 
|  | s1 << v.first; | 
|  | s2 << v.second; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | Sink1 s1; | 
|  | Sink2 s2; | 
|  | }; | 
|  | struct | 
|  | { | 
|  | template <typename Sink1, typename Sink2> hb_unzip_t<Sink1, Sink2> | 
|  | operator () (Sink1&& s1, Sink2&& s2) const | 
|  | { return hb_unzip_t<Sink1, Sink2> (s1, s2); } | 
|  |  | 
|  | template <typename Sink1, typename Sink2> hb_unzip_t<Sink1&, Sink2&> | 
|  | operator () (Sink1 *s1, Sink2 *s2) const | 
|  | { return hb_unzip_t<Sink1&, Sink2&> (*s1, *s2); } | 
|  | } | 
|  | HB_FUNCOBJ (hb_unzip); | 
|  |  | 
|  |  | 
|  | /* hb-all, hb-any, hb-none. */ | 
|  |  | 
|  | struct | 
|  | { | 
|  | template <typename Iterable, | 
|  | typename Pred = decltype ((hb_identity)), | 
|  | typename Proj = decltype ((hb_identity)), | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | bool operator () (Iterable&& c, | 
|  | Pred&& p = hb_identity, | 
|  | Proj&& f = hb_identity) const | 
|  | { | 
|  | for (auto it = hb_iter (c); it; ++it) | 
|  | if (!hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | HB_FUNCOBJ (hb_all); | 
|  | struct | 
|  | { | 
|  | template <typename Iterable, | 
|  | typename Pred = decltype ((hb_identity)), | 
|  | typename Proj = decltype ((hb_identity)), | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | bool operator () (Iterable&& c, | 
|  | Pred&& p = hb_identity, | 
|  | Proj&& f = hb_identity) const | 
|  | { | 
|  | for (auto it = hb_iter (c); it; ++it) | 
|  | if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | HB_FUNCOBJ (hb_any); | 
|  | struct | 
|  | { | 
|  | template <typename Iterable, | 
|  | typename Pred = decltype ((hb_identity)), | 
|  | typename Proj = decltype ((hb_identity)), | 
|  | hb_requires (hb_is_iterable (Iterable))> | 
|  | bool operator () (Iterable&& c, | 
|  | Pred&& p = hb_identity, | 
|  | Proj&& f = hb_identity) const | 
|  | { | 
|  | for (auto it = hb_iter (c); it; ++it) | 
|  | if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | HB_FUNCOBJ (hb_none); | 
|  |  | 
|  | /* | 
|  | * Algorithms operating on iterators. | 
|  | */ | 
|  |  | 
|  | template <typename C, typename V, | 
|  | hb_requires (hb_is_iterable (C))> | 
|  | inline void | 
|  | hb_fill (C&& c, const V &v) | 
|  | { | 
|  | for (auto i = hb_iter (c); i; i++) | 
|  | *i = v; | 
|  | } | 
|  |  | 
|  | template <typename S, typename D> | 
|  | inline void | 
|  | hb_copy (S&& is, D&& id) | 
|  | { | 
|  | hb_iter (is) | hb_sink (id); | 
|  | } | 
|  |  | 
|  |  | 
|  | #endif /* HB_ITER_HH */ |