blob: 923a32b26f8dbb8ea44b9f4cdf25af81c6ea36e7 [file] [log] [blame]
/*
* Copyright © 2018 Adobe Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Adobe Author(s): Michiharu Ariza
*/
#ifndef HB_OT_CFF_COMMON_HH
#define HB_OT_CFF_COMMON_HH
#include "hb-open-type.hh"
#include "hb-bimap.hh"
#include "hb-ot-layout-common.hh"
#include "hb-cff-interp-dict-common.hh"
#include "hb-subset-plan.hh"
namespace CFF {
using namespace OT;
#define CFF_UNDEF_CODE 0xFFFFFFFF
using objidx_t = hb_serialize_context_t::objidx_t;
using whence_t = hb_serialize_context_t::whence_t;
/* utility macro */
template<typename Type>
static inline const Type& StructAtOffsetOrNull (const void *P, unsigned int offset)
{ return offset ? StructAtOffset<Type> (P, offset) : Null (Type); }
struct code_pair_t
{
unsigned code;
hb_codepoint_t glyph;
};
using str_buff_t = hb_vector_t<unsigned char>;
using str_buff_vec_t = hb_vector_t<str_buff_t>;
using glyph_to_sid_map_t = hb_vector_t<code_pair_t>;
struct length_f_t
{
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
unsigned operator () (const Iterable &_) const { return hb_len (hb_iter (_)); }
unsigned operator () (unsigned _) const { return _; }
}
HB_FUNCOBJ (length_f);
/* CFF INDEX */
template <typename COUNT>
struct CFFIndex
{
unsigned int offset_array_size () const
{ return offSize * (count + 1); }
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
bool serialize (hb_serialize_context_t *c,
const Iterable &iterable,
const unsigned *p_data_size = nullptr)
{
TRACE_SERIALIZE (this);
unsigned data_size;
if (p_data_size)
data_size = *p_data_size;
else
total_size (iterable, &data_size);
auto it = hb_iter (iterable);
if (unlikely (!serialize_header (c, +it, data_size))) return_trace (false);
unsigned char *ret = c->allocate_size<unsigned char> (data_size, false);
if (unlikely (!ret)) return_trace (false);
for (const auto &_ : +it)
{
unsigned len = _.length;
if (!len)
continue;
if (len <= 1)
{
*ret++ = *_.arrayZ;
continue;
}
hb_memcpy (ret, _.arrayZ, len);
ret += len;
}
return_trace (true);
}
template <typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
bool serialize_header (hb_serialize_context_t *c,
Iterator it,
unsigned data_size)
{
TRACE_SERIALIZE (this);
unsigned off_size = (hb_bit_storage (data_size + 1) + 7) / 8;
/* serialize CFFIndex header */
if (unlikely (!c->extend_min (this))) return_trace (false);
this->count = hb_len (it);
if (!this->count) return_trace (true);
if (unlikely (!c->extend (this->offSize))) return_trace (false);
this->offSize = off_size;
if (unlikely (!c->allocate_size<HBUINT8> (off_size * (this->count + 1), false)))
return_trace (false);
/* serialize indices */
unsigned int offset = 1;
if (HB_OPTIMIZE_SIZE_VAL)
{
unsigned int i = 0;
for (const auto &_ : +it)
{
set_offset_at (i++, offset);
offset += length_f (_);
}
set_offset_at (i, offset);
}
else
switch (off_size)
{
case 1:
{
HBUINT8 *p = (HBUINT8 *) offsets;
for (const auto &_ : +it)
{
*p++ = offset;
offset += length_f (_);
}
*p = offset;
}
break;
case 2:
{
HBUINT16 *p = (HBUINT16 *) offsets;
for (const auto &_ : +it)
{
*p++ = offset;
offset += length_f (_);
}
*p = offset;
}
break;
case 3:
{
HBUINT24 *p = (HBUINT24 *) offsets;
for (const auto &_ : +it)
{
*p++ = offset;
offset += length_f (_);
}
*p = offset;
}
break;
case 4:
{
HBUINT32 *p = (HBUINT32 *) offsets;
for (const auto &_ : +it)
{
*p++ = offset;
offset += length_f (_);
}
*p = offset;
}
break;
default:
break;
}
assert (offset == data_size + 1);
return_trace (true);
}
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
static unsigned total_size (const Iterable &iterable, unsigned *data_size = nullptr)
{
auto it = + hb_iter (iterable);
if (!it)
{
if (data_size) *data_size = 0;
return min_size;
}
unsigned total = 0;
for (const auto &_ : +it)
total += length_f (_);
if (data_size) *data_size = total;
unsigned off_size = (hb_bit_storage (total + 1) + 7) / 8;
return min_size + HBUINT8::static_size + (hb_len (it) + 1) * off_size + total;
}
void set_offset_at (unsigned int index, unsigned int offset)
{
assert (index <= count);
unsigned int size = offSize;
const HBUINT8 *p = offsets;
switch (size)
{
case 1: ((HBUINT8 *) p)[index] = offset; break;
case 2: ((HBUINT16 *) p)[index] = offset; break;
case 3: ((HBUINT24 *) p)[index] = offset; break;
case 4: ((HBUINT32 *) p)[index] = offset; break;
default: return;
}
}
private:
unsigned int offset_at (unsigned int index) const
{
assert (index <= count);
unsigned int size = offSize;
const HBUINT8 *p = offsets;
switch (size)
{
case 1: return ((HBUINT8 *) p)[index];
case 2: return ((HBUINT16 *) p)[index];
case 3: return ((HBUINT24 *) p)[index];
case 4: return ((HBUINT32 *) p)[index];
default: return 0;
}
}
const unsigned char *data_base () const
{ return (const unsigned char *) this + min_size + offSize.static_size - 1 + offset_array_size (); }
public:
hb_ubytes_t operator [] (unsigned int index) const
{
if (unlikely (index >= count)) return hb_ubytes_t ();
_hb_compiler_memory_r_barrier ();
unsigned offset0 = offset_at (index);
unsigned offset1 = offset_at (index + 1);
if (unlikely (offset1 < offset0 || offset1 > offset_at (count)))
return hb_ubytes_t ();
return hb_ubytes_t (data_base () + offset0, offset1 - offset0);
}
unsigned int get_size () const
{
if (count)
return min_size + offSize.static_size + offset_array_size () + (offset_at (count) - 1);
return min_size; /* empty CFFIndex contains count only */
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (likely (c->check_struct (this) &&
(count == 0 || /* empty INDEX */
(count < count + 1u &&
c->check_struct (&offSize) && offSize >= 1 && offSize <= 4 &&
c->check_array (offsets, offSize, count + 1u) &&
c->check_array ((const HBUINT8*) data_base (), 1, offset_at (count))))));
}
public:
COUNT count; /* Number of object data. Note there are (count+1) offsets */
private:
HBUINT8 offSize; /* The byte size of each offset in the offsets array. */
HBUINT8 offsets[HB_VAR_ARRAY];
/* The array of (count + 1) offsets into objects array (1-base). */
/* HBUINT8 data[HB_VAR_ARRAY]; Object data */
public:
DEFINE_SIZE_MIN (COUNT::static_size);
};
/* Top Dict, Font Dict, Private Dict */
struct Dict : UnsizedByteStr
{
template <typename DICTVAL, typename OP_SERIALIZER, typename ...Ts>
bool serialize (hb_serialize_context_t *c,
const DICTVAL &dictval,
OP_SERIALIZER& opszr,
Ts&&... ds)
{
TRACE_SERIALIZE (this);
for (unsigned int i = 0; i < dictval.get_count (); i++)
if (unlikely (!opszr.serialize (c, dictval[i], std::forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
template <typename T, typename V>
static bool serialize_int_op (hb_serialize_context_t *c, op_code_t op, V value, op_code_t intOp)
{
if (unlikely ((!serialize_int<T, V> (c, intOp, value))))
return false;
TRACE_SERIALIZE (this);
/* serialize the opcode */
HBUINT8 *p = c->allocate_size<HBUINT8> (OpCode_Size (op), false);
if (unlikely (!p)) return_trace (false);
if (Is_OpCode_ESC (op))
{
*p = OpCode_escape;
op = Unmake_OpCode_ESC (op);
p++;
}
*p = op;
return_trace (true);
}
template <typename V>
static bool serialize_int4_op (hb_serialize_context_t *c, op_code_t op, V value)
{ return serialize_int_op<HBINT32> (c, op, value, OpCode_longintdict); }
template <typename V>
static bool serialize_int2_op (hb_serialize_context_t *c, op_code_t op, V value)
{ return serialize_int_op<HBINT16> (c, op, value, OpCode_shortint); }
template <typename T, int int_op>
static bool serialize_link_op (hb_serialize_context_t *c, op_code_t op, objidx_t link, whence_t whence)
{
T &ofs = *(T *) (c->head + OpCode_Size (int_op));
if (unlikely (!serialize_int_op<T> (c, op, 0, int_op))) return false;
c->add_link (ofs, link, whence);
return true;
}
static bool serialize_link4_op (hb_serialize_context_t *c, op_code_t op, objidx_t link, whence_t whence = whence_t::Head)
{ return serialize_link_op<HBINT32, OpCode_longintdict> (c, op, link, whence); }
static bool serialize_link2_op (hb_serialize_context_t *c, op_code_t op, objidx_t link, whence_t whence = whence_t::Head)
{ return serialize_link_op<HBINT16, OpCode_shortint> (c, op, link, whence); }
};
struct TopDict : Dict {};
struct FontDict : Dict {};
struct PrivateDict : Dict {};
struct table_info_t
{
void init () { offset = size = 0; link = 0; }
unsigned int offset;
unsigned int size;
objidx_t link;
};
template <typename COUNT>
struct FDArray : CFFIndex<COUNT>
{
template <typename DICTVAL, typename INFO, typename Iterator, typename OP_SERIALIZER>
bool serialize (hb_serialize_context_t *c,
Iterator it,
OP_SERIALIZER& opszr)
{
TRACE_SERIALIZE (this);
/* serialize INDEX data */
hb_vector_t<unsigned> sizes;
if (it.is_random_access_iterator)
sizes.alloc (hb_len (it));
c->push ();
char *data_base = c->head;
+ it
| hb_map ([&] (const hb_pair_t<const DICTVAL&, const INFO&> &_)
{
FontDict *dict = c->start_embed<FontDict> ();
dict->serialize (c, _.first, opszr, _.second);
return c->head - (const char*)dict;
})
| hb_sink (sizes)
;
unsigned data_size = c->head - data_base;
c->pop_pack (false);
if (unlikely (sizes.in_error ())) return_trace (false);
/* It just happens that the above is packed right after the header below.
* Such a hack. */
/* serialize INDEX header */
return_trace (CFFIndex<COUNT>::serialize_header (c, hb_iter (sizes), data_size));
}
};
/* FDSelect */
struct FDSelect0 {
bool sanitize (hb_sanitize_context_t *c, unsigned int fdcount) const
{
TRACE_SANITIZE (this);
if (unlikely (!(c->check_struct (this))))
return_trace (false);
if (unlikely (!c->check_array (fds, c->get_num_glyphs ())))
return_trace (false);
return_trace (true);
}
unsigned get_fd (hb_codepoint_t glyph) const
{ return fds[glyph]; }
hb_pair_t<unsigned, hb_codepoint_t> get_fd_range (hb_codepoint_t glyph) const
{ return {fds[glyph], glyph + 1}; }
unsigned int get_size (unsigned int num_glyphs) const
{ return HBUINT8::static_size * num_glyphs; }
HBUINT8 fds[HB_VAR_ARRAY];
DEFINE_SIZE_MIN (0);
};
template <typename GID_TYPE, typename FD_TYPE>
struct FDSelect3_4_Range
{
bool sanitize (hb_sanitize_context_t *c, const void * /*nullptr*/, unsigned int fdcount) const
{
TRACE_SANITIZE (this);
return_trace (first < c->get_num_glyphs () && (fd < fdcount));
}
GID_TYPE first;
FD_TYPE fd;
public:
DEFINE_SIZE_STATIC (GID_TYPE::static_size + FD_TYPE::static_size);
};
template <typename GID_TYPE, typename FD_TYPE>
struct FDSelect3_4
{
unsigned int get_size () const
{ return GID_TYPE::static_size * 2 + ranges.get_size (); }
bool sanitize (hb_sanitize_context_t *c, unsigned int fdcount) const
{
TRACE_SANITIZE (this);
if (unlikely (!c->check_struct (this) || !ranges.sanitize (c, nullptr, fdcount) ||
(nRanges () == 0) || ranges[0].first != 0))
return_trace (false);
for (unsigned int i = 1; i < nRanges (); i++)
if (unlikely (ranges[i - 1].first >= ranges[i].first))
return_trace (false);
if (unlikely (!sentinel().sanitize (c) || (sentinel() != c->get_num_glyphs ())))
return_trace (false);
return_trace (true);
}
static int _cmp_range (const void *_key, const void *_item)
{
hb_codepoint_t glyph = * (hb_codepoint_t *) _key;
FDSelect3_4_Range<GID_TYPE, FD_TYPE> *range = (FDSelect3_4_Range<GID_TYPE, FD_TYPE> *) _item;
if (glyph < range[0].first) return -1;
if (glyph < range[1].first) return 0;
return +1;
}
unsigned get_fd (hb_codepoint_t glyph) const
{
auto *range = hb_bsearch (glyph, &ranges[0], nRanges () - 1, sizeof (ranges[0]), _cmp_range);
return range ? range->fd : ranges[nRanges () - 1].fd;
}
hb_pair_t<unsigned, hb_codepoint_t> get_fd_range (hb_codepoint_t glyph) const
{
auto *range = hb_bsearch (glyph, &ranges[0], nRanges () - 1, sizeof (ranges[0]), _cmp_range);
unsigned fd = range ? range->fd : ranges[nRanges () - 1].fd;
hb_codepoint_t end = range ? range[1].first : ranges[nRanges () - 1].first;
return {fd, end};
}
GID_TYPE &nRanges () { return ranges.len; }
GID_TYPE nRanges () const { return ranges.len; }
GID_TYPE &sentinel () { return StructAfter<GID_TYPE> (ranges[nRanges () - 1]); }
const GID_TYPE &sentinel () const { return StructAfter<GID_TYPE> (ranges[nRanges () - 1]); }
ArrayOf<FDSelect3_4_Range<GID_TYPE, FD_TYPE>, GID_TYPE> ranges;
/* GID_TYPE sentinel */
DEFINE_SIZE_ARRAY (GID_TYPE::static_size, ranges);
};
typedef FDSelect3_4<HBUINT16, HBUINT8> FDSelect3;
typedef FDSelect3_4_Range<HBUINT16, HBUINT8> FDSelect3_Range;
struct FDSelect
{
bool serialize (hb_serialize_context_t *c, const FDSelect &src, unsigned int num_glyphs)
{
TRACE_SERIALIZE (this);
unsigned int size = src.get_size (num_glyphs);
FDSelect *dest = c->allocate_size<FDSelect> (size, false);
if (unlikely (!dest)) return_trace (false);
hb_memcpy (dest, &src, size);
return_trace (true);
}
unsigned int get_size (unsigned int num_glyphs) const
{
switch (format)
{
case 0: return format.static_size + u.format0.get_size (num_glyphs);
case 3: return format.static_size + u.format3.get_size ();
default:return 0;
}
}
unsigned get_fd (hb_codepoint_t glyph) const
{
if (this == &Null (FDSelect)) return 0;
switch (format)
{
case 0: return u.format0.get_fd (glyph);
case 3: return u.format3.get_fd (glyph);
default:return 0;
}
}
/* Returns pair of fd and one after last glyph in range. */
hb_pair_t<unsigned, hb_codepoint_t> get_fd_range (hb_codepoint_t glyph) const
{
if (this == &Null (FDSelect)) return {0, 1};
switch (format)
{
case 0: return u.format0.get_fd_range (glyph);
case 3: return u.format3.get_fd_range (glyph);
default:return {0, 1};
}
}
bool sanitize (hb_sanitize_context_t *c, unsigned int fdcount) const
{
TRACE_SANITIZE (this);
if (unlikely (!c->check_struct (this)))
return_trace (false);
switch (format)
{
case 0: return_trace (u.format0.sanitize (c, fdcount));
case 3: return_trace (u.format3.sanitize (c, fdcount));
default:return_trace (false);
}
}
HBUINT8 format;
union {
FDSelect0 format0;
FDSelect3 format3;
} u;
public:
DEFINE_SIZE_MIN (1);
};
template <typename COUNT>
struct Subrs : CFFIndex<COUNT>
{
typedef COUNT count_type;
typedef CFFIndex<COUNT> SUPER;
};
} /* namespace CFF */
#endif /* HB_OT_CFF_COMMON_HH */