blob: 66da68295bfb655de87b3fc6f991973987de334c [file] [log] [blame]
/*
* Copyright © 2019 Adobe Inc.
* Copyright © 2019 Ebrahim Byagowi
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Adobe Author(s): Michiharu Ariza
*/
#ifndef HB_OT_VAR_GVAR_TABLE_HH
#define HB_OT_VAR_GVAR_TABLE_HH
#include "hb-open-type.hh"
#include "hb-ot-var-common.hh"
/*
* gvar -- Glyph Variation Table
* https://docs.microsoft.com/en-us/typography/opentype/spec/gvar
*/
#define HB_OT_TAG_gvar HB_TAG('g','v','a','r')
namespace OT {
struct contour_point_t
{
void init (float x_ = 0.f, float y_ = 0.f, bool is_end_point_ = false)
{ flag = 0; x = x_; y = y_; is_end_point = is_end_point_; }
void transform (const float (&matrix)[4])
{
float x_ = x * matrix[0] + y * matrix[2];
y = x * matrix[1] + y * matrix[3];
x = x_;
}
HB_ALWAYS_INLINE
void translate (const contour_point_t &p) { x += p.x; y += p.y; }
float x;
float y;
uint8_t flag;
bool is_end_point;
};
struct contour_point_vector_t : hb_vector_t<contour_point_t>
{
void extend (const hb_array_t<contour_point_t> &a)
{
unsigned int old_len = length;
if (unlikely (!resize (old_len + a.length, false)))
return;
auto arrayZ = this->arrayZ + old_len;
unsigned count = a.length;
hb_memcpy (arrayZ, a.arrayZ, count * sizeof (arrayZ[0]));
}
};
struct GlyphVariationData : TupleVariationData
{};
struct glyph_variations_t
{
using tuple_variations_t = TupleVariationData::tuple_variations_t;
hb_vector_t<tuple_variations_t> glyph_variations;
hb_vector_t<char> compiled_shared_tuples;
private:
unsigned shared_tuples_count = 0;
/* shared coords-> index map after instantiation */
hb_hashmap_t<const hb_vector_t<char>*, unsigned> shared_tuples_idx_map;
public:
unsigned compiled_shared_tuples_count () const
{ return shared_tuples_count; }
bool compile_shared_tuples (const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map)
{
/* key is pointer to compiled_peak_coords inside each tuple, hashing
* function will always deref pointers first */
hb_hashmap_t<const hb_vector_t<char>*, unsigned> coords_count_map;
/* count the num of shared coords */
for (tuple_variations_t& vars: glyph_variations)
{
for (tuple_delta_t& var : vars.tuple_vars)
{
if (!var.compile_peak_coords (axes_index_map, axes_old_index_tag_map))
return false;
unsigned* count;
if (coords_count_map.has (&(var.compiled_peak_coords), &count))
coords_count_map.set (&(var.compiled_peak_coords), *count + 1);
else
coords_count_map.set (&(var.compiled_peak_coords), 1);
}
}
if (!coords_count_map || coords_count_map.in_error ())
return false;
/* add only those coords that are used more than once into the vector and sort */
hb_vector_t<const hb_vector_t<char>*> shared_coords;
if (unlikely (!shared_coords.alloc (coords_count_map.get_population ())))
return false;
for (const auto _ : coords_count_map.iter ())
{
if (_.second == 1) continue;
shared_coords.push (_.first);
}
/* no shared tuples: no coords are used more than once */
if (!shared_coords) return true;
/* sorting based on the coords frequency first (high to low), then compare
* the coords bytes */
hb_qsort (shared_coords.arrayZ, shared_coords.length, sizeof (hb_vector_t<char>*), _cmp_coords, (void *) (&coords_count_map));
/* build shared_coords->idx map and shared tuples byte array */
shared_tuples_count = hb_min (0xFFFu + 1, shared_coords.length);
unsigned len = shared_tuples_count * (shared_coords[0]->length);
if (unlikely (!compiled_shared_tuples.alloc (len)))
return false;
for (unsigned i = 0; i < shared_tuples_count; i++)
{
shared_tuples_idx_map.set (shared_coords[i], i);
/* add a concat() in hb_vector_t? */
for (char c : shared_coords[i]->iter ())
compiled_shared_tuples.push (c);
}
return true;
}
static int _cmp_coords (const void *pa, const void *pb, void *arg)
{
const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* coords_count_map =
reinterpret_cast<const hb_hashmap_t<const hb_vector_t<char>*, unsigned>*> (arg);
/* shared_coords is hb_vector_t<const hb_vector_t<char>*> so casting pa/pb
* to be a pointer to a pointer */
const hb_vector_t<char>** a = reinterpret_cast<const hb_vector_t<char>**> (const_cast<void*>(pa));
const hb_vector_t<char>** b = reinterpret_cast<const hb_vector_t<char>**> (const_cast<void*>(pb));
bool has_a = coords_count_map->has (*a);
bool has_b = coords_count_map->has (*b);
if (has_a && has_b)
{
unsigned a_num = coords_count_map->get (*a);
unsigned b_num = coords_count_map->get (*b);
if (a_num != b_num)
return b_num - a_num;
return (*b)->as_array().cmp ((*a)->as_array ());
}
else if (has_a) return -1;
else if (has_b) return 1;
else return 0;
}
};
struct gvar
{
static constexpr hb_tag_t tableTag = HB_OT_TAG_gvar;
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) && (version.major == 1) &&
sharedTuples.sanitize (c, this, axisCount * sharedTupleCount) &&
(is_long_offset () ?
c->check_array (get_long_offset_array (), c->get_num_glyphs () + 1) :
c->check_array (get_short_offset_array (), c->get_num_glyphs () + 1)));
}
/* GlyphVariationData not sanitized here; must be checked while accessing each glyph variation data */
bool sanitize (hb_sanitize_context_t *c) const
{ return sanitize_shallow (c); }
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
unsigned glyph_count = version.to_int () ? c->plan->source->get_num_glyphs () : 0;
gvar *out = c->serializer->allocate_min<gvar> ();
if (unlikely (!out)) return_trace (false);
out->version.major = 1;
out->version.minor = 0;
out->axisCount = axisCount;
out->sharedTupleCount = sharedTupleCount;
unsigned int num_glyphs = c->plan->num_output_glyphs ();
out->glyphCountX = hb_min (0xFFFFu, num_glyphs);
auto it = hb_iter (c->plan->new_to_old_gid_list);
if (it->first == 0 && !(c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE))
it++;
unsigned int subset_data_size = 0;
for (auto &_ : it)
{
hb_codepoint_t old_gid = _.second;
subset_data_size += get_glyph_var_data_bytes (c->source_blob, glyph_count, old_gid).length;
}
bool long_offset = subset_data_size & ~0xFFFFu;
out->flags = long_offset ? 1 : 0;
HBUINT8 *subset_offsets = c->serializer->allocate_size<HBUINT8> ((long_offset ? 4 : 2) * (num_glyphs + 1), false);
if (!subset_offsets) return_trace (false);
/* shared tuples */
if (!sharedTupleCount || !sharedTuples)
out->sharedTuples = 0;
else
{
unsigned int shared_tuple_size = F2DOT14::static_size * axisCount * sharedTupleCount;
F2DOT14 *tuples = c->serializer->allocate_size<F2DOT14> (shared_tuple_size);
if (!tuples) return_trace (false);
out->sharedTuples = (char *) tuples - (char *) out;
hb_memcpy (tuples, this+sharedTuples, shared_tuple_size);
}
char *subset_data = c->serializer->allocate_size<char> (subset_data_size, false);
if (!subset_data) return_trace (false);
out->dataZ = subset_data - (char *) out;
if (long_offset)
{
((HBUINT32 *) subset_offsets)[0] = 0;
subset_offsets += 4;
}
else
{
((HBUINT16 *) subset_offsets)[0] = 0;
subset_offsets += 2;
}
unsigned int glyph_offset = 0;
hb_codepoint_t last = 0;
it = hb_iter (c->plan->new_to_old_gid_list);
if (it->first == 0 && !(c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE))
it++;
for (auto &_ : it)
{
hb_codepoint_t gid = _.first;
hb_codepoint_t old_gid = _.second;
if (long_offset)
for (; last < gid; last++)
((HBUINT32 *) subset_offsets)[last] = glyph_offset;
else
for (; last < gid; last++)
((HBUINT16 *) subset_offsets)[last] = glyph_offset / 2;
hb_bytes_t var_data_bytes = get_glyph_var_data_bytes (c->source_blob,
glyph_count,
old_gid);
hb_memcpy (subset_data, var_data_bytes.arrayZ, var_data_bytes.length);
subset_data += var_data_bytes.length;
glyph_offset += var_data_bytes.length;
if (long_offset)
((HBUINT32 *) subset_offsets)[gid] = glyph_offset;
else
((HBUINT16 *) subset_offsets)[gid] = glyph_offset / 2;
last++; // Skip over gid
}
if (long_offset)
for (; last < num_glyphs; last++)
((HBUINT32 *) subset_offsets)[last] = glyph_offset;
else
for (; last < num_glyphs; last++)
((HBUINT16 *) subset_offsets)[last] = glyph_offset / 2;
return_trace (true);
}
protected:
const hb_bytes_t get_glyph_var_data_bytes (hb_blob_t *blob,
unsigned glyph_count,
hb_codepoint_t glyph) const
{
unsigned start_offset = get_offset (glyph_count, glyph);
unsigned end_offset = get_offset (glyph_count, glyph+1);
if (unlikely (end_offset < start_offset)) return hb_bytes_t ();
unsigned length = end_offset - start_offset;
hb_bytes_t var_data = blob->as_bytes ().sub_array (((unsigned) dataZ) + start_offset, length);
return likely (var_data.length >= GlyphVariationData::min_size) ? var_data : hb_bytes_t ();
}
bool is_long_offset () const { return flags & 1; }
unsigned get_offset (unsigned glyph_count, unsigned i) const
{
if (unlikely (i > glyph_count)) return 0;
_hb_compiler_memory_r_barrier ();
return is_long_offset () ? get_long_offset_array ()[i] : get_short_offset_array ()[i] * 2;
}
const HBUINT32 * get_long_offset_array () const { return (const HBUINT32 *) &offsetZ; }
const HBUINT16 *get_short_offset_array () const { return (const HBUINT16 *) &offsetZ; }
public:
struct accelerator_t
{
accelerator_t (hb_face_t *face)
{
table = hb_sanitize_context_t ().reference_table<gvar> (face);
/* If sanitize failed, set glyphCount to 0. */
glyphCount = table->version.to_int () ? face->get_num_glyphs () : 0;
/* For shared tuples that only have one axis active, shared the index of
* that axis as a cache. This will speed up caclulate_scalar() a lot
* for fonts with lots of axes and many "monovar" tuples. */
hb_array_t<const F2DOT14> shared_tuples = (table+table->sharedTuples).as_array (table->sharedTupleCount * table->axisCount);
unsigned count = table->sharedTupleCount;
if (unlikely (!shared_tuple_active_idx.resize (count, false))) return;
unsigned axis_count = table->axisCount;
for (unsigned i = 0; i < count; i++)
{
hb_array_t<const F2DOT14> tuple = shared_tuples.sub_array (axis_count * i, axis_count);
int idx1 = -1, idx2 = -1;
for (unsigned j = 0; j < axis_count; j++)
{
const F2DOT14 &peak = tuple.arrayZ[j];
if (peak.to_int () != 0)
{
if (idx1 == -1)
idx1 = j;
else if (idx2 == -1)
idx2 = j;
else
{
idx1 = idx2 = -1;
break;
}
}
}
shared_tuple_active_idx.arrayZ[i] = {idx1, idx2};
}
}
~accelerator_t () { table.destroy (); }
private:
static float infer_delta (const hb_array_t<contour_point_t> points,
const hb_array_t<contour_point_t> deltas,
unsigned int target, unsigned int prev, unsigned int next,
float contour_point_t::*m)
{
float target_val = points.arrayZ[target].*m;
float prev_val = points.arrayZ[prev].*m;
float next_val = points.arrayZ[next].*m;
float prev_delta = deltas.arrayZ[prev].*m;
float next_delta = deltas.arrayZ[next].*m;
if (prev_val == next_val)
return (prev_delta == next_delta) ? prev_delta : 0.f;
else if (target_val <= hb_min (prev_val, next_val))
return (prev_val < next_val) ? prev_delta : next_delta;
else if (target_val >= hb_max (prev_val, next_val))
return (prev_val > next_val) ? prev_delta : next_delta;
/* linear interpolation */
float r = (target_val - prev_val) / (next_val - prev_val);
return prev_delta + r * (next_delta - prev_delta);
}
static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end)
{ return (i >= end) ? start : (i + 1); }
public:
bool apply_deltas_to_points (hb_codepoint_t glyph,
hb_array_t<int> coords,
const hb_array_t<contour_point_t> points,
bool phantom_only = false) const
{
if (unlikely (glyph >= glyphCount)) return true;
hb_bytes_t var_data_bytes = table->get_glyph_var_data_bytes (table.get_blob (), glyphCount, glyph);
if (!var_data_bytes.as<GlyphVariationData> ()->has_data ()) return true;
hb_vector_t<unsigned int> shared_indices;
GlyphVariationData::tuple_iterator_t iterator;
if (!GlyphVariationData::get_tuple_iterator (var_data_bytes, table->axisCount,
var_data_bytes.arrayZ,
shared_indices, &iterator))
return true; /* so isn't applied at all */
/* Save original points for inferred delta calculation */
contour_point_vector_t orig_points_vec; // Populated lazily
auto orig_points = orig_points_vec.as_array ();
/* flag is used to indicate referenced point */
contour_point_vector_t deltas_vec; // Populated lazily
auto deltas = deltas_vec.as_array ();
hb_vector_t<unsigned> end_points; // Populated lazily
unsigned num_coords = table->axisCount;
hb_array_t<const F2DOT14> shared_tuples = (table+table->sharedTuples).as_array (table->sharedTupleCount * num_coords);
hb_vector_t<unsigned int> private_indices;
hb_vector_t<int> x_deltas;
hb_vector_t<int> y_deltas;
unsigned count = points.length;
bool flush = false;
do
{
float scalar = iterator.current_tuple->calculate_scalar (coords, num_coords, shared_tuples,
&shared_tuple_active_idx);
if (scalar == 0.f) continue;
const HBUINT8 *p = iterator.get_serialized_data ();
unsigned int length = iterator.current_tuple->get_data_size ();
if (unlikely (!iterator.var_data_bytes.check_range (p, length)))
return false;
if (!deltas)
{
if (unlikely (!deltas_vec.resize (count, false))) return false;
deltas = deltas_vec.as_array ();
hb_memset (deltas.arrayZ + (phantom_only ? count - 4 : 0), 0,
(phantom_only ? 4 : count) * sizeof (deltas[0]));
}
const HBUINT8 *end = p + length;
bool has_private_points = iterator.current_tuple->has_private_points ();
if (has_private_points &&
!GlyphVariationData::unpack_points (p, private_indices, end))
return false;
const hb_array_t<unsigned int> &indices = has_private_points ? private_indices : shared_indices;
bool apply_to_all = (indices.length == 0);
unsigned int num_deltas = apply_to_all ? points.length : indices.length;
if (unlikely (!x_deltas.resize (num_deltas, false))) return false;
if (unlikely (!GlyphVariationData::unpack_deltas (p, x_deltas, end))) return false;
if (unlikely (!y_deltas.resize (num_deltas, false))) return false;
if (unlikely (!GlyphVariationData::unpack_deltas (p, y_deltas, end))) return false;
if (!apply_to_all)
{
if (!orig_points && !phantom_only)
{
orig_points_vec.extend (points);
if (unlikely (orig_points_vec.in_error ())) return false;
orig_points = orig_points_vec.as_array ();
}
if (flush)
{
for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++)
points.arrayZ[i].translate (deltas.arrayZ[i]);
flush = false;
}
hb_memset (deltas.arrayZ + (phantom_only ? count - 4 : 0), 0,
(phantom_only ? 4 : count) * sizeof (deltas[0]));
}
if (HB_OPTIMIZE_SIZE_VAL)
{
for (unsigned int i = 0; i < num_deltas; i++)
{
unsigned int pt_index;
if (apply_to_all)
pt_index = i;
else
{
pt_index = indices[i];
if (unlikely (pt_index >= deltas.length)) continue;
}
if (phantom_only && pt_index < count - 4) continue;
auto &delta = deltas.arrayZ[pt_index];
delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */
delta.x += x_deltas.arrayZ[i] * scalar;
delta.y += y_deltas.arrayZ[i] * scalar;
}
}
else
{
/* Ouch. Four cases... for optimization. */
if (scalar != 1.0f)
{
if (apply_to_all)
for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++)
{
unsigned int pt_index = i;
auto &delta = deltas.arrayZ[pt_index];
delta.x += x_deltas.arrayZ[i] * scalar;
delta.y += y_deltas.arrayZ[i] * scalar;
}
else
for (unsigned int i = 0; i < num_deltas; i++)
{
unsigned int pt_index = indices[i];
if (unlikely (pt_index >= deltas.length)) continue;
if (phantom_only && pt_index < count - 4) continue;
auto &delta = deltas.arrayZ[pt_index];
delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */
delta.x += x_deltas.arrayZ[i] * scalar;
delta.y += y_deltas.arrayZ[i] * scalar;
}
}
else
{
if (apply_to_all)
for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++)
{
unsigned int pt_index = i;
auto &delta = deltas.arrayZ[pt_index];
delta.x += x_deltas.arrayZ[i];
delta.y += y_deltas.arrayZ[i];
}
else
for (unsigned int i = 0; i < num_deltas; i++)
{
unsigned int pt_index = indices[i];
if (unlikely (pt_index >= deltas.length)) continue;
if (phantom_only && pt_index < count - 4) continue;
auto &delta = deltas.arrayZ[pt_index];
delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */
delta.x += x_deltas.arrayZ[i];
delta.y += y_deltas.arrayZ[i];
}
}
}
/* infer deltas for unreferenced points */
if (!apply_to_all && !phantom_only)
{
if (!end_points)
{
for (unsigned i = 0; i < count; ++i)
if (points.arrayZ[i].is_end_point)
end_points.push (i);
if (unlikely (end_points.in_error ())) return false;
}
unsigned start_point = 0;
for (unsigned end_point : end_points)
{
/* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */
unsigned unref_count = 0;
for (unsigned i = start_point; i < end_point + 1; i++)
unref_count += deltas.arrayZ[i].flag;
unref_count = (end_point - start_point + 1) - unref_count;
unsigned j = start_point;
if (unref_count == 0 || unref_count > end_point - start_point)
goto no_more_gaps;
for (;;)
{
/* Locate the next gap of unreferenced points between two referenced points prev and next.
* Note that a gap may wrap around at left (start_point) and/or at right (end_point).
*/
unsigned int prev, next, i;
for (;;)
{
i = j;
j = next_index (i, start_point, end_point);
if (deltas.arrayZ[i].flag && !deltas.arrayZ[j].flag) break;
}
prev = j = i;
for (;;)
{
i = j;
j = next_index (i, start_point, end_point);
if (!deltas.arrayZ[i].flag && deltas.arrayZ[j].flag) break;
}
next = j;
/* Infer deltas for all unref points in the gap between prev and next */
i = prev;
for (;;)
{
i = next_index (i, start_point, end_point);
if (i == next) break;
deltas.arrayZ[i].x = infer_delta (orig_points, deltas, i, prev, next, &contour_point_t::x);
deltas.arrayZ[i].y = infer_delta (orig_points, deltas, i, prev, next, &contour_point_t::y);
if (--unref_count == 0) goto no_more_gaps;
}
}
no_more_gaps:
start_point = end_point + 1;
}
}
flush = true;
} while (iterator.move_to_next ());
if (flush)
{
for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++)
points.arrayZ[i].translate (deltas.arrayZ[i]);
}
return true;
}
unsigned int get_axis_count () const { return table->axisCount; }
private:
hb_blob_ptr_t<gvar> table;
unsigned glyphCount;
hb_vector_t<hb_pair_t<int, int>> shared_tuple_active_idx;
};
protected:
FixedVersion<>version; /* Version number of the glyph variations table
* Set to 0x00010000u. */
HBUINT16 axisCount; /* The number of variation axes for this font. This must be
* the same number as axisCount in the 'fvar' table. */
HBUINT16 sharedTupleCount;
/* The number of shared tuple records. Shared tuple records
* can be referenced within glyph variation data tables for
* multiple glyphs, as opposed to other tuple records stored
* directly within a glyph variation data table. */
NNOffset32To<UnsizedArrayOf<F2DOT14>>
sharedTuples; /* Offset from the start of this table to the shared tuple records.
* Array of tuple records shared across all glyph variation data tables. */
HBUINT16 glyphCountX; /* The number of glyphs in this font. This must match the number of
* glyphs stored elsewhere in the font. */
HBUINT16 flags; /* Bit-field that gives the format of the offset array that follows.
* If bit 0 is clear, the offsets are uint16; if bit 0 is set, the
* offsets are uint32. */
Offset32To<GlyphVariationData>
dataZ; /* Offset from the start of this table to the array of
* GlyphVariationData tables. */
UnsizedArrayOf<HBUINT8>
offsetZ; /* Offsets from the start of the GlyphVariationData array
* to each GlyphVariationData table. */
public:
DEFINE_SIZE_ARRAY (20, offsetZ);
};
struct gvar_accelerator_t : gvar::accelerator_t {
gvar_accelerator_t (hb_face_t *face) : gvar::accelerator_t (face) {}
};
} /* namespace OT */
#endif /* HB_OT_VAR_GVAR_TABLE_HH */