blob: 2f73c5816b28cb211137429279b4b0c535db6ef8 [file] [log] [blame]
/*
* Copyright © 2007,2008,2009 Red Hat, Inc.
* Copyright © 2010,2012 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Red Hat Author(s): Behdad Esfahbod
* Google Author(s): Behdad Esfahbod
*/
#ifndef HB_OT_LAYOUT_COMMON_HH
#define HB_OT_LAYOUT_COMMON_HH
#include "hb.hh"
#include "hb-ot-layout.hh"
#include "hb-open-type.hh"
#include "hb-set.hh"
#include "hb-bimap.hh"
#include "OT/Layout/Common/Coverage.hh"
#include "OT/Layout/types.hh"
// TODO(garretrieger): cleanup these after migration.
using OT::Layout::Common::Coverage;
using OT::Layout::Common::RangeRecord;
using OT::Layout::SmallTypes;
using OT::Layout::MediumTypes;
namespace OT {
template<typename Iterator>
static inline bool ClassDef_serialize (hb_serialize_context_t *c,
Iterator it);
static bool ClassDef_remap_and_serialize (
hb_serialize_context_t *c,
const hb_set_t &klasses,
bool use_class_zero,
hb_sorted_vector_t<hb_codepoint_pair_t> &glyph_and_klass, /* IN/OUT */
hb_map_t *klass_map /*IN/OUT*/);
struct hb_collect_feature_substitutes_with_var_context_t
{
const hb_map_t *axes_index_tag_map;
const hb_hashmap_t<hb_tag_t, Triple> *axes_location;
hb_hashmap_t<unsigned, hb::shared_ptr<hb_set_t>> *record_cond_idx_map;
hb_hashmap_t<unsigned, const Feature*> *feature_substitutes_map;
bool& insert_catch_all_feature_variation_record;
// not stored in subset_plan
hb_set_t *feature_indices;
bool apply;
bool variation_applied;
bool universal;
unsigned cur_record_idx;
hb_hashmap_t<hb::shared_ptr<hb_map_t>, unsigned> *conditionset_map;
};
struct hb_prune_langsys_context_t
{
hb_prune_langsys_context_t (const void *table_,
hb_hashmap_t<unsigned, hb::unique_ptr<hb_set_t>> *script_langsys_map_,
const hb_map_t *duplicate_feature_map_,
hb_set_t *new_collected_feature_indexes_)
:table (table_),
script_langsys_map (script_langsys_map_),
duplicate_feature_map (duplicate_feature_map_),
new_feature_indexes (new_collected_feature_indexes_),
script_count (0),langsys_feature_count (0) {}
bool visitScript ()
{ return script_count++ < HB_MAX_SCRIPTS; }
bool visitLangsys (unsigned feature_count)
{
langsys_feature_count += feature_count;
return langsys_feature_count < HB_MAX_LANGSYS_FEATURE_COUNT;
}
public:
const void *table;
hb_hashmap_t<unsigned, hb::unique_ptr<hb_set_t>> *script_langsys_map;
const hb_map_t *duplicate_feature_map;
hb_set_t *new_feature_indexes;
private:
unsigned script_count;
unsigned langsys_feature_count;
};
struct hb_subset_layout_context_t :
hb_dispatch_context_t<hb_subset_layout_context_t, hb_empty_t, HB_DEBUG_SUBSET>
{
const char *get_name () { return "SUBSET_LAYOUT"; }
static return_t default_return_value () { return hb_empty_t (); }
bool visitScript ()
{
return script_count++ < HB_MAX_SCRIPTS;
}
bool visitLangSys ()
{
return langsys_count++ < HB_MAX_LANGSYS;
}
bool visitFeatureIndex (int count)
{
feature_index_count += count;
return feature_index_count < HB_MAX_FEATURE_INDICES;
}
bool visitLookupIndex()
{
lookup_index_count++;
return lookup_index_count < HB_MAX_LOOKUP_VISIT_COUNT;
}
hb_subset_context_t *subset_context;
const hb_tag_t table_tag;
const hb_map_t *lookup_index_map;
const hb_hashmap_t<unsigned, hb::unique_ptr<hb_set_t>> *script_langsys_map;
const hb_map_t *feature_index_map;
const hb_hashmap_t<unsigned, const Feature*> *feature_substitutes_map;
hb_hashmap_t<unsigned, hb::shared_ptr<hb_set_t>> *feature_record_cond_idx_map;
unsigned cur_script_index;
unsigned cur_feature_var_record_idx;
hb_subset_layout_context_t (hb_subset_context_t *c_,
hb_tag_t tag_) :
subset_context (c_),
table_tag (tag_),
cur_script_index (0xFFFFu),
cur_feature_var_record_idx (0u),
script_count (0),
langsys_count (0),
feature_index_count (0),
lookup_index_count (0)
{
if (tag_ == HB_OT_TAG_GSUB)
{
lookup_index_map = &c_->plan->gsub_lookups;
script_langsys_map = &c_->plan->gsub_langsys;
feature_index_map = &c_->plan->gsub_features;
feature_substitutes_map = &c_->plan->gsub_feature_substitutes_map;
feature_record_cond_idx_map = c_->plan->user_axes_location.is_empty () ? nullptr : &c_->plan->gsub_feature_record_cond_idx_map;
}
else
{
lookup_index_map = &c_->plan->gpos_lookups;
script_langsys_map = &c_->plan->gpos_langsys;
feature_index_map = &c_->plan->gpos_features;
feature_substitutes_map = &c_->plan->gpos_feature_substitutes_map;
feature_record_cond_idx_map = c_->plan->user_axes_location.is_empty () ? nullptr : &c_->plan->gpos_feature_record_cond_idx_map;
}
}
private:
unsigned script_count;
unsigned langsys_count;
unsigned feature_index_count;
unsigned lookup_index_count;
};
struct VariationStore;
struct hb_collect_variation_indices_context_t :
hb_dispatch_context_t<hb_collect_variation_indices_context_t>
{
template <typename T>
return_t dispatch (const T &obj) { obj.collect_variation_indices (this); return hb_empty_t (); }
static return_t default_return_value () { return hb_empty_t (); }
hb_set_t *layout_variation_indices;
hb_hashmap_t<unsigned, hb_pair_t<unsigned, int>> *varidx_delta_map;
hb_vector_t<int> *normalized_coords;
const VariationStore *var_store;
const hb_set_t *glyph_set;
const hb_map_t *gpos_lookups;
float *store_cache;
hb_collect_variation_indices_context_t (hb_set_t *layout_variation_indices_,
hb_hashmap_t<unsigned, hb_pair_t<unsigned, int>> *varidx_delta_map_,
hb_vector_t<int> *normalized_coords_,
const VariationStore *var_store_,
const hb_set_t *glyph_set_,
const hb_map_t *gpos_lookups_,
float *store_cache_) :
layout_variation_indices (layout_variation_indices_),
varidx_delta_map (varidx_delta_map_),
normalized_coords (normalized_coords_),
var_store (var_store_),
glyph_set (glyph_set_),
gpos_lookups (gpos_lookups_),
store_cache (store_cache_) {}
};
template<typename OutputArray>
struct subset_offset_array_t
{
subset_offset_array_t (hb_subset_context_t *subset_context_,
OutputArray& out_,
const void *base_) : subset_context (subset_context_),
out (out_), base (base_) {}
template <typename T>
bool operator () (T&& offset)
{
auto snap = subset_context->serializer->snapshot ();
auto *o = out.serialize_append (subset_context->serializer);
if (unlikely (!o)) return false;
bool ret = o->serialize_subset (subset_context, offset, base);
if (!ret)
{
out.pop ();
subset_context->serializer->revert (snap);
}
return ret;
}
private:
hb_subset_context_t *subset_context;
OutputArray &out;
const void *base;
};
template<typename OutputArray, typename Arg>
struct subset_offset_array_arg_t
{
subset_offset_array_arg_t (hb_subset_context_t *subset_context_,
OutputArray& out_,
const void *base_,
Arg &&arg_) : subset_context (subset_context_), out (out_),
base (base_), arg (arg_) {}
template <typename T>
bool operator () (T&& offset)
{
auto snap = subset_context->serializer->snapshot ();
auto *o = out.serialize_append (subset_context->serializer);
if (unlikely (!o)) return false;
bool ret = o->serialize_subset (subset_context, offset, base, arg);
if (!ret)
{
out.pop ();
subset_context->serializer->revert (snap);
}
return ret;
}
private:
hb_subset_context_t *subset_context;
OutputArray &out;
const void *base;
Arg &&arg;
};
/*
* Helper to subset an array of offsets. Subsets the thing pointed to by each offset
* and discards the offset in the array if the subset operation results in an empty
* thing.
*/
struct
{
template<typename OutputArray>
subset_offset_array_t<OutputArray>
operator () (hb_subset_context_t *subset_context, OutputArray& out,
const void *base) const
{ return subset_offset_array_t<OutputArray> (subset_context, out, base); }
/* Variant with one extra argument passed to serialize_subset */
template<typename OutputArray, typename Arg>
subset_offset_array_arg_t<OutputArray, Arg>
operator () (hb_subset_context_t *subset_context, OutputArray& out,
const void *base, Arg &&arg) const
{ return subset_offset_array_arg_t<OutputArray, Arg> (subset_context, out, base, arg); }
}
HB_FUNCOBJ (subset_offset_array);
template<typename OutputArray>
struct subset_record_array_t
{
subset_record_array_t (hb_subset_layout_context_t *c_, OutputArray* out_,
const void *base_) : subset_layout_context (c_),
out (out_), base (base_) {}
template <typename T>
void
operator () (T&& record)
{
auto snap = subset_layout_context->subset_context->serializer->snapshot ();
bool ret = record.subset (subset_layout_context, base);
if (!ret) subset_layout_context->subset_context->serializer->revert (snap);
else out->len++;
}
private:
hb_subset_layout_context_t *subset_layout_context;
OutputArray *out;
const void *base;
};
template<typename OutputArray, typename Arg>
struct subset_record_array_arg_t
{
subset_record_array_arg_t (hb_subset_layout_context_t *c_, OutputArray* out_,
const void *base_,
Arg &&arg_) : subset_layout_context (c_),
out (out_), base (base_), arg (arg_) {}
template <typename T>
void
operator () (T&& record)
{
auto snap = subset_layout_context->subset_context->serializer->snapshot ();
bool ret = record.subset (subset_layout_context, base, arg);
if (!ret) subset_layout_context->subset_context->serializer->revert (snap);
else out->len++;
}
private:
hb_subset_layout_context_t *subset_layout_context;
OutputArray *out;
const void *base;
Arg &&arg;
};
/*
* Helper to subset a RecordList/record array. Subsets each Record in the array and
* discards the record if the subset operation returns false.
*/
struct
{
template<typename OutputArray>
subset_record_array_t<OutputArray>
operator () (hb_subset_layout_context_t *c, OutputArray* out,
const void *base) const
{ return subset_record_array_t<OutputArray> (c, out, base); }
/* Variant with one extra argument passed to subset */
template<typename OutputArray, typename Arg>
subset_record_array_arg_t<OutputArray, Arg>
operator () (hb_subset_layout_context_t *c, OutputArray* out,
const void *base, Arg &&arg) const
{ return subset_record_array_arg_t<OutputArray, Arg> (c, out, base, arg); }
}
HB_FUNCOBJ (subset_record_array);
template<typename OutputArray>
struct serialize_math_record_array_t
{
serialize_math_record_array_t (hb_serialize_context_t *serialize_context_,
OutputArray& out_,
const void *base_) : serialize_context (serialize_context_),
out (out_), base (base_) {}
template <typename T>
bool operator () (T&& record)
{
if (!serialize_context->copy (record, base)) return false;
out.len++;
return true;
}
private:
hb_serialize_context_t *serialize_context;
OutputArray &out;
const void *base;
};
/*
* Helper to serialize an array of MATH records.
*/
struct
{
template<typename OutputArray>
serialize_math_record_array_t<OutputArray>
operator () (hb_serialize_context_t *serialize_context, OutputArray& out,
const void *base) const
{ return serialize_math_record_array_t<OutputArray> (serialize_context, out, base); }
}
HB_FUNCOBJ (serialize_math_record_array);
/*
*
* OpenType Layout Common Table Formats
*
*/
/*
* Script, ScriptList, LangSys, Feature, FeatureList, Lookup, LookupList
*/
struct IndexArray : Array16Of<Index>
{
bool intersects (const hb_map_t *indexes) const
{ return hb_any (*this, indexes); }
template <typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
void serialize (hb_serialize_context_t *c,
hb_subset_layout_context_t *l,
Iterator it)
{
if (!it) return;
if (unlikely (!c->extend_min ((*this)))) return;
for (const auto _ : it)
{
if (!l->visitLookupIndex()) break;
Index i;
i = _;
c->copy (i);
this->len++;
}
}
unsigned int get_indexes (unsigned int start_offset,
unsigned int *_count /* IN/OUT */,
unsigned int *_indexes /* OUT */) const
{
if (_count)
{
+ this->as_array ().sub_array (start_offset, _count)
| hb_sink (hb_array (_indexes, *_count))
;
}
return this->len;
}
void add_indexes_to (hb_set_t* output /* OUT */) const
{
output->add_array (as_array ());
}
};
/* https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#size */
struct FeatureParamsSize
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (unlikely (!c->check_struct (this))) return_trace (false);
/* This subtable has some "history", if you will. Some earlier versions of
* Adobe tools calculated the offset of the FeatureParams subtable from the
* beginning of the FeatureList table! Now, that is dealt with in the
* Feature implementation. But we still need to be able to tell junk from
* real data. Note: We don't check that the nameID actually exists.
*
* Read Roberts wrote on 9/15/06 on opentype-list@indx.co.uk :
*
* Yes, it is correct that a new version of the AFDKO (version 2.0) will be
* coming out soon, and that the makeotf program will build a font with a
* 'size' feature that is correct by the specification.
*
* The specification for this feature tag is in the "OpenType Layout Tag
* Registry". You can see a copy of this at:
* https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#tag-size
*
* Here is one set of rules to determine if the 'size' feature is built
* correctly, or as by the older versions of MakeOTF. You may be able to do
* better.
*
* Assume that the offset to the size feature is according to specification,
* and make the following value checks. If it fails, assume the size
* feature is calculated as versions of MakeOTF before the AFDKO 2.0 built it.
* If this fails, reject the 'size' feature. The older makeOTF's calculated the
* offset from the beginning of the FeatureList table, rather than from the
* beginning of the 'size' Feature table.
*
* If "design size" == 0:
* fails check
*
* Else if ("subfamily identifier" == 0 and
* "range start" == 0 and
* "range end" == 0 and
* "range start" == 0 and
* "menu name ID" == 0)
* passes check: this is the format used when there is a design size
* specified, but there is no recommended size range.
*
* Else if ("design size" < "range start" or
* "design size" > "range end" or
* "range end" <= "range start" or
* "menu name ID" < 256 or
* "menu name ID" > 32767 or
* menu name ID is not a name ID which is actually in the name table)
* fails test
* Else
* passes test.
*/
if (!designSize)
return_trace (false);
else if (subfamilyID == 0 &&
subfamilyNameID == 0 &&
rangeStart == 0 &&
rangeEnd == 0)
return_trace (true);
else if (designSize < rangeStart ||
designSize > rangeEnd ||
subfamilyNameID < 256 ||
subfamilyNameID > 32767)
return_trace (false);
else
return_trace (true);
}
void collect_name_ids (hb_set_t *nameids_to_retain /* OUT */) const
{ nameids_to_retain->add (subfamilyNameID); }
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
return_trace ((bool) c->serializer->embed (*this));
}
HBUINT16 designSize; /* Represents the design size in 720/inch
* units (decipoints). The design size entry
* must be non-zero. When there is a design
* size but no recommended size range, the
* rest of the array will consist of zeros. */
HBUINT16 subfamilyID; /* Has no independent meaning, but serves
* as an identifier that associates fonts
* in a subfamily. All fonts which share a
* Preferred or Font Family name and which
* differ only by size range shall have the
* same subfamily value, and no fonts which
* differ in weight or style shall have the
* same subfamily value. If this value is
* zero, the remaining fields in the array
* will be ignored. */
NameID subfamilyNameID;/* If the preceding value is non-zero, this
* value must be set in the range 256 - 32767
* (inclusive). It records the value of a
* field in the name table, which must
* contain English-language strings encoded
* in Windows Unicode and Macintosh Roman,
* and may contain additional strings
* localized to other scripts and languages.
* Each of these strings is the name an
* application should use, in combination
* with the family name, to represent the
* subfamily in a menu. Applications will
* choose the appropriate version based on
* their selection criteria. */
HBUINT16 rangeStart; /* Large end of the recommended usage range
* (inclusive), stored in 720/inch units
* (decipoints). */
HBUINT16 rangeEnd; /* Small end of the recommended usage range
(exclusive), stored in 720/inch units
* (decipoints). */
public:
DEFINE_SIZE_STATIC (10);
};
/* https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#ssxx */
struct FeatureParamsStylisticSet
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
/* Right now minorVersion is at zero. Which means, any table supports
* the uiNameID field. */
return_trace (c->check_struct (this));
}
void collect_name_ids (hb_set_t *nameids_to_retain /* OUT */) const
{ nameids_to_retain->add (uiNameID); }
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
return_trace ((bool) c->serializer->embed (*this));
}
HBUINT16 version; /* (set to 0): This corresponds to a “minor”
* version number. Additional data may be
* added to the end of this Feature Parameters
* table in the future. */
NameID uiNameID; /* The 'name' table name ID that specifies a
* string (or strings, for multiple languages)
* for a user-interface label for this
* feature. The values of uiLabelNameId and
* sampleTextNameId are expected to be in the
* font-specific name ID range (256-32767),
* though that is not a requirement in this
* Feature Parameters specification. The
* user-interface label for the feature can
* be provided in multiple languages. An
* English string should be included as a
* fallback. The string should be kept to a
* minimal length to fit comfortably with
* different application interfaces. */
public:
DEFINE_SIZE_STATIC (4);
};
/* https://docs.microsoft.com/en-us/typography/opentype/spec/features_ae#cv01-cv99 */
struct FeatureParamsCharacterVariants
{
unsigned
get_characters (unsigned start_offset, unsigned *char_count, hb_codepoint_t *chars) const
{
if (char_count)
{
+ characters.as_array ().sub_array (start_offset, char_count)
| hb_sink (hb_array (chars, *char_count))
;
}
return characters.len;
}
unsigned get_size () const
{ return min_size + characters.len * HBUINT24::static_size; }
void collect_name_ids (hb_set_t *nameids_to_retain /* OUT */) const
{
if (featUILableNameID) nameids_to_retain->add (featUILableNameID);
if (featUITooltipTextNameID) nameids_to_retain->add (featUITooltipTextNameID);
if (sampleTextNameID) nameids_to_retain->add (sampleTextNameID);
if (!firstParamUILabelNameID || !numNamedParameters || numNamedParameters >= 0x7FFF)
return;
unsigned last_name_id = (unsigned) firstParamUILabelNameID + (unsigned) numNamedParameters - 1;
if (last_name_id >= 256 && last_name_id <= 32767)
nameids_to_retain->add_range (firstParamUILabelNameID, last_name_id);
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
return_trace ((bool) c->serializer->embed (*this));
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
characters.sanitize (c));
}
HBUINT16 format; /* Format number is set to 0. */
NameID featUILableNameID; /* The ‘name’ table name ID that
* specifies a string (or strings,
* for multiple languages) for a
* user-interface label for this
* feature. (May be NULL.) */
NameID featUITooltipTextNameID;/* The ‘name’ table name ID that
* specifies a string (or strings,
* for multiple languages) that an
* application can use for tooltip
* text for this feature. (May be
* nullptr.) */
NameID sampleTextNameID; /* The ‘name’ table name ID that
* specifies sample text that
* illustrates the effect of this
* feature. (May be NULL.) */
HBUINT16 numNamedParameters; /* Number of named parameters. (May
* be zero.) */
NameID firstParamUILabelNameID;/* The first ‘name’ table name ID
* used to specify strings for
* user-interface labels for the
* feature parameters. (Must be zero
* if numParameters is zero.) */
Array16Of<HBUINT24>
characters; /* Array of the Unicode Scalar Value
* of the characters for which this
* feature provides glyph variants.
* (May be zero.) */
public:
DEFINE_SIZE_ARRAY (14, characters);
};
struct FeatureParams
{
bool sanitize (hb_sanitize_context_t *c, hb_tag_t tag) const
{
#ifdef HB_NO_LAYOUT_FEATURE_PARAMS
return true;
#endif
TRACE_SANITIZE (this);
if (tag == HB_TAG ('s','i','z','e'))
return_trace (u.size.sanitize (c));
if ((tag & 0xFFFF0000u) == HB_TAG ('s','s','\0','\0')) /* ssXX */
return_trace (u.stylisticSet.sanitize (c));
if ((tag & 0xFFFF0000u) == HB_TAG ('c','v','\0','\0')) /* cvXX */
return_trace (u.characterVariants.sanitize (c));
return_trace (true);
}
void collect_name_ids (hb_tag_t tag, hb_set_t *nameids_to_retain /* OUT */) const
{
#ifdef HB_NO_LAYOUT_FEATURE_PARAMS
return;
#endif
if (tag == HB_TAG ('s','i','z','e'))
return (u.size.collect_name_ids (nameids_to_retain));
if ((tag & 0xFFFF0000u) == HB_TAG ('s','s','\0','\0')) /* ssXX */
return (u.stylisticSet.collect_name_ids (nameids_to_retain));
if ((tag & 0xFFFF0000u) == HB_TAG ('c','v','\0','\0')) /* cvXX */
return (u.characterVariants.collect_name_ids (nameids_to_retain));
}
bool subset (hb_subset_context_t *c, const Tag* tag) const
{
TRACE_SUBSET (this);
if (!tag) return_trace (false);
if (*tag == HB_TAG ('s','i','z','e'))
return_trace (u.size.subset (c));
if ((*tag & 0xFFFF0000u) == HB_TAG ('s','s','\0','\0')) /* ssXX */
return_trace (u.stylisticSet.subset (c));
if ((*tag & 0xFFFF0000u) == HB_TAG ('c','v','\0','\0')) /* cvXX */
return_trace (u.characterVariants.subset (c));
return_trace (false);
}
#ifndef HB_NO_LAYOUT_FEATURE_PARAMS
const FeatureParamsSize& get_size_params (hb_tag_t tag) const
{
if (tag == HB_TAG ('s','i','z','e'))
return u.size;
return Null (FeatureParamsSize);
}
const FeatureParamsStylisticSet& get_stylistic_set_params (hb_tag_t tag) const
{
if ((tag & 0xFFFF0000u) == HB_TAG ('s','s','\0','\0')) /* ssXX */
return u.stylisticSet;
return Null (FeatureParamsStylisticSet);
}
const FeatureParamsCharacterVariants& get_character_variants_params (hb_tag_t tag) const
{
if ((tag & 0xFFFF0000u) == HB_TAG ('c','v','\0','\0')) /* cvXX */
return u.characterVariants;
return Null (FeatureParamsCharacterVariants);
}
#endif
private:
union {
FeatureParamsSize size;
FeatureParamsStylisticSet stylisticSet;
FeatureParamsCharacterVariants characterVariants;
} u;
public:
DEFINE_SIZE_MIN (0);
};
struct Record_sanitize_closure_t {
hb_tag_t tag;
const void *list_base;
};
struct Feature
{
unsigned int get_lookup_count () const
{ return lookupIndex.len; }
hb_tag_t get_lookup_index (unsigned int i) const
{ return lookupIndex[i]; }
unsigned int get_lookup_indexes (unsigned int start_index,
unsigned int *lookup_count /* IN/OUT */,
unsigned int *lookup_tags /* OUT */) const
{ return lookupIndex.get_indexes (start_index, lookup_count, lookup_tags); }
void add_lookup_indexes_to (hb_set_t *lookup_indexes) const
{ lookupIndex.add_indexes_to (lookup_indexes); }
const FeatureParams &get_feature_params () const
{ return this+featureParams; }
bool intersects_lookup_indexes (const hb_map_t *lookup_indexes) const
{ return lookupIndex.intersects (lookup_indexes); }
void collect_name_ids (hb_tag_t tag, hb_set_t *nameids_to_retain /* OUT */) const
{
if (featureParams)
get_feature_params ().collect_name_ids (tag, nameids_to_retain);
}
bool subset (hb_subset_context_t *c,
hb_subset_layout_context_t *l,
const Tag *tag = nullptr) const
{
TRACE_SUBSET (this);
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
out->featureParams.serialize_subset (c, featureParams, this, tag);
auto it =
+ hb_iter (lookupIndex)
| hb_filter (l->lookup_index_map)
| hb_map (l->lookup_index_map)
;
out->lookupIndex.serialize (c->serializer, l, it);
// The decision to keep or drop this feature is already made before we get here
// so always retain it.
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c,
const Record_sanitize_closure_t *closure = nullptr) const
{
TRACE_SANITIZE (this);
if (unlikely (!(c->check_struct (this) && lookupIndex.sanitize (c))))
return_trace (false);
/* Some earlier versions of Adobe tools calculated the offset of the
* FeatureParams subtable from the beginning of the FeatureList table!
*
* If sanitizing "failed" for the FeatureParams subtable, try it with the
* alternative location. We would know sanitize "failed" if old value
* of the offset was non-zero, but it's zeroed now.
*
* Only do this for the 'size' feature, since at the time of the faulty
* Adobe tools, only the 'size' feature had FeatureParams defined.
*/
if (likely (featureParams.is_null ()))
return_trace (true);
unsigned int orig_offset = featureParams;
if (unlikely (!featureParams.sanitize (c, this, closure ? closure->tag : HB_TAG_NONE)))
return_trace (false);
if (featureParams == 0 && closure &&
closure->tag == HB_TAG ('s','i','z','e') &&
closure->list_base && closure->list_base < this)
{
unsigned int new_offset_int = orig_offset -
(((char *) this) - ((char *) closure->list_base));
Offset16To<FeatureParams> new_offset;
/* Check that it would not overflow. */
new_offset = new_offset_int;
if (new_offset == new_offset_int &&
c->try_set (&featureParams, new_offset_int) &&
!featureParams.sanitize (c, this, closure ? closure->tag : HB_TAG_NONE))
return_trace (false);
}
return_trace (true);
}
Offset16To<FeatureParams>
featureParams; /* Offset to Feature Parameters table (if one
* has been defined for the feature), relative
* to the beginning of the Feature Table; = Null
* if not required */
IndexArray lookupIndex; /* Array of LookupList indices */
public:
DEFINE_SIZE_ARRAY_SIZED (4, lookupIndex);
};
template <typename Type>
struct Record
{
int cmp (hb_tag_t a) const { return tag.cmp (a); }
bool subset (hb_subset_layout_context_t *c, const void *base, const void *f_sub = nullptr) const
{
TRACE_SUBSET (this);
auto *out = c->subset_context->serializer->embed (this);
if (unlikely (!out)) return_trace (false);
if (!f_sub)
return_trace (out->offset.serialize_subset (c->subset_context, offset, base, c, &tag));
const Feature& f = *reinterpret_cast<const Feature *> (f_sub);
auto *s = c->subset_context->serializer;
s->push ();
out->offset = 0;
bool ret = f.subset (c->subset_context, c, &tag);
if (ret)
s->add_link (out->offset, s->pop_pack ());
else
s->pop_discard ();
return_trace (ret);
}
bool sanitize (hb_sanitize_context_t *c, const void *base) const
{
TRACE_SANITIZE (this);
const Record_sanitize_closure_t closure = {tag, base};
return_trace (c->check_struct (this) && offset.sanitize (c, base, &closure));
}
Tag tag; /* 4-byte Tag identifier */
Offset16To<Type>
offset; /* Offset from beginning of object holding
* the Record */
public:
DEFINE_SIZE_STATIC (6);
};
template <typename Type>
struct RecordArrayOf : SortedArray16Of<Record<Type>>
{
const Offset16To<Type>& get_offset (unsigned int i) const
{ return (*this)[i].offset; }
Offset16To<Type>& get_offset (unsigned int i)
{ return (*this)[i].offset; }
const Tag& get_tag (unsigned int i) const
{ return (*this)[i].tag; }
unsigned int get_tags (unsigned int start_offset,
unsigned int *record_count /* IN/OUT */,
hb_tag_t *record_tags /* OUT */) const
{
if (record_count)
{
+ this->as_array ().sub_array (start_offset, record_count)
| hb_map (&Record<Type>::tag)
| hb_sink (hb_array (record_tags, *record_count))
;
}
return this->len;
}
bool find_index (hb_tag_t tag, unsigned int *index) const
{
return this->bfind (tag, index, HB_NOT_FOUND_STORE, Index::NOT_FOUND_INDEX);
}
};
template <typename Type>
struct RecordListOf : RecordArrayOf<Type>
{
const Type& operator [] (unsigned int i) const
{ return this+this->get_offset (i); }
bool subset (hb_subset_context_t *c,
hb_subset_layout_context_t *l) const
{
TRACE_SUBSET (this);
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
+ this->iter ()
| hb_apply (subset_record_array (l, out, this))
;
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (RecordArrayOf<Type>::sanitize (c, this));
}
};
struct RecordListOfFeature : RecordListOf<Feature>
{
bool subset (hb_subset_context_t *c,
hb_subset_layout_context_t *l) const
{
TRACE_SUBSET (this);
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
+ hb_enumerate (*this)
| hb_filter (l->feature_index_map, hb_first)
| hb_apply ([l, out, this] (const hb_pair_t<unsigned, const Record<Feature>&>& _)
{
const Feature *f_sub = nullptr;
const Feature **f = nullptr;
if (l->feature_substitutes_map->has (_.first, &f))
f_sub = *f;
subset_record_array (l, out, this, f_sub) (_.second);
})
;
return_trace (true);
}
};
typedef RecordListOf<Feature> FeatureList;
struct LangSys
{
unsigned int get_feature_count () const
{ return featureIndex.len; }
hb_tag_t get_feature_index (unsigned int i) const
{ return featureIndex[i]; }
unsigned int get_feature_indexes (unsigned int start_offset,
unsigned int *feature_count /* IN/OUT */,
unsigned int *feature_indexes /* OUT */) const
{ return featureIndex.get_indexes (start_offset, feature_count, feature_indexes); }
void add_feature_indexes_to (hb_set_t *feature_indexes) const
{ featureIndex.add_indexes_to (feature_indexes); }
bool has_required_feature () const { return reqFeatureIndex != 0xFFFFu; }
unsigned int get_required_feature_index () const
{
if (reqFeatureIndex == 0xFFFFu)
return Index::NOT_FOUND_INDEX;
return reqFeatureIndex;
}
LangSys* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
return_trace (c->embed (*this));
}
bool compare (const LangSys& o, const hb_map_t *feature_index_map) const
{
if (reqFeatureIndex != o.reqFeatureIndex)
return false;
auto iter =
+ hb_iter (featureIndex)
| hb_filter (feature_index_map)
| hb_map (feature_index_map)
;
auto o_iter =
+ hb_iter (o.featureIndex)
| hb_filter (feature_index_map)
| hb_map (feature_index_map)
;
for (; iter && o_iter; iter++, o_iter++)
{
unsigned a = *iter;
unsigned b = *o_iter;
if (a != b) return false;
}
if (iter || o_iter) return false;
return true;
}
void collect_features (hb_prune_langsys_context_t *c) const
{
if (!has_required_feature () && !get_feature_count ()) return;
if (has_required_feature () &&
c->duplicate_feature_map->has (reqFeatureIndex))
c->new_feature_indexes->add (get_required_feature_index ());
+ hb_iter (featureIndex)
| hb_filter (c->duplicate_feature_map)
| hb_sink (c->new_feature_indexes)
;
}
bool subset (hb_subset_context_t *c,
hb_subset_layout_context_t *l,
const Tag *tag = nullptr) const
{
TRACE_SUBSET (this);
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
const uint32_t *v;
out->reqFeatureIndex = l->feature_index_map->has (reqFeatureIndex, &v) ? *v : 0xFFFFu;
if (!l->visitFeatureIndex (featureIndex.len))
return_trace (false);
auto it =
+ hb_iter (featureIndex)
| hb_filter (l->feature_index_map)
| hb_map (l->feature_index_map)
;
bool ret = bool (it);
out->featureIndex.serialize (c->serializer, l, it);
return_trace (ret);
}
bool sanitize (hb_sanitize_context_t *c,
const Record_sanitize_closure_t * = nullptr) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) && featureIndex.sanitize (c));
}
Offset16 lookupOrderZ; /* = Null (reserved for an offset to a
* reordering table) */
HBUINT16 reqFeatureIndex;/* Index of a feature required for this
* language system--if no required features
* = 0xFFFFu */
IndexArray featureIndex; /* Array of indices into the FeatureList */
public:
DEFINE_SIZE_ARRAY_SIZED (6, featureIndex);
};
DECLARE_NULL_NAMESPACE_BYTES (OT, LangSys);
struct Script
{
unsigned int get_lang_sys_count () const
{ return langSys.len; }
const Tag& get_lang_sys_tag (unsigned int i) const
{ return langSys.get_tag (i); }
unsigned int get_lang_sys_tags (unsigned int start_offset,
unsigned int *lang_sys_count /* IN/OUT */,
hb_tag_t *lang_sys_tags /* OUT */) const
{ return langSys.get_tags (start_offset, lang_sys_count, lang_sys_tags); }
const LangSys& get_lang_sys (unsigned int i) const
{
if (i == Index::NOT_FOUND_INDEX) return get_default_lang_sys ();
return this+langSys[i].offset;
}
bool find_lang_sys_index (hb_tag_t tag, unsigned int *index) const
{ return langSys.find_index (tag, index); }
bool has_default_lang_sys () const { return defaultLangSys != 0; }
const LangSys& get_default_lang_sys () const { return this+defaultLangSys; }
void prune_langsys (hb_prune_langsys_context_t *c,
unsigned script_index) const
{
if (!has_default_lang_sys () && !get_lang_sys_count ()) return;
if (!c->visitScript ()) return;
if (!c->script_langsys_map->has (script_index))
{
if (unlikely (!c->script_langsys_map->set (script_index, hb::unique_ptr<hb_set_t> {hb_set_create ()})))
return;
}
if (has_default_lang_sys ())
{
//only collect features from non-redundant langsys
const LangSys& d = get_default_lang_sys ();
if (c->visitLangsys (d.get_feature_count ())) {
d.collect_features (c);
}
for (auto _ : + hb_enumerate (langSys))
{
const LangSys& l = this+_.second.offset;
if (!c->visitLangsys (l.get_feature_count ())) continue;
if (l.compare (d, c->duplicate_feature_map)) continue;
l.collect_features (c);
c->script_langsys_map->get (script_index)->add (_.first);
}
}
else
{
for (auto _ : + hb_enumerate (langSys))
{
const LangSys& l = this+_.second.offset;
if (!c->visitLangsys (l.get_feature_count ())) continue;
l.collect_features (c);
c->script_langsys_map->get (script_index)->add (_.first);
}
}
}
bool subset (hb_subset_context_t *c,
hb_subset_layout_context_t *l,
const Tag *tag) const
{
TRACE_SUBSET (this);
if (!l->visitScript ()) return_trace (false);
if (tag && !c->plan->layout_scripts.has (*tag))
return false;
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
bool defaultLang = false;
if (has_default_lang_sys ())
{
c->serializer->push ();
const LangSys& ls = this+defaultLangSys;
bool ret = ls.subset (c, l);
if (!ret && tag && *tag != HB_TAG ('D', 'F', 'L', 'T'))
{
c->serializer->pop_discard ();
out->defaultLangSys = 0;
}
else
{
c->serializer->add_link (out->defaultLangSys, c->serializer->pop_pack ());
defaultLang = true;
}
}
const hb_set_t *active_langsys = l->script_langsys_map->get (l->cur_script_index);
if (active_langsys)
{
+ hb_enumerate (langSys)
| hb_filter (active_langsys, hb_first)
| hb_map (hb_second)
| hb_filter ([=] (const Record<LangSys>& record) {return l->visitLangSys (); })
| hb_apply (subset_record_array (l, &(out->langSys), this))
;
}
return_trace (bool (out->langSys.len) || defaultLang || l->table_tag == HB_OT_TAG_GSUB);
}
bool sanitize (hb_sanitize_context_t *c,
const Record_sanitize_closure_t * = nullptr) const
{
TRACE_SANITIZE (this);
return_trace (defaultLangSys.sanitize (c, this) && langSys.sanitize (c, this));
}
protected:
Offset16To<LangSys>
defaultLangSys; /* Offset to DefaultLangSys table--from
* beginning of Script table--may be Null */
RecordArrayOf<LangSys>
langSys; /* Array of LangSysRecords--listed
* alphabetically by LangSysTag */
public:
DEFINE_SIZE_ARRAY_SIZED (4, langSys);
};
struct RecordListOfScript : RecordListOf<Script>
{
bool subset (hb_subset_context_t *c,
hb_subset_layout_context_t *l) const
{
TRACE_SUBSET (this);
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
for (auto _ : + hb_enumerate (*this))
{
auto snap = c->serializer->snapshot ();
l->cur_script_index = _.first;
bool ret = _.second.subset (l, this);
if (!ret) c->serializer->revert (snap);
else out->len++;
}
return_trace (true);
}
};
typedef RecordListOfScript ScriptList;
struct LookupFlag : HBUINT16
{
enum Flags {
RightToLeft = 0x0001u,
IgnoreBaseGlyphs = 0x0002u,
IgnoreLigatures = 0x0004u,
IgnoreMarks = 0x0008u,
IgnoreFlags = 0x000Eu,
UseMarkFilteringSet = 0x0010u,
Reserved = 0x00E0u,
MarkAttachmentType = 0xFF00u
};
public:
DEFINE_SIZE_STATIC (2);
};
} /* namespace OT */
/* This has to be outside the namespace. */
HB_MARK_AS_FLAG_T (OT::LookupFlag::Flags);
namespace OT {
struct Lookup
{
unsigned int get_subtable_count () const { return subTable.len; }
template <typename TSubTable>
const Array16OfOffset16To<TSubTable>& get_subtables () const
{ return reinterpret_cast<const Array16OfOffset16To<TSubTable> &> (subTable); }
template <typename TSubTable>
Array16OfOffset16To<TSubTable>& get_subtables ()
{ return reinterpret_cast<Array16OfOffset16To<TSubTable> &> (subTable); }
template <typename TSubTable>
const TSubTable& get_subtable (unsigned int i) const
{ return this+get_subtables<TSubTable> ()[i]; }
template <typename TSubTable>
TSubTable& get_subtable (unsigned int i)
{ return this+get_subtables<TSubTable> ()[i]; }
unsigned int get_size () const
{
const HBUINT16 &markFilteringSet = StructAfter<const HBUINT16> (subTable);
if (lookupFlag & LookupFlag::UseMarkFilteringSet)
return (const char *) &StructAfter<const char> (markFilteringSet) - (const char *) this;
return (const char *) &markFilteringSet - (const char *) this;
}
unsigned int get_type () const { return lookupType; }
/* lookup_props is a 32-bit integer where the lower 16-bit is LookupFlag and
* higher 16-bit is mark-filtering-set if the lookup uses one.
* Not to be confused with glyph_props which is very similar. */
uint32_t get_props () const
{
unsigned int flag = lookupFlag;
if (unlikely (flag & LookupFlag::UseMarkFilteringSet))
{
const HBUINT16 &markFilteringSet = StructAfter<HBUINT16> (subTable);
flag += (markFilteringSet << 16);
}
return flag;
}
template <typename TSubTable, typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const
{
unsigned int lookup_type = get_type ();
TRACE_DISPATCH (this, lookup_type);
unsigned int count = get_subtable_count ();
for (unsigned int i = 0; i < count; i++) {
typename context_t::return_t r = get_subtable<TSubTable> (i).dispatch (c, lookup_type, std::forward<Ts> (ds)...);
if (c->stop_sublookup_iteration (r))
return_trace (r);
}
return_trace (c->default_return_value ());
}
bool serialize (hb_serialize_context_t *c,
unsigned int lookup_type,
uint32_t lookup_props,
unsigned int num_subtables)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (this))) return_trace (false);
lookupType = lookup_type;
lookupFlag = lookup_props & 0xFFFFu;
if (unlikely (!subTable.serialize (c, num_subtables))) return_trace (false);
if (lookupFlag & LookupFlag::UseMarkFilteringSet)
{
if (unlikely (!c->extend (this))) return_trace (false);
HBUINT16 &markFilteringSet = StructAfter<HBUINT16> (subTable);
markFilteringSet = lookup_props >> 16;
}
return_trace (true);
}
template <typename TSubTable>
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
out->lookupType = lookupType;
out->lookupFlag = lookupFlag;
const hb_set_t *glyphset = c->plan->glyphset_gsub ();
unsigned int lookup_type = get_type ();
+ hb_iter (get_subtables <TSubTable> ())
| hb_filter ([this, glyphset, lookup_type] (const Offset16To<TSubTable> &_) { return (this+_).intersects (glyphset, lookup_type); })
| hb_apply (subset_offset_array (c, out->get_subtables<TSubTable> (), this, lookup_type))
;
if (lookupFlag & LookupFlag::UseMarkFilteringSet)
{
if (unlikely (!c->serializer->extend (out))) return_trace (false);
const HBUINT16 &markFilteringSet = StructAfter<HBUINT16> (subTable);
HBUINT16 &outMarkFilteringSet = StructAfter<HBUINT16> (out->subTable);
outMarkFilteringSet = markFilteringSet;
}
// Always keep the lookup even if it's empty. The rest of layout subsetting depends on lookup
// indices being consistent with those computed during planning. So if an empty lookup is
// discarded during the subset phase it will invalidate all subsequent lookup indices.
// Generally we shouldn't end up with an empty lookup as we pre-prune them during the planning
// phase, but it can happen in rare cases such as when during closure subtable is considered
// degenerate (see: https://github.com/harfbuzz/harfbuzz/issues/3853)
return_trace (true);
}
template <typename TSubTable>
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (!(c->check_struct (this) && subTable.sanitize (c))) return_trace (false);
unsigned subtables = get_subtable_count ();
if (unlikely (!c->visit_subtables (subtables))) return_trace (false);
if (lookupFlag & LookupFlag::UseMarkFilteringSet)
{
const HBUINT16 &markFilteringSet = StructAfter<HBUINT16> (subTable);
if (!markFilteringSet.sanitize (c)) return_trace (false);
}
if (unlikely (!get_subtables<TSubTable> ().sanitize (c, this, get_type ())))
return_trace (false);
if (unlikely (get_type () == TSubTable::Extension && !c->get_edit_count ()))
{
/* The spec says all subtables of an Extension lookup should
* have the same type, which shall not be the Extension type
* itself (but we already checked for that).
* This is specially important if one has a reverse type!
*
* We only do this if sanitizer edit_count is zero. Otherwise,
* some of the subtables might have become insane after they
* were sanity-checked by the edits of subsequent subtables.
* https://bugs.chromium.org/p/chromium/issues/detail?id=960331
*/
unsigned int type = get_subtable<TSubTable> (0).u.extension.get_type ();
for (unsigned int i = 1; i < subtables; i++)
if (get_subtable<TSubTable> (i).u.extension.get_type () != type)
return_trace (false);
}
return_trace (true);
}
protected:
HBUINT16 lookupType; /* Different enumerations for GSUB and GPOS */
HBUINT16 lookupFlag; /* Lookup qualifiers */
Array16Of<Offset16>
subTable; /* Array of SubTables */
/*HBUINT16 markFilteringSetX[HB_VAR_ARRAY];*//* Index (base 0) into GDEF mark glyph sets
* structure. This field is only present if bit
* UseMarkFilteringSet of lookup flags is set. */
public:
DEFINE_SIZE_ARRAY (6, subTable);
};
template <typename Types>
using LookupList = List16OfOffsetTo<Lookup, typename Types::HBUINT>;
template <typename TLookup, typename OffsetType>
struct LookupOffsetList : List16OfOffsetTo<TLookup, OffsetType>
{
bool subset (hb_subset_context_t *c,
hb_subset_layout_context_t *l) const
{
TRACE_SUBSET (this);
auto *out = c->serializer->start_embed (this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
+ hb_enumerate (*this)
| hb_filter (l->lookup_index_map, hb_first)
| hb_map (hb_second)
| hb_apply (subset_offset_array (c, *out, this))
;
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (List16OfOffset16To<TLookup>::sanitize (c, this));
}
};
/*
* Coverage Table
*/
static bool ClassDef_remap_and_serialize (hb_serialize_context_t *c,
const hb_set_t &klasses,
bool use_class_zero,
hb_sorted_vector_t<hb_codepoint_pair_t> &glyph_and_klass, /* IN/OUT */
hb_map_t *klass_map /*IN/OUT*/)
{
if (!klass_map)
return ClassDef_serialize (c, glyph_and_klass.iter ());
/* any glyph not assigned a class value falls into Class zero (0),
* if any glyph assigned to class 0, remapping must start with 0->0*/
if (!use_class_zero)
klass_map->set (0, 0);
unsigned idx = klass_map->has (0) ? 1 : 0;
for (const unsigned k: klasses)
{
if (klass_map->has (k)) continue;
klass_map->set (k, idx);
idx++;
}
for (unsigned i = 0; i < glyph_and_klass.length; i++)
{
hb_codepoint_t klass = glyph_and_klass[i].second;
glyph_and_klass[i].second = klass_map->get (klass);
}
c->propagate_error (glyph_and_klass, klasses);
return ClassDef_serialize (c, glyph_and_klass.iter ());
}
/*
* Class Definition Table
*/
template <typename Types>
struct ClassDefFormat1_3
{
friend struct ClassDef;
private:
unsigned int get_class (hb_codepoint_t glyph_id) const
{
return classValue[(unsigned int) (glyph_id - startGlyph)];
}
unsigned get_population () const
{
return classValue.len;
}
template<typename Iterator,
hb_requires (hb_is_sorted_source_of (Iterator, hb_codepoint_t))>
bool serialize (hb_serialize_context_t *c,
Iterator it)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (this))) return_trace (false);
if (unlikely (!it))
{
classFormat = 1;
startGlyph = 0;
classValue.len = 0;
return_trace (true);
}
hb_codepoint_t glyph_min = (*it).first;
hb_codepoint_t glyph_max = + it
| hb_map (hb_first)
| hb_reduce (hb_max, 0u);
unsigned glyph_count = glyph_max - glyph_min + 1;
startGlyph = glyph_min;
if (unlikely (!classValue.serialize (c, glyph_count))) return_trace (false);
for (const hb_pair_t<hb_codepoint_t, uint32_t> gid_klass_pair : + it)
{
unsigned idx = gid_klass_pair.first - glyph_min;
classValue[idx] = gid_klass_pair.second;
}
return_trace (true);
}
bool subset (hb_subset_context_t *c,
hb_map_t *klass_map = nullptr /*OUT*/,
bool keep_empty_table = true,
bool use_class_zero = true,
const Coverage* glyph_filter = nullptr) const
{
TRACE_SUBSET (this);
const hb_map_t &glyph_map = c->plan->glyph_map_gsub;
hb_sorted_vector_t<hb_codepoint_pair_t> glyph_and_klass;
hb_set_t orig_klasses;
hb_codepoint_t start = startGlyph;
hb_codepoint_t end = start + classValue.len;
for (const hb_codepoint_t gid : + hb_range (start, end))
{
hb_codepoint_t new_gid = glyph_map[gid];
if (new_gid == HB_MAP_VALUE_INVALID) continue;
if (glyph_filter && !glyph_filter->has(gid)) continue;
unsigned klass = classValue[gid - start];
if (!klass) continue;
glyph_and_klass.push (hb_pair (new_gid, klass));
orig_klasses.add (klass);
}
if (use_class_zero)
{
unsigned glyph_count = glyph_filter
? hb_len (hb_iter (glyph_map.keys()) | hb_filter (glyph_filter))
: glyph_map.get_population ();
use_class_zero = glyph_count <= glyph_and_klass.length;
}
if (!ClassDef_remap_and_serialize (c->serializer,
orig_klasses,
use_class_zero,
glyph_and_klass,
klass_map))
return_trace (false);
return_trace (keep_empty_table || (bool) glyph_and_klass);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) && classValue.sanitize (c));
}
unsigned cost () const { return 1; }
template <typename set_t>
bool collect_coverage (set_t *glyphs) const
{
unsigned int start = 0;
unsigned int count = classValue.len;
for (unsigned int i = 0; i < count; i++)
{
if (classValue[i])
continue;
if (start != i)
if (unlikely (!glyphs->add_range (startGlyph + start, startGlyph + i)))
return false;
start = i + 1;
}
if (start != count)
if (unlikely (!glyphs->add_range (startGlyph + start, startGlyph + count)))
return false;
return true;
}
template <typename set_t>
bool collect_class (set_t *glyphs, unsigned klass) const
{
unsigned int count = classValue.len;
for (unsigned int i = 0; i < count; i++)
if (classValue[i] == klass) glyphs->add (startGlyph + i);
return true;
}
bool intersects (const hb_set_t *glyphs) const
{
hb_codepoint_t start = startGlyph;
hb_codepoint_t end = startGlyph + classValue.len;
for (hb_codepoint_t iter = startGlyph - 1;
glyphs->next (&iter) && iter < end;)
if (classValue[iter - start]) return true;
return false;
}
bool intersects_class (const hb_set_t *glyphs, uint16_t klass) const
{
unsigned int count = classValue.len;
if (klass == 0)
{
/* Match if there's any glyph that is not listed! */
hb_codepoint_t g = HB_SET_VALUE_INVALID;
if (!glyphs->next (&g)) return false;
if (g < startGlyph) return true;
g = startGlyph + count - 1;
if (glyphs->next (&g)) return true;
/* Fall through. */
}
/* TODO Speed up, using set overlap first? */
/* TODO(iter) Rewrite as dagger. */
const HBUINT16 *arr = classValue.arrayZ;
for (unsigned int i = 0; i < count; i++)
if (arr[i] == klass && glyphs->has (startGlyph + i))
return true;
return false;
}
void intersected_class_glyphs (const hb_set_t *glyphs, unsigned klass, hb_set_t *intersect_glyphs) const
{
unsigned count = classValue.len;
if (klass == 0)
{
unsigned start_glyph = startGlyph;
for (uint32_t g = HB_SET_VALUE_INVALID;
glyphs->next (&g) && g < start_glyph;)
intersect_glyphs->add (g);
for (uint32_t g = startGlyph + count - 1;
glyphs-> next (&g);)
intersect_glyphs->add (g);
return;
}
for (unsigned i = 0; i < count; i++)
if (classValue[i] == klass && glyphs->has (startGlyph + i))
intersect_glyphs->add (startGlyph + i);
#if 0
/* The following implementation is faster asymptotically, but slower
* in practice. */
unsigned start_glyph = startGlyph;
unsigned end_glyph = start_glyph + count;
for (unsigned g = startGlyph - 1;
glyphs->next (&g) && g < end_glyph;)
if (classValue.arrayZ[g - start_glyph] == klass)
intersect_glyphs->add (g);
#endif
}
void intersected_classes (const hb_set_t *glyphs, hb_set_t *intersect_classes) const
{
if (glyphs->is_empty ()) return;
hb_codepoint_t end_glyph = startGlyph + classValue.len - 1;
if (glyphs->get_min () < startGlyph ||
glyphs->get_max () > end_glyph)
intersect_classes->add (0);
for (const auto& _ : + hb_enumerate (classValue))
{
hb_codepoint_t g = startGlyph + _.first;
if (glyphs->has (g))
intersect_classes->add (_.second);
}
}
protected:
HBUINT16 classFormat; /* Format identifier--format = 1 */
typename Types::HBGlyphID
startGlyph; /* First GlyphID of the classValueArray */
typename Types::template ArrayOf<HBUINT16>
classValue; /* Array of Class Values--one per GlyphID */
public:
DEFINE_SIZE_ARRAY (2 + 2 * Types::size, classValue);
};
template <typename Types>
struct ClassDefFormat2_4
{
friend struct ClassDef;
private:
unsigned int get_class (hb_codepoint_t glyph_id) const
{
return rangeRecord.bsearch (glyph_id).value;
}
unsigned get_population () const
{
typename Types::large_int ret = 0;
for (const auto &r : rangeRecord)
ret += r.get_population ();
return ret > UINT_MAX ? UINT_MAX : (unsigned) ret;
}
template<typename Iterator,
hb_requires (hb_is_sorted_source_of (Iterator, hb_codepoint_t))>
bool serialize (hb_serialize_context_t *c,
Iterator it)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (this))) return_trace (false);
if (unlikely (!it))
{
classFormat = 2;
rangeRecord.len = 0;
return_trace (true);
}
unsigned unsorted = false;
unsigned num_ranges = 1;
hb_codepoint_t prev_gid = (*it).first;
unsigned prev_klass = (*it).second;
RangeRecord<Types> range_rec;
range_rec.first = prev_gid;
range_rec.last = prev_gid;
range_rec.value = prev_klass;
auto *record = c->copy (range_rec);
if (unlikely (!record)) return_trace (false);
for (const auto gid_klass_pair : + (++it))
{
hb_codepoint_t cur_gid = gid_klass_pair.first;
unsigned cur_klass = gid_klass_pair.second;
if (cur_gid != prev_gid + 1 ||
cur_klass != prev_klass)
{
if (unlikely (cur_gid < prev_gid))
unsorted = true;
if (unlikely (!record)) break;
record->last = prev_gid;
num_ranges++;
range_rec.first = cur_gid;
range_rec.last = cur_gid;
range_rec.value = cur_klass;
record = c->copy (range_rec);
}
prev_klass = cur_klass;
prev_gid = cur_gid;
}
if (unlikely (c->in_error ())) return_trace (false);
if (likely (record)) record->last = prev_gid;
rangeRecord.len = num_ranges;
if (unlikely (unsorted))
rangeRecord.as_array ().qsort (RangeRecord<Types>::cmp_range);
return_trace (true);
}
bool subset (hb_subset_context_t *c,
hb_map_t *klass_map = nullptr /*OUT*/,
bool keep_empty_table = true,
bool use_class_zero = true,
const Coverage* glyph_filter = nullptr) const
{
TRACE_SUBSET (this);
const hb_map_t &glyph_map = c->plan->glyph_map_gsub;
const hb_set_t &glyph_set = *c->plan->glyphset_gsub ();
hb_sorted_vector_t<hb_codepoint_pair_t> glyph_and_klass;
hb_set_t orig_klasses;
if (glyph_set.get_population () * hb_bit_storage ((unsigned) rangeRecord.len) / 2
< get_population ())
{
for (hb_codepoint_t g : glyph_set)
{
unsigned klass = get_class (g);
if (!klass) continue;
hb_codepoint_t new_gid = glyph_map[g];
if (new_gid == HB_MAP_VALUE_INVALID) continue;
if (glyph_filter && !glyph_filter->has (g)) continue;
glyph_and_klass.push (hb_pair (new_gid, klass));
orig_klasses.add (klass);
}
}
else
{
unsigned num_source_glyphs = c->plan->source->get_num_glyphs ();
for (auto &range : rangeRecord)
{
unsigned klass = range.value;
if (!klass) continue;
hb_codepoint_t start = range.first;
hb_codepoint_t end = hb_min (range.last + 1, num_source_glyphs);
for (hb_codepoint_t g = start; g < end; g++)
{
hb_codepoint_t new_gid = glyph_map[g];
if (new_gid == HB_MAP_VALUE_INVALID) continue;
if (glyph_filter && !glyph_filter->has (g)) continue;
glyph_and_klass.push (hb_pair (new_gid, klass));
orig_klasses.add (klass);
}
}
}
const hb_set_t& glyphset = *c->plan->glyphset_gsub ();
unsigned glyph_count = glyph_filter
? hb_len (hb_iter (glyphset) | hb_filter (glyph_filter))
: glyph_map.get_population ();
use_class_zero = use_class_zero && glyph_count <= glyph_and_klass.length;
if (!ClassDef_remap_and_serialize (c->serializer,
orig_klasses,
use_class_zero,
glyph_and_klass,
klass_map))
return_trace (false);
return_trace (keep_empty_table || (bool) glyph_and_klass);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (rangeRecord.sanitize (c));
}
unsigned cost () const { return hb_bit_storage ((unsigned) rangeRecord.len); /* bsearch cost */ }
template <typename set_t>
bool collect_coverage (set_t *glyphs) const
{
for (auto &range : rangeRecord)
if (range.value)
if (unlikely (!range.collect_coverage (glyphs)))
return false;
return true;
}
template <typename set_t>
bool collect_class (set_t *glyphs, unsigned int klass) const
{
for (auto &range : rangeRecord)
{
if (range.value == klass)
if (unlikely (!range.collect_coverage (glyphs)))
return false;
}
return true;
}
bool intersects (const hb_set_t *glyphs) const
{
if (rangeRecord.len > glyphs->get_population () * hb_bit_storage ((unsigned) rangeRecord.len) / 2)
{
for (auto g : *glyphs)
if (get_class (g))
return true;
return false;
}
return hb_any (+ hb_iter (rangeRecord)
| hb_map ([glyphs] (const RangeRecord<Types> &range) { return range.intersects (*glyphs) && range.value; }));
}
bool intersects_class (const hb_set_t *glyphs, uint16_t klass) const
{
if (klass == 0)
{
/* Match if there's any glyph that is not listed! */
hb_codepoint_t g = HB_SET_VALUE_INVALID;
hb_codepoint_t last = HB_SET_VALUE_INVALID;
auto it = hb_iter (rangeRecord);
for (auto &range : it)
{
if (it->first == last + 1)
{
it++;
continue;
}
if (!glyphs->next (&g))
break;
if (g < range.first)
return true;
g = range.last;
last = g;
}
if (g != HB_SET_VALUE_INVALID && glyphs->next (&g))
return true;
/* Fall through. */
}
for (const auto &range : rangeRecord)
if (range.value == klass && range.intersects (*glyphs))
return true;
return false;
}
void intersected_class_glyphs (const hb_set_t *glyphs, unsigned klass, hb_set_t *intersect_glyphs) const
{
if (klass == 0)
{
hb_codepoint_t g = HB_SET_VALUE_INVALID;
for (auto &range : rangeRecord)
{
if (!glyphs->next (&g))
goto done;
while (g < range.first)
{
intersect_glyphs->add (g);
if (!glyphs->next (&g))
goto done;
}
g = range.last;
}
while (glyphs->next (&g))
intersect_glyphs->add (g);
done:
return;
}
unsigned count = rangeRecord.len;
if (count > glyphs->get_population () * hb_bit_storage (count) * 8)
{
for (auto g : *glyphs)
{
unsigned i;
if (rangeRecord.as_array ().bfind (g, &i) &&
rangeRecord.arrayZ[i].value == klass)
intersect_glyphs->add (g);
}
return;
}
for (auto &range : rangeRecord)
{
if (range.value != klass) continue;
unsigned end = range.last + 1;
for (hb_codepoint_t g = range.first - 1;
glyphs->next (&g) && g < end;)
intersect_glyphs->add (g);
}
}
void intersected_classes (const hb_set_t *glyphs, hb_set_t *intersect_classes) const
{
if (glyphs->is_empty ()) return;
hb_codepoint_t g = HB_SET_VALUE_INVALID;
for (auto &range : rangeRecord)
{
if (!glyphs->next (&g))
break;
if (g < range.first)
{
intersect_classes->add (0);
break;
}
g = range.last;
}
if (g != HB_SET_VALUE_INVALID && glyphs->next (&g))
intersect_classes->add (0);
for (const auto& range : rangeRecord)
if (range.intersects (*glyphs))
intersect_classes->add (range.value);
}
protected:
HBUINT16 classFormat; /* Format identifier--format = 2 */
typename Types::template SortedArrayOf<RangeRecord<Types>>
rangeRecord; /* Array of glyph ranges--ordered by
* Start GlyphID */
public:
DEFINE_SIZE_ARRAY (2 + Types::size, rangeRecord);
};
struct ClassDef
{
/* Has interface. */
unsigned operator [] (hb_codepoint_t k) const { return get (k); }
bool has (hb_codepoint_t k) const { return (*this)[k]; }
/* Projection. */
hb_codepoint_t operator () (hb_codepoint_t k) const { return get (k); }
unsigned int get (hb_codepoint_t k) const { return get_class (k); }
unsigned int get_class (hb_codepoint_t glyph_id) const
{
switch (u.format) {
case 1: return u.format1.get_class (glyph_id);
case 2: return u.format2.get_class (glyph_id);
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.get_class (glyph_id);
case 4: return u.format4.get_class (glyph_id);
#endif
default:return 0;
}
}
unsigned get_population () const
{
switch (u.format) {
case 1: return u.format1.get_population ();
case 2: return u.format2.get_population ();
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.get_population ();
case 4: return u.format4.get_population ();
#endif
default:return NOT_COVERED;
}
}
template<typename Iterator,
hb_requires (hb_is_sorted_source_of (Iterator, hb_codepoint_t))>
bool serialize (hb_serialize_context_t *c, Iterator it_with_class_zero)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (this))) return_trace (false);
auto it = + it_with_class_zero | hb_filter (hb_second);
unsigned format = 2;
hb_codepoint_t glyph_max = 0;
if (likely (it))
{
hb_codepoint_t glyph_min = (*it).first;
glyph_max = glyph_min;
unsigned num_glyphs = 0;
unsigned num_ranges = 1;
hb_codepoint_t prev_gid = glyph_min;
unsigned prev_klass = (*it).second;
for (const auto gid_klass_pair : it)
{
hb_codepoint_t cur_gid = gid_klass_pair.first;
unsigned cur_klass = gid_klass_pair.second;
num_glyphs++;
if (cur_gid == glyph_min) continue;
if (cur_gid > glyph_max) glyph_max = cur_gid;
if (cur_gid != prev_gid + 1 ||
cur_klass != prev_klass)
num_ranges++;
prev_gid = cur_gid;
prev_klass = cur_klass;
}
if (num_glyphs && 1 + (glyph_max - glyph_min + 1) <= num_ranges * 3)
format = 1;
}
#ifndef HB_NO_BEYOND_64K
if (glyph_max > 0xFFFFu)
u.format += 2;
if (unlikely (glyph_max > 0xFFFFFFu))
#else
if (unlikely (glyph_max > 0xFFFFu))
#endif
{
c->check_success (false, HB_SERIALIZE_ERROR_INT_OVERFLOW);
return_trace (false);
}
u.format = format;
switch (u.format)
{
case 1: return_trace (u.format1.serialize (c, it));
case 2: return_trace (u.format2.serialize (c, it));
#ifndef HB_NO_BEYOND_64K
case 3: return_trace (u.format3.serialize (c, it));
case 4: return_trace (u.format4.serialize (c, it));
#endif
default:return_trace (false);
}
}
bool subset (hb_subset_context_t *c,
hb_map_t *klass_map = nullptr /*OUT*/,
bool keep_empty_table = true,
bool use_class_zero = true,
const Coverage* glyph_filter = nullptr) const
{
TRACE_SUBSET (this);
switch (u.format) {
case 1: return_trace (u.format1.subset (c, klass_map, keep_empty_table, use_class_zero, glyph_filter));
case 2: return_trace (u.format2.subset (c, klass_map, keep_empty_table, use_class_zero, glyph_filter));
#ifndef HB_NO_BEYOND_64K
case 3: return_trace (u.format3.subset (c, klass_map, keep_empty_table, use_class_zero, glyph_filter));
case 4: return_trace (u.format4.subset (c, klass_map, keep_empty_table, use_class_zero, glyph_filter));
#endif
default:return_trace (false);
}
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (!u.format.sanitize (c)) return_trace (false);
switch (u.format) {
case 1: return_trace (u.format1.sanitize (c));
case 2: return_trace (u.format2.sanitize (c));
#ifndef HB_NO_BEYOND_64K
case 3: return_trace (u.format3.sanitize (c));
case 4: return_trace (u.format4.sanitize (c));
#endif
default:return_trace (true);
}
}
unsigned cost () const
{
switch (u.format) {
case 1: return u.format1.cost ();
case 2: return u.format2.cost ();
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.cost ();
case 4: return u.format4.cost ();
#endif
default:return 0u;
}
}
/* Might return false if array looks unsorted.
* Used for faster rejection of corrupt data. */
template <typename set_t>
bool collect_coverage (set_t *glyphs) const
{
switch (u.format) {
case 1: return u.format1.collect_coverage (glyphs);
case 2: return u.format2.collect_coverage (glyphs);
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.collect_coverage (glyphs);
case 4: return u.format4.collect_coverage (glyphs);
#endif
default:return false;
}
}
/* Might return false if array looks unsorted.
* Used for faster rejection of corrupt data. */
template <typename set_t>
bool collect_class (set_t *glyphs, unsigned int klass) const
{
switch (u.format) {
case 1: return u.format1.collect_class (glyphs, klass);
case 2: return u.format2.collect_class (glyphs, klass);
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.collect_class (glyphs, klass);
case 4: return u.format4.collect_class (glyphs, klass);
#endif
default:return false;
}
}
bool intersects (const hb_set_t *glyphs) const
{
switch (u.format) {
case 1: return u.format1.intersects (glyphs);
case 2: return u.format2.intersects (glyphs);
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.intersects (glyphs);
case 4: return u.format4.intersects (glyphs);
#endif
default:return false;
}
}
bool intersects_class (const hb_set_t *glyphs, unsigned int klass) const
{
switch (u.format) {
case 1: return u.format1.intersects_class (glyphs, klass);
case 2: return u.format2.intersects_class (glyphs, klass);
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.intersects_class (glyphs, klass);
case 4: return u.format4.intersects_class (glyphs, klass);
#endif
default:return false;
}
}
void intersected_class_glyphs (const hb_set_t *glyphs, unsigned klass, hb_set_t *intersect_glyphs) const
{
switch (u.format) {
case 1: return u.format1.intersected_class_glyphs (glyphs, klass, intersect_glyphs);
case 2: return u.format2.intersected_class_glyphs (glyphs, klass, intersect_glyphs);
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.intersected_class_glyphs (glyphs, klass, intersect_glyphs);
case 4: return u.format4.intersected_class_glyphs (glyphs, klass, intersect_glyphs);
#endif
default:return;
}
}
void intersected_classes (const hb_set_t *glyphs, hb_set_t *intersect_classes) const
{
switch (u.format) {
case 1: return u.format1.intersected_classes (glyphs, intersect_classes);
case 2: return u.format2.intersected_classes (glyphs, intersect_classes);
#ifndef HB_NO_BEYOND_64K
case 3: return u.format3.intersected_classes (glyphs, intersect_classes);
case 4: return u.format4.intersected_classes (glyphs, intersect_classes);
#endif
default:return;
}
}
protected:
union {
HBUINT16 format; /* Format identifier */
ClassDefFormat1_3<SmallTypes> format1;
ClassDefFormat2_4<SmallTypes> format2;
#ifndef HB_NO_BEYOND_64K
ClassDefFormat1_3<MediumTypes>format3;
ClassDefFormat2_4<MediumTypes>format4;
#endif
} u;
public:
DEFINE_SIZE_UNION (2, format);
};
template<typename Iterator>
static inline bool ClassDef_serialize (hb_serialize_context_t *c,
Iterator it)
{ return (c->start_embed<ClassDef> ()->serialize (c, it)); }
/*
* Item Variation Store
*/
/* ported from fonttools (class _Encoding) */
struct delta_row_encoding_t
{
/* each byte represents a region, value is one of 0/1/2/4, which means bytes
* needed for this region */
hb_vector_t<uint8_t> chars;
unsigned width;
unsigned columns;
unsigned overhead;
hb_vector_t<const hb_vector_t<int>*> items;
delta_row_encoding_t () = default;
delta_row_encoding_t (hb_vector_t<uint8_t>&& chars_,
const hb_vector_t<int>* row = nullptr) :
delta_row_encoding_t ()
{
chars = chars_;
width = get_width ();
columns = get_columns ();
overhead = get_chars_overhead (columns);
if (row) items.push (row);
}
bool is_empty () const
{ return !items; }
static hb_vector_t<uint8_t> get_row_chars (const hb_vector_t<int>& row)
{
hb_vector_t<uint8_t> ret;
if (!ret.alloc (row.length)) return ret;
bool long_words = false;
/* 0/1/2 byte encoding */
for (int v: row)
{
if (v == 0)
ret.push (0);
else if (v > 32767 || v < -32768)
{
long_words = true;
break;
}
else if (v > 127 || v < -128)
ret.push (2);
else
ret.push (1);
}
if (!long_words)
return ret;
/* redo, 0/2/4 bytes encoding */
ret.reset ();
for (int v: row)
{
if (v == 0)
ret.push (0);
else if (v > 32767 || v < -32768)
ret.push (4);
else
ret.push (2);
}
return ret;
}
inline unsigned get_width ()
{
unsigned ret = + hb_iter (chars)
| hb_reduce (hb_add, 0u)
;
return ret;
}
unsigned get_columns ()
{
unsigned cols = 0;
unsigned i = 1;
for (auto v : chars)
{
if (v)
cols |= i;
i <<= 1;
}
return cols;
}
static inline unsigned get_chars_overhead (unsigned cols)
{ return 10 + hb_popcount (cols) * 2; }
unsigned get_gain () const
{
int count = items.length;
return hb_max (0, (int) overhead - count);
}
int gain_from_merging (const delta_row_encoding_t& other_encoding) const
{
int combined_width = 0;
for (unsigned i = 0; i < chars.length; i++)
combined_width += hb_max (chars.arrayZ[i], other_encoding.chars.arrayZ[i]);
int combined_columns = columns | other_encoding.columns;
int combined_overhead = get_chars_overhead (combined_columns);
int combined_gain = (int) overhead + (int) other_encoding.overhead - combined_overhead
- (combined_width - (int) width) * items.length
- (combined_width - (int) other_encoding.width) * other_encoding.items.length;
return combined_gain;
}
static int cmp (const void *pa, const void *pb)
{
const delta_row_encoding_t *a = (const delta_row_encoding_t *)pa;
const delta_row_encoding_t *b = (const delta_row_encoding_t *)pb;
int gain_a = a->get_gain ();
int gain_b = b->get_gain ();
if (gain_a != gain_b)
return gain_a - gain_b;
return (b->chars).as_array ().cmp ((a->chars).as_array ());
}
static int cmp_width (const void *pa, const void *pb)
{
const delta_row_encoding_t *a = (const delta_row_encoding_t *)pa;
const delta_row_encoding_t *b = (const delta_row_encoding_t *)pb;
if (a->width != b->width)
return (int) a->width - (int) b->width;
return (b->chars).as_array ().cmp ((a->chars).as_array ());
}
bool add_row (const hb_vector_t<int>* row)
{ return items.push (row); }
};
struct VarRegionAxis
{
float evaluate (int coord) const
{
int peak = peakCoord.to_int ();
if (peak == 0 || coord == peak)
return 1.f;
int start = startCoord.to_int (), end = endCoord.to_int ();
/* TODO Move these to sanitize(). */
if (unlikely (start > peak || peak > end))
return 1.f;
if (unlikely (start < 0 && end > 0 && peak != 0))
return 1.f;
if (coord <= start || end <= coord)
return 0.f;
/* Interpolate */
if (coord < peak)
return float (coord - start) / (peak - start);
else
return float (end - coord) / (end - peak);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
/* TODO Handle invalid start/peak/end configs, so we don't
* have to do that at runtime. */
}
public:
F2DOT14 startCoord;
F2DOT14 peakCoord;
F2DOT14 endCoord;
public:
DEFINE_SIZE_STATIC (6);
};
#define REGION_CACHE_ITEM_CACHE_INVALID 2.f
struct VarRegionList
{
using cache_t = float;
float evaluate (unsigned int region_index,
const int *coords, unsigned int coord_len,
cache_t *cache = nullptr) const
{
if (unlikely (region_index >= regionCount))
return 0.;
float *cached_value = nullptr;
if (cache)
{
cached_value = &(cache[region_index]);
if (likely (*cached_value != REGION_CACHE_ITEM_CACHE_INVALID))
return *cached_value;
}
const VarRegionAxis *axes = axesZ.arrayZ + (region_index * axisCount);
float v = 1.;
unsigned int count = axisCount;
for (unsigned int i = 0; i < count; i++)
{
int coord = i < coord_len ? coords[i] : 0;
float factor = axes[i].evaluate (coord);
if (factor == 0.f)
{
if (cache)
*cached_value = 0.;
return 0.;
}
v *= factor;
}
if (cache)
*cached_value = v;
return v;
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) && axesZ.sanitize (c, axisCount * regionCount));
}
bool serialize (hb_serialize_context_t *c, const VarRegionList *src, const hb_inc_bimap_t &region_map)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (this))) return_trace (false);
axisCount = src->axisCount;
regionCount = region_map.get_population ();
if (unlikely (hb_unsigned_mul_overflows (axisCount * regionCount,
VarRegionAxis::static_size))) return_trace (false);
if (unlikely (!c->extend (this))) return_trace (false);
unsigned int region_count = src->regionCount;
for (unsigned int r = 0; r < regionCount; r++)
{
unsigned int backward = region_map.backward (r);
if (backward >= region_count) return_trace (false);
hb_memcpy (&axesZ[axisCount * r], &src->axesZ[axisCount * backward], VarRegionAxis::static_size * axisCount);
}
return_trace (true);
}
bool get_var_region (unsigned region_index,
const hb_map_t& axes_old_index_tag_map,
hb_hashmap_t<hb_tag_t, Triple>& axis_tuples /* OUT */) const
{
if (region_index >= regionCount) return false;
const VarRegionAxis* axis_region = axesZ.arrayZ + (region_index * axisCount);
for (unsigned i = 0; i < axisCount; i++)
{
hb_tag_t *axis_tag;
if (!axes_old_index_tag_map.has (i, &axis_tag))
return false;
float min_val = axis_region->startCoord.to_float ();
float def_val = axis_region->peakCoord.to_float ();
float max_val = axis_region->endCoord.to_float ();
if (def_val != 0.f)
axis_tuples.set (*axis_tag, Triple (min_val, def_val, max_val));
axis_region++;
}
return !axis_tuples.in_error ();
}
bool get_var_regions (const hb_map_t& axes_old_index_tag_map,
hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>>& regions /* OUT */) const
{
if (!regions.alloc (regionCount))
return false;
for (unsigned i = 0; i < regionCount; i++)
{
hb_hashmap_t<hb_tag_t, Triple> axis_tuples;
if (!get_var_region (i, axes_old_index_tag_map, axis_tuples))
return false;
regions.push (std::move (axis_tuples));
}
return !regions.in_error ();
}
unsigned int get_size () const { return min_size + VarRegionAxis::static_size * axisCount * regionCount; }
public:
HBUINT16 axisCount;
HBUINT15 regionCount;
protected:
UnsizedArrayOf<VarRegionAxis>
axesZ;
public:
DEFINE_SIZE_ARRAY (4, axesZ);
};
struct VarData
{
unsigned int get_item_count () const
{ return itemCount; }
unsigned int get_region_index_count () const
{ return regionIndices.len; }
unsigned get_region_index (unsigned i) const
{ return i >= regionIndices.len ? -1 : regionIndices[i]; }
unsigned int get_row_size () const
{ return (wordCount () + regionIndices.len) * (longWords () ? 2 : 1); }
unsigned int get_size () const
{ return min_size
- regionIndices.min_size + regionIndices.get_size ()
+ itemCount * get_row_size ();
}
float get_delta (unsigned int inner,
const int *coords, unsigned int coord_count,
const VarRegionList &regions,
VarRegionList::cache_t *cache = nullptr) const
{
if (unlikely (inner >= itemCount))
return 0.;
unsigned int count = regionIndices.len;
bool is_long = longWords ();
unsigned word_count = wordCount ();
unsigned int scount = is_long ? count : word_count;
unsigned int lcount = is_long ? word_count : 0;
const HBUINT8 *bytes = get_delta_bytes ();
const HBUINT8 *row = bytes + inner * get_row_size ();
float delta = 0.;
unsigned int i = 0;
const HBINT32 *lcursor = reinterpret_cast<const HBINT32 *> (row);
for (; i < lcount; i++)
{
float scalar = regions.evaluate (regionIndices.arrayZ[i], coords, coord_count, cache);
delta += scalar * *lcursor++;
}
const HBINT16 *scursor = reinterpret_cast<const HBINT16 *> (lcursor);
for (; i < scount; i++)
{
float scalar = regions.evaluate (regionIndices.arrayZ[i], coords, coord_count, cache);
delta += scalar * *scursor++;
}
const HBINT8 *bcursor = reinterpret_cast<const HBINT8 *> (scursor);
for (; i < count; i++)
{
float scalar = regions.evaluate (regionIndices.arrayZ[i], coords, coord_count, cache);
delta += scalar * *bcursor++;
}
return delta;
}
void get_region_scalars (const int *coords, unsigned int coord_count,
const VarRegionList &regions,
float *scalars /*OUT */,
unsigned int num_scalars) const
{
unsigned count = hb_min (num_scalars, regionIndices.len);
for (unsigned int i = 0; i < count; i++)
scalars[i] = regions.evaluate (regionIndices.arrayZ[i], coords, coord_count);
for (unsigned int i = count; i < num_scalars; i++)
scalars[i] = 0.f;
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
regionIndices.sanitize (c) &&
wordCount () <= regionIndices.len &&
c->check_range (get_delta_bytes (),
itemCount,
get_row_size ()));
}
bool serialize (hb_serialize_context_t *c,
const VarData *src,
const hb_inc_bimap_t &inner_map,
const hb_inc_bimap_t &region_map)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (this))) return_trace (false);
itemCount = inner_map.get_next_value ();
/* Optimize word count */
unsigned ri_count = src->regionIndices.len;
enum delta_size_t { kZero=0, kNonWord, kWord };
hb_vector_t<delta_size_t> delta_sz;
hb_vector_t<unsigned int> ri_map; /* maps new index to old index */
delta_sz.resize (ri_count);
ri_map.resize (ri_count);
unsigned int new_word_count = 0;
unsigned int r;
const HBUINT8 *src_delta_bytes = src->get_delta_bytes ();
unsigned src_row_size = src->get_row_size ();
unsigned src_word_count = src->wordCount ();
bool src_long_words = src->longWords ();
bool has_long = false;
if (src_long_words)
{
for (r = 0; r < src_word_count; r++)
{
for (unsigned old_gid : inner_map.keys())
{
int32_t delta = src->get_item_delta_fast (old_gid, r, src_delta_bytes, src_row_size);
if (delta < -65536 || 65535 < delta)
{
has_long = true;
break;
}
}
}
}
signed min_threshold = has_long ? -65536 : -128;
signed max_threshold = has_long ? +65535 : +127;
for (r = 0; r < ri_count; r++)
{
bool short_circuit = src_long_words == has_long && src_word_count <= r;
delta_sz[r] = kZero;
for (unsigned old_gid : inner_map.keys())
{
int32_t delta = src->get_item_delta_fast (old_gid, r, src_delta_bytes, src_row_size);
if (delta < min_threshold || max_threshold < delta)
{
delta_sz[r] = kWord;
new_word_count++;
break;
}
else if (delta != 0)
{
delta_sz[r] = kNonWord;
if (short_circuit)
break;
}
}
}
unsigned int word_index = 0;
unsigned int non_word_index = new_word_count;
unsigned int new_ri_count = 0;
for (r = 0; r < ri_count; r++)
if (delta_sz[r])
{
unsigned new_r = (delta_sz[r] == kWord)? word_index++ : non_word_index++;
ri_map[new_r] = r;
new_ri_count++;
}
wordSizeCount = new_word_count | (has_long ? 0x8000u /* LONG_WORDS */ : 0);
regionIndices.len = new_ri_count;
if (unlikely (!c->extend (this))) return_trace (false);
for (r = 0; r < new_ri_count; r++)
regionIndices[r] = region_map[src->regionIndices[ri_map[r]]];
HBUINT8 *delta_bytes = get_delta_bytes ();
unsigned row_size = get_row_size ();
unsigned count = itemCount;
for (unsigned int i = 0; i < count; i++)
{
unsigned int old = inner_map.backward (i);
for (unsigned int r = 0; r < new_ri_count; r++)
set_item_delta_fast (i, r,
src->get_item_delta_fast (old, ri_map[r],
src_delta_bytes, src_row_size),
delta_bytes, row_size);
}
return_trace (true);
}
void collect_region_refs (hb_set_t &region_indices, const hb_inc_bimap_t &inner_map) const
{
const HBUINT8 *delta_bytes = get_delta_bytes ();
unsigned row_size = get_row_size ();
for (unsigned int r = 0; r < regionIndices.len; r++)
{
unsigned int region = regionIndices.arrayZ[r];
if (region_indices.has (region)) continue;
for (hb_codepoint_t old_gid : inner_map.keys())
if (get_item_delta_fast (old_gid, r, delta_bytes, row_size) != 0)
{
region_indices.add (region);
break;
}
}
}
public: