blob: 6fe984fc6546c30829af1ee5eea1f068e39e520c [file] [log] [blame]
/*
* Copyright © 2018 Google, Inc.
* Copyright © 2019 Facebook, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Behdad Esfahbod
* Facebook Author(s): Behdad Esfahbod
*/
#ifndef HB_ITER_HH
#define HB_ITER_HH
#include "hb.hh"
#include "hb-algs.hh"
#include "hb-meta.hh"
/* Unified iterator object.
*
* The goal of this template is to make the same iterator interface
* available to all types, and make it very easy and compact to use.
* hb_iter_tator objects are small, light-weight, objects that can be
* copied by value. If the collection / object being iterated on
* is writable, then the iterator returns lvalues, otherwise it
* returns rvalues.
*/
/*
* Base classes for iterators.
*/
/* Base class for all iterators. */
template <typename iter_t, typename Item = typename iter_t::__item_t__>
struct hb_iter_t
{
typedef Item item_t;
static constexpr unsigned item_size = hb_static_size (Item);
static constexpr bool is_iterator = true;
static constexpr bool is_random_access_iterator = false;
static constexpr bool is_sorted_iterator = false;
private:
/* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */
const iter_t* thiz () const { return static_cast<const iter_t *> (this); }
iter_t* thiz () { return static_cast< iter_t *> (this); }
public:
/* TODO:
* Port operators below to use hb_enable_if to sniff which method implements
* an operator and use it, and remove hb_iter_fallback_mixin_t completely. */
/* Operators. */
iter_t iter () const { return *thiz(); }
iter_t operator + () const { return *thiz(); }
explicit operator bool () const { return thiz()->__more__ (); }
unsigned len () const { return thiz()->__len__ (); }
/* The following can only be enabled if item_t is reference type. Otherwise
* it will be returning pointer to temporary rvalue. */
template <typename T = item_t,
hb_enable_if (hb_is_reference (T))>
hb_remove_reference<item_t>* operator -> () const { return hb_addressof (**thiz()); }
item_t operator * () const { return thiz()->__item__ (); }
item_t operator * () { return thiz()->__item__ (); }
item_t operator [] (unsigned i) const { return thiz()->__item_at__ (i); }
item_t operator [] (unsigned i) { return thiz()->__item_at__ (i); }
iter_t& operator += (unsigned count) { thiz()->__forward__ (count); return *thiz(); }
iter_t& operator ++ () { thiz()->__next__ (); return *thiz(); }
iter_t& operator -= (unsigned count) { thiz()->__rewind__ (count); return *thiz(); }
iter_t& operator -- () { thiz()->__prev__ (); return *thiz(); }
iter_t operator + (unsigned count) const { auto c = thiz()->iter (); c += count; return c; }
friend iter_t operator + (unsigned count, const iter_t &it) { return it + count; }
iter_t operator ++ (int) { iter_t c (*thiz()); ++*thiz(); return c; }
iter_t operator - (unsigned count) const { auto c = thiz()->iter (); c -= count; return c; }
iter_t operator -- (int) { iter_t c (*thiz()); --*thiz(); return c; }
template <typename T>
iter_t& operator >> (T &v) { v = **thiz(); ++*thiz(); return *thiz(); }
template <typename T>
iter_t& operator >> (T &v) const { v = **thiz(); ++*thiz(); return *thiz(); }
template <typename T>
iter_t& operator << (const T v) { **thiz() = v; ++*thiz(); return *thiz(); }
protected:
hb_iter_t () {}
hb_iter_t (const hb_iter_t &o HB_UNUSED) {}
void operator = (const hb_iter_t &o HB_UNUSED) {}
};
#define HB_ITER_USING(Name) \
using item_t = typename Name::item_t; \
using Name::item_size; \
using Name::is_iterator; \
using Name::iter; \
using Name::operator bool; \
using Name::len; \
using Name::operator ->; \
using Name::operator *; \
using Name::operator []; \
using Name::operator +=; \
using Name::operator ++; \
using Name::operator -=; \
using Name::operator --; \
using Name::operator +; \
using Name::operator -; \
using Name::operator >>; \
using Name::operator <<; \
static_assert (true, "")
/* Returns iterator type of a type. */
#define hb_iter_t(Iterable) decltype (hb_declval (Iterable).iter ())
template <typename> struct hb_array_t;
struct
{
template <typename T>
hb_iter_t (T)
operator () (T&& c) const
{ return c.iter (); }
/* Specialization for C arrays. */
template <typename Type> inline hb_array_t<Type>
operator () (Type *array, unsigned int length) const
{ return hb_array_t<Type> (array, length); }
template <typename Type, unsigned int length> hb_array_t<Type>
operator () (Type (&array)[length]) const
{ return hb_array_t<Type> (array, length); }
} HB_FUNCOBJ (hb_iter);
/* Mixin to fill in what the subclass doesn't provide. */
template <typename iter_t, typename item_t = typename iter_t::__item_t__>
struct hb_iter_fallback_mixin_t
{
private:
/* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */
const iter_t* thiz () const { return static_cast<const iter_t *> (this); }
iter_t* thiz () { return static_cast< iter_t *> (this); }
public:
/* Access: Implement __item__(), or __item_at__() if random-access. */
item_t __item__ () const { return (*thiz())[0]; }
item_t __item_at__ (unsigned i) const { return *(*thiz() + i); }
/* Termination: Implement __more__(), or __len__() if random-access. */
bool __more__ () const { return thiz()->len (); }
unsigned __len__ () const
{ iter_t c (*thiz()); unsigned l = 0; while (c) { c++; l++; }; return l; }
/* Advancing: Implement __next__(), or __forward__() if random-access. */
void __next__ () { *thiz() += 1; }
void __forward__ (unsigned n) { while (n--) ++*thiz(); }
/* Rewinding: Implement __prev__() or __rewind__() if bidirectional. */
void __prev__ () { *thiz() -= 1; }
void __rewind__ (unsigned n) { while (n--) --*thiz(); }
protected:
hb_iter_fallback_mixin_t () {}
hb_iter_fallback_mixin_t (const hb_iter_fallback_mixin_t &o HB_UNUSED) {}
void operator = (const hb_iter_fallback_mixin_t &o HB_UNUSED) {}
};
template <typename iter_t, typename item_t = typename iter_t::__item_t__>
struct hb_iter_with_fallback_t :
hb_iter_t<iter_t, item_t>,
hb_iter_fallback_mixin_t<iter_t, item_t>
{
protected:
hb_iter_with_fallback_t () {}
hb_iter_with_fallback_t (const hb_iter_with_fallback_t &o HB_UNUSED) :
hb_iter_t<iter_t, item_t> (o),
hb_iter_fallback_mixin_t<iter_t, item_t> (o) {}
void operator = (const hb_iter_with_fallback_t &o HB_UNUSED) {}
};
/*
* Meta-programming predicates.
*/
/* hb_is_iterable() */
template <typename T>
struct hb_is_iterable
{
private:
template <typename U>
static auto impl (hb_priority<1>) -> decltype (hb_declval (U).iter (), hb_true_t ());
template <typename>
static hb_false_t impl (hb_priority<0>);
public:
enum { value = decltype (impl<T> (hb_prioritize))::value };
};
#define hb_is_iterable(Iterable) hb_is_iterable<Iterable>::value
/* TODO Add hb_is_iterable_of().
* TODO Add random_access / sorted variants. */
/* hb_is_iterator() / hb_is_random_access_iterator() / hb_is_sorted_iterator() */
template <typename Iter, typename Item>
static inline char _hb_is_iterator_of (hb_priority<0>, const void *) { return 0; }
template <typename Iter,
typename Item,
typename Item2 = typename Iter::item_t,
hb_enable_if (hb_is_cr_convertible_to (Item2, Item))>
static inline int _hb_is_iterator_of (hb_priority<2>, hb_iter_t<Iter, Item2> *) { return 0; }
template<typename Iter, typename Item>
struct hb_is_iterator_of { enum {
value = sizeof (int) == sizeof (_hb_is_iterator_of<Iter, Item> (hb_prioritize, hb_declval (Iter*))) }; };
#define hb_is_iterator_of(Iter, Item) hb_is_iterator_of<Iter, Item>::value
#define hb_is_iterator(Iter) hb_is_iterator_of (Iter, typename Iter::item_t)
#define hb_is_random_access_iterator_of(Iter, Item) \
hb_is_iterator_of (Iter, Item) && Iter::is_random_access_iterator
#define hb_is_random_access_iterator(Iter) \
hb_is_random_access_iterator_of (Iter, typename Iter::item_t)
#define hb_is_sorted_iterator_of(Iter, Item) \
hb_is_iterator_of (Iter, Item) && Iter::is_sorted_iterator
#define hb_is_sorted_iterator(Iter) \
hb_is_sorted_iterator_of (Iter, typename Iter::item_t)
/*
* Adaptors, combiners, etc.
*/
template <typename Lhs, typename Rhs,
hb_enable_if (hb_is_iterator (Lhs))>
static inline auto
operator | (Lhs lhs, const Rhs &rhs) HB_AUTO_RETURN (rhs (lhs))
/* hb_map(), hb_filter(), hb_reduce() */
template <typename Iter, typename Proj,
hb_enable_if (hb_is_iterator (Iter))>
struct hb_map_iter_t :
hb_iter_t<hb_map_iter_t<Iter, Proj>,
decltype (hb_declval (Proj) (hb_declval (typename Iter::item_t)))>
{
hb_map_iter_t (const Iter& it, Proj f) : it (it), f (f) {}
typedef decltype (hb_declval (Proj) (hb_declval (typename Iter::item_t))) __item_t__;
static constexpr bool is_random_access_iterator = Iter::is_random_access_iterator;
__item_t__ __item__ () const { return hb_get (f, *it); }
__item_t__ __item_at__ (unsigned i) const { return hb_get (f, it[i]); }
bool __more__ () const { return bool (it); }
unsigned __len__ () const { return it.len (); }
void __next__ () { ++it; }
void __forward__ (unsigned n) { it += n; }
void __prev__ () { --it; }
void __rewind__ (unsigned n) { it -= n; }
private:
Iter it;
Proj f;
};
template <typename Proj>
struct hb_map_iter_factory_t
{
hb_map_iter_factory_t (Proj f) : f (f) {}
template <typename Iter,
hb_enable_if (hb_is_iterator (Iter))>
hb_map_iter_t<Iter, Proj>
operator () (Iter it) const
{ return hb_map_iter_t<Iter, Proj> (it, f); }
private:
Proj f;
};
struct
{
template <typename Proj>
hb_map_iter_factory_t<Proj>
operator () (Proj&& f) const
{ return hb_map_iter_factory_t<Proj> (f); }
} HB_FUNCOBJ (hb_map);
template <typename Iter, typename Pred, typename Proj,
hb_enable_if (hb_is_iterator (Iter))>
struct hb_filter_iter_t :
hb_iter_with_fallback_t<hb_filter_iter_t<Iter, Pred, Proj>,
typename Iter::item_t>
{
hb_filter_iter_t (const Iter& it_, Pred p, Proj f) : it (it_), p (p), f (f)
{ while (it && !hb_has (p, hb_get (f, *it))) ++it; }
typedef typename Iter::item_t __item_t__;
static constexpr bool is_sorted_iterator = Iter::is_sorted_iterator;
__item_t__ __item__ () const { return *it; }
bool __more__ () const { return bool (it); }
void __next__ () { do ++it; while (it && !p (f (*it))); }
void __prev__ () { --it; }
private:
Iter it;
Pred p;
Proj f;
};
template <typename Pred, typename Proj>
struct hb_filter_iter_factory_t
{
hb_filter_iter_factory_t (Pred p, Proj f) : p (p), f (f) {}
template <typename Iter,
hb_enable_if (hb_is_iterator (Iter))>
hb_filter_iter_t<Iter, Pred, Proj>
operator () (Iter it) const
{ return hb_filter_iter_t<Iter, Pred, Proj> (it, p, f); }
private:
Pred p;
Proj f;
};
struct
{
template <typename Pred = decltype ((hb_bool)),
typename Proj = decltype ((hb_identity))>
hb_filter_iter_factory_t<Pred, Proj>
operator () (Pred&& p = hb_bool, Proj&& f = hb_identity) const
{ return hb_filter_iter_factory_t<Pred, Proj> (p, f); }
} HB_FUNCOBJ (hb_filter);
template <typename Redu, typename InitT>
struct hb_reduce_t
{
hb_reduce_t (Redu r, InitT init_value) : r (r), init_value (init_value) {}
template <typename Iter,
hb_enable_if (hb_is_iterator (Iter)),
typename AccuT = decltype (hb_declval (Redu) (hb_declval (InitT), hb_declval (typename Iter::item_t)))>
AccuT
operator () (Iter it) const
{
AccuT value = init_value;
for (; it; ++it)
value = r (value, *it);
return value;
}
private:
Redu r;
InitT init_value;
};
struct
{
template <typename Redu, typename InitT>
hb_reduce_t<Redu, InitT>
operator () (Redu&& r, InitT init_value) const
{ return hb_reduce_t<Redu, InitT> (r, init_value); }
} HB_FUNCOBJ (hb_reduce);
/* hb_zip() */
template <typename A, typename B>
struct hb_zip_iter_t :
hb_iter_t<hb_zip_iter_t<A, B>,
hb_pair_t<typename A::item_t, typename B::item_t>>
{
hb_zip_iter_t () {}
hb_zip_iter_t (const A& a, const B& b) : a (a), b (b) {}
typedef hb_pair_t<typename A::item_t, typename B::item_t> __item_t__;
static constexpr bool is_random_access_iterator =
A::is_random_access_iterator &&
B::is_random_access_iterator;
static constexpr bool is_sorted_iterator =
A::is_sorted_iterator &&
B::is_sorted_iterator;
__item_t__ __item__ () const { return __item_t__ (*a, *b); }
__item_t__ __item_at__ (unsigned i) const { return __item_t__ (a[i], b[i]); }
bool __more__ () const { return a && b; }
unsigned __len__ () const { return MIN (a.len (), b.len ()); }
void __next__ () { ++a; ++b; }
void __forward__ (unsigned n) { a += n; b += n; }
void __prev__ () { --a; --b; }
void __rewind__ (unsigned n) { a -= n; b -= n; }
private:
A a;
B b;
};
struct
{
template <typename A, typename B,
hb_enable_if (hb_is_iterable (A) && hb_is_iterable (B))>
hb_zip_iter_t<hb_iter_t (A), hb_iter_t (B)>
operator () (A& a, B &b) const
{ return hb_zip_iter_t<hb_iter_t (A), hb_iter_t (B)> (hb_iter (a), hb_iter (b)); }
} HB_FUNCOBJ (hb_zip);
/* hb_enumerate */
template <typename Iter,
hb_enable_if (hb_is_iterator (Iter))>
struct hb_enumerate_iter_t :
hb_iter_t<hb_enumerate_iter_t<Iter>,
hb_pair_t<unsigned, typename Iter::item_t>>
{
hb_enumerate_iter_t (const Iter& it) : i (0), it (it) {}
typedef hb_pair_t<unsigned, typename Iter::item_t> __item_t__;
static constexpr bool is_random_access_iterator = Iter::is_random_access_iterator;
static constexpr bool is_sorted_iterator = true;
__item_t__ __item__ () const { return __item_t__ (+i, *it); }
__item_t__ __item_at__ (unsigned j) const { return __item_t__ (i + j, it[j]); }
bool __more__ () const { return bool (it); }
unsigned __len__ () const { return it.len (); }
void __next__ () { ++i; ++it; }
void __forward__ (unsigned n) { i += n; it += n; }
void __prev__ () { --i; --it; }
void __rewind__ (unsigned n) { i -= n; it -= n; }
private:
unsigned i;
Iter it;
};
struct
{
template <typename Iterable,
hb_enable_if (hb_is_iterable (Iterable))>
hb_enumerate_iter_t<hb_iter_t (Iterable)>
operator () (Iterable& it) const
{ return hb_enumerate_iter_t<hb_iter_t (Iterable)> (hb_iter (it)); }
} HB_FUNCOBJ (hb_enumerate);
/* hb_apply() */
template <typename Appl>
struct hb_apply_t
{
hb_apply_t (Appl a) : a (a) {}
template <typename Iter,
hb_enable_if (hb_is_iterator (Iter))>
void
operator () (Iter it) const
{
for (; it; ++it)
(void) hb_invoke (a, *it);
}
private:
Appl a;
};
struct
{
template <typename Appl> hb_apply_t<Appl>
operator () (Appl&& a) const
{ return hb_apply_t<Appl> (a); }
template <typename Appl> hb_apply_t<Appl&>
operator () (Appl *a) const
{ return hb_apply_t<Appl&> (*a); }
} HB_FUNCOBJ (hb_apply);
/* hb_sink() */
template <typename Sink>
struct hb_sink_t
{
hb_sink_t (Sink&& s) : s (s) {}
template <typename Iter,
hb_enable_if (hb_is_iterator (Iter))>
void
operator () (Iter it) const
{
for (; it; ++it)
s << *it;
}
private:
Sink s;
};
struct
{
template <typename Sink> hb_sink_t<Sink>
operator () (Sink&& s) const
{ return hb_sink_t<Sink> (s); }
template <typename Sink> hb_sink_t<Sink&>
operator () (Sink *s) const
{ return hb_sink_t<Sink&> (*s); }
} HB_FUNCOBJ (hb_sink);
/* hb-drain: hb_sink to void / blackhole / /dev/null. */
struct
{
template <typename Iter,
hb_enable_if (hb_is_iterator (Iter))>
void
operator () (Iter it) const
{
for (; it; ++it)
(void) *it;
}
} HB_FUNCOBJ (hb_drain);
/* hb_unzip(): unzip and sink to two sinks. */
template <typename Sink1, typename Sink2>
struct hb_unzip_t
{
hb_unzip_t (Sink1&& s1, Sink2&& s2) : s1 (s1), s2 (s2) {}
template <typename Iter,
hb_enable_if (hb_is_iterator (Iter))>
void
operator () (Iter it) const
{
for (; it; ++it)
{
const auto &v = *it;
s1 << v.first;
s2 << v.second;
}
}
private:
Sink1 s1;
Sink2 s2;
};
struct
{
template <typename Sink1, typename Sink2> hb_unzip_t<Sink1, Sink2>
operator () (Sink1&& s1, Sink2&& s2) const
{ return hb_unzip_t<Sink1, Sink2> (s1, s2); }
template <typename Sink1, typename Sink2> hb_unzip_t<Sink1&, Sink2&>
operator () (Sink1 *s1, Sink2 *s2) const
{ return hb_unzip_t<Sink1&, Sink2&> (*s1, *s2); }
} HB_FUNCOBJ (hb_unzip);
/* hb-all, hb-any, hb-none. */
struct
{
template <typename Iterable,
hb_enable_if (hb_is_iterable (Iterable))>
bool
operator () (Iterable&& c) const
{
for (auto it = hb_iter (c); it; ++it)
if (!*it)
return false;
return true;
}
} HB_FUNCOBJ (hb_all);
struct
{
template <typename Iterable,
hb_enable_if (hb_is_iterable (Iterable))>
bool
operator () (Iterable&& c) const
{
for (auto it = hb_iter (c); it; ++it)
if (*it)
return true;
return false;
}
} HB_FUNCOBJ (hb_any);
struct
{
template <typename Iterable,
hb_enable_if (hb_is_iterable (Iterable))>
bool
operator () (Iterable&& c) const
{
for (auto it = hb_iter (c); it; ++it)
if (*it)
return false;
return true;
}
} HB_FUNCOBJ (hb_none);
/*
* Algorithms operating on iterators.
*/
template <typename C, typename V,
hb_enable_if (hb_is_iterable (C))>
inline void
hb_fill (C& c, const V &v)
{
for (auto i = hb_iter (c); i; i++)
*i = v;
}
template <typename S, typename D>
inline void
hb_copy (S&& is, D&& id)
{
hb_iter (is) | hb_sink (id);
}
#endif /* HB_ITER_HH */