blob: 041b9843fd484ebbf1e6d2874a1c4a79a1579a72 [file] [log] [blame]
/*
* Copyright © 2007,2008,2009,2010 Red Hat, Inc.
* Copyright © 2012 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Red Hat Author(s): Behdad Esfahbod
* Google Author(s): Behdad Esfahbod
*/
#ifndef HB_OPEN_TYPE_HH
#define HB_OPEN_TYPE_HH
#include "hb.hh"
#include "hb-blob.hh"
#include "hb-face.hh"
#include "hb-machinery.hh"
#include "hb-subset.hh"
namespace OT {
/*
*
* The OpenType Font File: Data Types
*/
/* "The following data types are used in the OpenType font file.
* All OpenType fonts use Motorola-style byte ordering (Big Endian):" */
/*
* Int types
*/
/* Integer types in big-endian order and no alignment requirement */
template <typename Type, unsigned int Size>
struct IntType
{
typedef Type type;
typedef typename hb_signedness_int (hb_is_signed (Type)) wide_type;
IntType<Type, Size>& operator = (wide_type i) { v = i; return *this; }
operator wide_type () const { return v; }
bool operator == (const IntType<Type,Size> &o) const { return (Type) v == (Type) o.v; }
bool operator != (const IntType<Type,Size> &o) const { return !(*this == o); }
HB_INTERNAL static int cmp (const IntType<Type,Size> *a, const IntType<Type,Size> *b)
{ return b->cmp (*a); }
template <typename Type2>
int cmp (Type2 a) const
{
Type b = v;
if (sizeof (Type) < sizeof (int) && sizeof (Type2) < sizeof (int))
return (int) a - (int) b;
else
return a < b ? -1 : a == b ? 0 : +1;
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (likely (c->check_struct (this)));
}
protected:
BEInt<Type, Size> v;
public:
DEFINE_SIZE_STATIC (Size);
};
typedef IntType<uint8_t, 1> HBUINT8; /* 8-bit unsigned integer. */
typedef IntType<int8_t, 1> HBINT8; /* 8-bit signed integer. */
typedef IntType<uint16_t, 2> HBUINT16; /* 16-bit unsigned integer. */
typedef IntType<int16_t, 2> HBINT16; /* 16-bit signed integer. */
typedef IntType<uint32_t, 4> HBUINT32; /* 32-bit unsigned integer. */
typedef IntType<int32_t, 4> HBINT32; /* 32-bit signed integer. */
/* Note: we cannot defined a signed HBINT24 because there's no corresponding C type.
* Works for unsigned, but not signed, since we rely on compiler for sign-extension. */
typedef IntType<uint32_t, 3> HBUINT24; /* 24-bit unsigned integer. */
/* 16-bit signed integer (HBINT16) that describes a quantity in FUnits. */
typedef HBINT16 FWORD;
/* 32-bit signed integer (HBINT32) that describes a quantity in FUnits. */
typedef HBINT32 FWORD32;
/* 16-bit unsigned integer (HBUINT16) that describes a quantity in FUnits. */
typedef HBUINT16 UFWORD;
/* 16-bit signed fixed number with the low 14 bits of fraction (2.14). */
struct F2DOT14 : HBINT16
{
F2DOT14& operator = (uint16_t i ) { HBINT16::operator= (i); return *this; }
// 16384 means 1<<14
float to_float () const { return ((int32_t) v) / 16384.f; }
void set_float (float f) { v = round (f * 16384.f); }
public:
DEFINE_SIZE_STATIC (2);
};
/* 32-bit signed fixed-point number (16.16). */
struct Fixed : HBINT32
{
Fixed& operator = (uint32_t i) { HBINT32::operator= (i); return *this; }
// 65536 means 1<<16
float to_float () const { return ((int32_t) v) / 65536.f; }
void set_float (float f) { v = round (f * 65536.f); }
public:
DEFINE_SIZE_STATIC (4);
};
/* Date represented in number of seconds since 12:00 midnight, January 1,
* 1904. The value is represented as a signed 64-bit integer. */
struct LONGDATETIME
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (likely (c->check_struct (this)));
}
protected:
HBINT32 major;
HBUINT32 minor;
public:
DEFINE_SIZE_STATIC (8);
};
/* Array of four uint8s (length = 32 bits) used to identify a script, language
* system, feature, or baseline */
struct Tag : HBUINT32
{
Tag& operator = (uint32_t i) { HBUINT32::operator= (i); return *this; }
/* What the char* converters return is NOT nul-terminated. Print using "%.4s" */
operator const char* () const { return reinterpret_cast<const char *> (&this->v); }
operator char* () { return reinterpret_cast<char *> (&this->v); }
public:
DEFINE_SIZE_STATIC (4);
};
/* Glyph index number, same as uint16 (length = 16 bits) */
struct GlyphID : HBUINT16
{
GlyphID& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
};
/* Script/language-system/feature index */
struct Index : HBUINT16 {
static constexpr unsigned NOT_FOUND_INDEX = 0xFFFFu;
Index& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
};
DECLARE_NULL_NAMESPACE_BYTES (OT, Index);
typedef Index NameID;
/* Offset, Null offset = 0 */
template <typename Type, bool has_null=true>
struct Offset : Type
{
Offset& operator = (typename Type::type i) { Type::operator= (i); return *this; }
typedef Type type;
bool is_null () const { return has_null && 0 == *this; }
void *serialize (hb_serialize_context_t *c, const void *base)
{
void *t = c->start_embed<void> ();
c->check_assign (*this, (unsigned) ((char *) t - (char *) base));
return t;
}
public:
DEFINE_SIZE_STATIC (sizeof (Type));
};
typedef Offset<HBUINT16> Offset16;
typedef Offset<HBUINT32> Offset32;
/* CheckSum */
struct CheckSum : HBUINT32
{
CheckSum& operator = (uint32_t i) { HBUINT32::operator= (i); return *this; }
/* This is reference implementation from the spec. */
static uint32_t CalcTableChecksum (const HBUINT32 *Table, uint32_t Length)
{
uint32_t Sum = 0L;
assert (0 == (Length & 3));
const HBUINT32 *EndPtr = Table + Length / HBUINT32::static_size;
while (Table < EndPtr)
Sum += *Table++;
return Sum;
}
/* Note: data should be 4byte aligned and have 4byte padding at the end. */
void set_for_data (const void *data, unsigned int length)
{ *this = CalcTableChecksum ((const HBUINT32 *) data, length); }
public:
DEFINE_SIZE_STATIC (4);
};
/*
* Version Numbers
*/
template <typename FixedType=HBUINT16>
struct FixedVersion
{
uint32_t to_int () const { return (major << (sizeof (FixedType) * 8)) + minor; }
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
FixedType major;
FixedType minor;
public:
DEFINE_SIZE_STATIC (2 * sizeof (FixedType));
};
/*
* Template subclasses of Offset that do the dereferencing.
* Use: (base+offset)
*/
template <typename Type, bool has_null>
struct _hb_has_null
{
static const Type *get_null () { return nullptr; }
static Type *get_crap () { return nullptr; }
};
template <typename Type>
struct _hb_has_null<Type, true>
{
static const Type *get_null () { return &Null(Type); }
static Type *get_crap () { return &Crap(Type); }
};
template <typename Type, typename OffsetType=HBUINT16, bool has_null=true>
struct OffsetTo : Offset<OffsetType, has_null>
{
HB_DELETE_COPY_ASSIGN (OffsetTo);
OffsetTo () = default;
OffsetTo& operator = (typename OffsetType::type i) { OffsetType::operator= (i); return *this; }
const Type& operator () (const void *base) const
{
if (unlikely (this->is_null ())) return *_hb_has_null<Type, has_null>::get_null ();
return StructAtOffset<const Type> (base, *this);
}
Type& operator () (void *base) const
{
if (unlikely (this->is_null ())) return *_hb_has_null<Type, has_null>::get_crap ();
return StructAtOffset<Type> (base, *this);
}
Type& serialize (hb_serialize_context_t *c, const void *base)
{
return * (Type *) Offset<OffsetType>::serialize (c, base);
}
template <typename T, typename ...Ts>
bool serialize_subset (hb_subset_context_t *c, const T &src, const void *base, Ts &&...ds)
{
*this = 0;
if (has_null && &src == &Null (T))
return false;
auto *s = c->serializer;
s->push ();
bool ret = src.subset (c, hb_forward<Ts> (ds)...);
if (ret || !has_null)
s->add_link (*this, s->pop_pack (), base);
else
s->pop_discard ();
return ret;
}
bool sanitize_shallow (hb_sanitize_context_t *c, const void *base) const
{
TRACE_SANITIZE (this);
if (unlikely (!c->check_struct (this))) return_trace (false);
if (unlikely (this->is_null ())) return_trace (true);
if (unlikely (!c->check_range (base, *this))) return_trace (false);
return_trace (true);
}
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, const void *base, Ts &&...ds) const
{
TRACE_SANITIZE (this);
return_trace (sanitize_shallow (c, base) &&
(this->is_null () ||
StructAtOffset<Type> (base, *this).sanitize (c, hb_forward<Ts> (ds)...) ||
neuter (c)));
}
/* Set the offset to Null */
bool neuter (hb_sanitize_context_t *c) const
{
if (!has_null) return false;
return c->try_set (this, 0);
}
DEFINE_SIZE_STATIC (sizeof (OffsetType));
};
/* Partial specializations. */
template <typename Type, bool has_null=true>
using LOffsetTo = OffsetTo<Type, HBUINT32, has_null>;
template <typename Type, typename OffsetType=HBUINT16>
using NNOffsetTo = OffsetTo<Type, OffsetType, false>;
template <typename Type>
using LNNOffsetTo = LOffsetTo<Type, false>;
template <typename Base, typename OffsetType, bool has_null, typename Type>
static inline const Type& operator + (const Base &base, const OffsetTo<Type, OffsetType, has_null> &offset) { return offset (base); }
template <typename Base, typename OffsetType, bool has_null, typename Type>
static inline Type& operator + (Base &base, OffsetTo<Type, OffsetType, has_null> &offset) { return offset (base); }
/*
* Array Types
*/
template <typename Type>
struct UnsizedArrayOf
{
typedef Type item_t;
static constexpr unsigned item_size = hb_static_size (Type);
HB_DELETE_CREATE_COPY_ASSIGN (UnsizedArrayOf);
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
const Type *p = &arrayZ[i];
if (unlikely (p < arrayZ)) return Null (Type); /* Overflowed. */
return *p;
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
Type *p = &arrayZ[i];
if (unlikely (p < arrayZ)) return Crap (Type); /* Overflowed. */
return *p;
}
unsigned int get_size (unsigned int len) const
{ return len * Type::static_size; }
template <typename T> operator T * () { return arrayZ; }
template <typename T> operator const T * () const { return arrayZ; }
hb_array_t<Type> as_array (unsigned int len)
{ return hb_array (arrayZ, len); }
hb_array_t<const Type> as_array (unsigned int len) const
{ return hb_array (arrayZ, len); }
operator hb_array_t<Type> () { return as_array (); }
operator hb_array_t<const Type> () const { return as_array (); }
template <typename T>
Type &lsearch (unsigned int len, const T &x, Type &not_found = Crap (Type))
{ return *as_array (len).lsearch (x, &not_found); }
template <typename T>
const Type &lsearch (unsigned int len, const T &x, const Type &not_found = Null (Type)) const
{ return *as_array (len).lsearch (x, &not_found); }
void qsort (unsigned int len, unsigned int start = 0, unsigned int end = (unsigned int) -1)
{ as_array (len).qsort (start, end); }
bool sanitize (hb_sanitize_context_t *c, unsigned int count) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c, count))) return_trace (false);
/* Note: for structs that do not reference other structs,
* we do not need to call their sanitize() as we already did
* a bound check on the aggregate array size. We just include
* a small unreachable expression to make sure the structs
* pointed to do have a simple sanitize() as well as an
* assignment opreator. This ensures that they do not
* reference other structs via offsets.
*/
if (false)
{
arrayZ[0].sanitize (c);
Type v;
v = arrayZ[0];
}
return_trace (true);
}
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, unsigned int count, Ts &&...ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c, count))) return_trace (false);
for (unsigned int i = 0; i < count; i++)
if (unlikely (!arrayZ[i].sanitize (c, hb_forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
bool sanitize_shallow (hb_sanitize_context_t *c, unsigned int count) const
{
TRACE_SANITIZE (this);
return_trace (c->check_array (arrayZ, count));
}
public:
Type arrayZ[VAR];
public:
DEFINE_SIZE_UNBOUNDED (0);
};
/* Unsized array of offset's */
template <typename Type, typename OffsetType, bool has_null=true>
using UnsizedOffsetArrayOf = UnsizedArrayOf<OffsetTo<Type, OffsetType, has_null> >;
/* Unsized array of offsets relative to the beginning of the array itself. */
template <typename Type, typename OffsetType, bool has_null=true>
struct UnsizedOffsetListOf : UnsizedOffsetArrayOf<Type, OffsetType, has_null>
{
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
const OffsetTo<Type, OffsetType, has_null> *p = &this->arrayZ[i];
if (unlikely (p < this->arrayZ)) return Null (Type); /* Overflowed. */
return this+*p;
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
const OffsetTo<Type, OffsetType, has_null> *p = &this->arrayZ[i];
if (unlikely (p < this->arrayZ)) return Crap (Type); /* Overflowed. */
return this+*p;
}
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, unsigned int count, Ts &&...ds) const
{
TRACE_SANITIZE (this);
return_trace ((UnsizedOffsetArrayOf<Type, OffsetType, has_null>
::sanitize (c, count, this, hb_forward<Ts> (ds)...)));
}
};
/* An array with sorted elements. Supports binary searching. */
template <typename Type>
struct SortedUnsizedArrayOf : UnsizedArrayOf<Type>
{
hb_sorted_array_t<Type> as_array (unsigned int len)
{ return hb_sorted_array (this->arrayZ, len); }
hb_sorted_array_t<const Type> as_array (unsigned int len) const
{ return hb_sorted_array (this->arrayZ, len); }
operator hb_sorted_array_t<Type> () { return as_array (); }
operator hb_sorted_array_t<const Type> () const { return as_array (); }
template <typename T>
Type &bsearch (unsigned int len, const T &x, Type &not_found = Crap (Type))
{ return *as_array (len).bsearch (x, &not_found); }
template <typename T>
const Type &bsearch (unsigned int len, const T &x, const Type &not_found = Null (Type)) const
{ return *as_array (len).bsearch (x, &not_found); }
template <typename T>
bool bfind (unsigned int len, const T &x, unsigned int *i = nullptr,
hb_bfind_not_found_t not_found = HB_BFIND_NOT_FOUND_DONT_STORE,
unsigned int to_store = (unsigned int) -1) const
{ return as_array (len).bfind (x, i, not_found, to_store); }
};
/* An array with a number of elements. */
template <typename Type, typename LenType=HBUINT16>
struct ArrayOf
{
typedef Type item_t;
static constexpr unsigned item_size = hb_static_size (Type);
HB_DELETE_CREATE_COPY_ASSIGN (ArrayOf);
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= len)) return Null (Type);
return arrayZ[i];
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= len)) return Crap (Type);
return arrayZ[i];
}
unsigned int get_size () const
{ return len.static_size + len * Type::static_size; }
explicit operator bool () const { return len; }
hb_array_t< Type> as_array () { return hb_array (arrayZ, len); }
hb_array_t<const Type> as_array () const { return hb_array (arrayZ, len); }
/* Iterator. */
typedef hb_array_t<const Type> iter_t;
typedef hb_array_t< Type> writer_t;
iter_t iter () const { return as_array (); }
writer_t writer () { return as_array (); }
operator iter_t () const { return iter (); }
operator writer_t () { return writer (); }
hb_array_t<const Type> sub_array (unsigned int start_offset, unsigned int count) const
{ return as_array ().sub_array (start_offset, count);}
hb_array_t<const Type> sub_array (unsigned int start_offset, unsigned int *count = nullptr /* IN/OUT */) const
{ return as_array ().sub_array (start_offset, count);}
hb_array_t<Type> sub_array (unsigned int start_offset, unsigned int count)
{ return as_array ().sub_array (start_offset, count);}
hb_array_t<Type> sub_array (unsigned int start_offset, unsigned int *count = nullptr /* IN/OUT */)
{ return as_array ().sub_array (start_offset, count);}
bool serialize (hb_serialize_context_t *c, unsigned int items_len)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (*this))) return_trace (false);
c->check_assign (len, items_len);
if (unlikely (!c->extend (*this))) return_trace (false);
return_trace (true);
}
template <typename Iterator,
hb_enable_if (hb_is_iterator_of (Iterator, const Type))>
bool serialize (hb_serialize_context_t *c, Iterator items)
{
TRACE_SERIALIZE (this);
unsigned count = items.len ();
if (unlikely (!serialize (c, count))) return_trace (false);
/* TODO Umm. Just exhaust the iterator instead? Being extra
* cautious right now.. */
for (unsigned i = 0; i < count; i++, items++)
arrayZ[i] = *items;
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
/* Note: for structs that do not reference other structs,
* we do not need to call their sanitize() as we already did
* a bound check on the aggregate array size. We just include
* a small unreachable expression to make sure the structs
* pointed to do have a simple sanitize() as well as an
* assignment opreator. This ensures that they do not
* reference other structs via offsets.
*/
if (false)
{
arrayZ[0].sanitize (c);
Type v;
v = arrayZ[0];
}
return_trace (true);
}
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, Ts &&...ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
unsigned int count = len;
for (unsigned int i = 0; i < count; i++)
if (unlikely (!arrayZ[i].sanitize (c, hb_forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
template <typename T>
Type &lsearch (const T &x, Type &not_found = Crap (Type))
{ return *as_array ().lsearch (x, &not_found); }
template <typename T>
const Type &lsearch (const T &x, const Type &not_found = Null (Type)) const
{ return *as_array ().lsearch (x, &not_found); }
void qsort (unsigned int start = 0, unsigned int end = (unsigned int) -1)
{ as_array ().qsort (start, end); }
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (len.sanitize (c) && c->check_array (arrayZ, len));
}
public:
LenType len;
Type arrayZ[VAR];
public:
DEFINE_SIZE_ARRAY (sizeof (LenType), arrayZ);
};
template <typename Type>
using LArrayOf = ArrayOf<Type, HBUINT32>;
using PString = ArrayOf<HBUINT8, HBUINT8>;
/* Array of Offset's */
template <typename Type>
using OffsetArrayOf = ArrayOf<OffsetTo<Type, HBUINT16> >;
template <typename Type>
using LOffsetArrayOf = ArrayOf<OffsetTo<Type, HBUINT32> >;
template <typename Type>
using LOffsetLArrayOf = ArrayOf<OffsetTo<Type, HBUINT32>, HBUINT32>;
/* Array of offsets relative to the beginning of the array itself. */
template <typename Type>
struct OffsetListOf : OffsetArrayOf<Type>
{
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= this->len)) return Null (Type);
return this+this->arrayZ[i];
}
const Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= this->len)) return Crap (Type);
return this+this->arrayZ[i];
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
struct OffsetListOf<Type> *out = c->serializer->embed (*this);
if (unlikely (!out)) return_trace (false);
unsigned int count = this->len;
for (unsigned int i = 0; i < count; i++)
out->arrayZ[i].serialize_subset (c, (*this)[i], out);
return_trace (true);
}
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, Ts &&...ds) const
{
TRACE_SANITIZE (this);
return_trace (OffsetArrayOf<Type>::sanitize (c, this, hb_forward<Ts> (ds)...));
}
};
/* An array starting at second element. */
template <typename Type, typename LenType=HBUINT16>
struct HeadlessArrayOf
{
static constexpr unsigned item_size = Type::static_size;
HB_DELETE_CREATE_COPY_ASSIGN (HeadlessArrayOf);
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= lenP1 || !i)) return Null (Type);
return arrayZ[i-1];
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= lenP1 || !i)) return Crap (Type);
return arrayZ[i-1];
}
unsigned int get_size () const
{ return lenP1.static_size + (lenP1 ? lenP1 - 1 : 0) * Type::static_size; }
bool serialize (hb_serialize_context_t *c,
hb_array_t<const Type> items)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (*this))) return_trace (false);
c->check_assign (lenP1, items.length + 1);
if (unlikely (!c->extend (*this))) return_trace (false);
for (unsigned int i = 0; i < items.length; i++)
arrayZ[i] = items[i];
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
/* Note: for structs that do not reference other structs,
* we do not need to call their sanitize() as we already did
* a bound check on the aggregate array size. We just include
* a small unreachable expression to make sure the structs
* pointed to do have a simple sanitize() as well as an
* assignment opreator. This ensures that they do not
* reference other structs via offsets.
*/
if (false)
{
arrayZ[0].sanitize (c);
Type v;
v = arrayZ[0];
}
return_trace (true);
}
private:
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (lenP1.sanitize (c) &&
(!lenP1 || c->check_array (arrayZ, lenP1 - 1)));
}
public:
LenType lenP1;
Type arrayZ[VAR];
public:
DEFINE_SIZE_ARRAY (sizeof (LenType), arrayZ);
};
/* An array storing length-1. */
template <typename Type, typename LenType=HBUINT16>
struct ArrayOfM1
{
HB_DELETE_CREATE_COPY_ASSIGN (ArrayOfM1);
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i > lenM1)) return Null (Type);
return arrayZ[i];
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i > lenM1)) return Crap (Type);
return arrayZ[i];
}
unsigned int get_size () const
{ return lenM1.static_size + (lenM1 + 1) * Type::static_size; }
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, Ts &&...ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
unsigned int count = lenM1 + 1;
for (unsigned int i = 0; i < count; i++)
if (unlikely (!arrayZ[i].sanitize (c, hb_forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
private:
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (lenM1.sanitize (c) &&
(c->check_array (arrayZ, lenM1 + 1)));
}
public:
LenType lenM1;
Type arrayZ[VAR];
public:
DEFINE_SIZE_ARRAY (sizeof (LenType), arrayZ);
};
/* An array with sorted elements. Supports binary searching. */
template <typename Type, typename LenType=HBUINT16>
struct SortedArrayOf : ArrayOf<Type, LenType>
{
hb_sorted_array_t< Type> as_array () { return hb_sorted_array (this->arrayZ, this->len); }
hb_sorted_array_t<const Type> as_array () const { return hb_sorted_array (this->arrayZ, this->len); }
/* Iterator. */
typedef hb_sorted_array_t<const Type> iter_t;
typedef hb_sorted_array_t< Type> writer_t;
iter_t iter () const { return as_array (); }
writer_t writer () { return as_array (); }
operator iter_t () const { return iter (); }
operator writer_t () { return writer (); }
hb_sorted_array_t<const Type> sub_array (unsigned int start_offset, unsigned int count) const
{ return as_array ().sub_array (start_offset, count);}
hb_sorted_array_t<const Type> sub_array (unsigned int start_offset, unsigned int *count = nullptr /* IN/OUT */) const
{ return as_array ().sub_array (start_offset, count);}
hb_sorted_array_t<Type> sub_array (unsigned int start_offset, unsigned int count)
{ return as_array ().sub_array (start_offset, count);}
hb_sorted_array_t<Type> sub_array (unsigned int start_offset, unsigned int *count = nullptr /* IN/OUT */)
{ return as_array ().sub_array (start_offset, count);}
bool serialize (hb_serialize_context_t *c, unsigned int items_len)
{
TRACE_SERIALIZE (this);
bool ret = ArrayOf<Type, LenType>::serialize (c, items_len);
return_trace (ret);
}
template <typename Iterator,
hb_enable_if (hb_is_sorted_iterator_of (Iterator, const Type))>
bool serialize (hb_serialize_context_t *c, Iterator items)
{
TRACE_SERIALIZE (this);
bool ret = ArrayOf<Type, LenType>::serialize (c, items);
return_trace (ret);
}
template <typename T>
Type &bsearch (const T &x, Type &not_found = Crap (Type))
{ return *as_array ().bsearch (x, &not_found); }
template <typename T>
const Type &bsearch (const T &x, const Type &not_found = Null (Type)) const
{ return *as_array ().bsearch (x, &not_found); }
template <typename T>
bool bfind (const T &x, unsigned int *i = nullptr,
hb_bfind_not_found_t not_found = HB_BFIND_NOT_FOUND_DONT_STORE,
unsigned int to_store = (unsigned int) -1) const
{ return as_array ().bfind (x, i, not_found, to_store); }
};
/*
* Binary-search arrays
*/
template <typename LenType=HBUINT16>
struct BinSearchHeader
{
operator uint32_t () const { return len; }
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
BinSearchHeader& operator = (unsigned int v)
{
len = v;
assert (len == v);
entrySelector = MAX (1u, hb_bit_storage (v)) - 1;
searchRange = 16 * (1u << entrySelector);
rangeShift = v * 16 > searchRange
? 16 * v - searchRange
: 0;
return *this;
}
protected:
LenType len;
LenType searchRange;
LenType entrySelector;
LenType rangeShift;
public:
DEFINE_SIZE_STATIC (8);
};
template <typename Type, typename LenType=HBUINT16>
using BinSearchArrayOf = SortedArrayOf<Type, BinSearchHeader<LenType> >;
struct VarSizedBinSearchHeader
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
HBUINT16 unitSize; /* Size of a lookup unit for this search in bytes. */
HBUINT16 nUnits; /* Number of units of the preceding size to be searched. */
HBUINT16 searchRange; /* The value of unitSize times the largest power of 2
* that is less than or equal to the value of nUnits. */
HBUINT16 entrySelector; /* The log base 2 of the largest power of 2 less than
* or equal to the value of nUnits. */
HBUINT16 rangeShift; /* The value of unitSize times the difference of the
* value of nUnits minus the largest power of 2 less
* than or equal to the value of nUnits. */
public:
DEFINE_SIZE_STATIC (10);
};
template <typename Type>
struct VarSizedBinSearchArrayOf
{
static constexpr unsigned item_size = Type::static_size;
HB_DELETE_CREATE_COPY_ASSIGN (VarSizedBinSearchArrayOf);
bool last_is_terminator () const
{
if (unlikely (!header.nUnits)) return false;
/* Gah.
*
* "The number of termination values that need to be included is table-specific.
* The value that indicates binary search termination is 0xFFFF." */
const HBUINT16 *words = &StructAtOffset<HBUINT16> (&bytesZ, (header.nUnits - 1) * header.unitSize);
unsigned int count = Type::TerminationWordCount;
for (unsigned int i = 0; i < count; i++)
if (words[i] != 0xFFFFu)
return false;
return true;
}
const Type& operator [] (int i_) const
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= get_length ())) return Null (Type);
return StructAtOffset<Type> (&bytesZ, i * header.unitSize);
}
Type& operator [] (int i_)
{
unsigned int i = (unsigned int) i_;
if (unlikely (i >= get_length ())) return Crap (Type);
return StructAtOffset<Type> (&bytesZ, i * header.unitSize);
}
unsigned int get_length () const
{ return header.nUnits - last_is_terminator (); }
unsigned int get_size () const
{ return header.static_size + header.nUnits * header.unitSize; }
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
/* Note: for structs that do not reference other structs,
* we do not need to call their sanitize() as we already did
* a bound check on the aggregate array size. We just include
* a small unreachable expression to make sure the structs
* pointed to do have a simple sanitize() as well as an
* assignment opreator. This ensures that they do not
* reference other structs via offsets.
*/
if (false)
{
(*this)[0].sanitize (c);
Type v;
v = (*this)[0];
}
return_trace (true);
}
template <typename ...Ts>
bool sanitize (hb_sanitize_context_t *c, Ts &&...ds) const
{
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return_trace (false);
unsigned int count = get_length ();
for (unsigned int i = 0; i < count; i++)
if (unlikely (!(*this)[i].sanitize (c, hb_forward<Ts> (ds)...)))
return_trace (false);
return_trace (true);
}
template <typename T>
const Type *bsearch (const T &key) const
{
unsigned int size = header.unitSize;
int min = 0, max = (int) get_length () - 1;
while (min <= max)
{
int mid = ((unsigned int) min + (unsigned int) max) / 2;
const Type *p = (const Type *) (((const char *) &bytesZ) + (mid * size));
int c = p->cmp (key);
if (c < 0) max = mid - 1;
else if (c > 0) min = mid + 1;
else return p;
}
return nullptr;
}
private:
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (header.sanitize (c) &&
Type::static_size <= header.unitSize &&
c->check_range (bytesZ.arrayZ,
header.nUnits,
header.unitSize));
}
protected:
VarSizedBinSearchHeader header;
UnsizedArrayOf<HBUINT8> bytesZ;
public:
DEFINE_SIZE_ARRAY (10, bytesZ);
};
} /* namespace OT */
#endif /* HB_OPEN_TYPE_HH */