| /* |
| * Copyright © 2018 Google, Inc. |
| * Copyright © 2019 Facebook, Inc. |
| * |
| * This is part of HarfBuzz, a text shaping library. |
| * |
| * Permission is hereby granted, without written agreement and without |
| * license or royalty fees, to use, copy, modify, and distribute this |
| * software and its documentation for any purpose, provided that the |
| * above copyright notice and the following two paragraphs appear in |
| * all copies of this software. |
| * |
| * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR |
| * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES |
| * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN |
| * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH |
| * DAMAGE. |
| * |
| * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, |
| * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS |
| * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO |
| * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. |
| * |
| * Google Author(s): Behdad Esfahbod |
| * Facebook Author(s): Behdad Esfahbod |
| */ |
| |
| #ifndef HB_ITER_HH |
| #define HB_ITER_HH |
| |
| #include "hb.hh" |
| #include "hb-algs.hh" |
| #include "hb-meta.hh" |
| |
| |
| /* Unified iterator object. |
| * |
| * The goal of this template is to make the same iterator interface |
| * available to all types, and make it very easy and compact to use. |
| * hb_iter_tator objects are small, light-weight, objects that can be |
| * copied by value. If the collection / object being iterated on |
| * is writable, then the iterator returns lvalues, otherwise it |
| * returns rvalues. |
| * |
| * TODO Document more. |
| * |
| * If iterator implementation implements operator!=, then can be |
| * used in range-based for loop. That already happens if the iterator |
| * is random-access. Otherwise, the range-based for loop incurs |
| * one traversal to find end(), which can be avoided if written |
| * as a while-style for loop, or if iterator implements a faster |
| * __end__() method. |
| * TODO When opting in for C++17, address this by changing return |
| * type of .end()? |
| */ |
| |
| /* |
| * Base classes for iterators. |
| */ |
| |
| /* Base class for all iterators. */ |
| template <typename iter_t, typename Item = typename iter_t::__item_t__> |
| struct hb_iter_t |
| { |
| typedef Item item_t; |
| constexpr unsigned get_item_size () const { return hb_static_size (Item); } |
| static constexpr bool is_iterator = true; |
| static constexpr bool is_random_access_iterator = false; |
| static constexpr bool is_sorted_iterator = false; |
| |
| private: |
| /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */ |
| const iter_t* thiz () const { return static_cast<const iter_t *> (this); } |
| iter_t* thiz () { return static_cast< iter_t *> (this); } |
| public: |
| |
| /* TODO: |
| * Port operators below to use hb_enable_if to sniff which method implements |
| * an operator and use it, and remove hb_iter_fallback_mixin_t completely. */ |
| |
| /* Operators. */ |
| iter_t iter () const { return *thiz(); } |
| iter_t operator + () const { return *thiz(); } |
| iter_t begin () const { return *thiz(); } |
| iter_t end () const { return thiz()->__end__ (); } |
| explicit operator bool () const { return thiz()->__more__ (); } |
| unsigned len () const { return thiz()->__len__ (); } |
| /* The following can only be enabled if item_t is reference type. Otherwise |
| * it will be returning pointer to temporary rvalue. |
| * TODO Use a wrapper return type to fix for non-reference type. */ |
| template <typename T = item_t, |
| hb_enable_if (std::is_reference<T>::value)> |
| hb_remove_reference<item_t>* operator -> () const { return std::addressof (**thiz()); } |
| item_t operator * () const { return thiz()->__item__ (); } |
| item_t operator * () { return thiz()->__item__ (); } |
| item_t operator [] (unsigned i) const { return thiz()->__item_at__ (i); } |
| item_t operator [] (unsigned i) { return thiz()->__item_at__ (i); } |
| iter_t& operator += (unsigned count) & { thiz()->__forward__ (count); return *thiz(); } |
| iter_t operator += (unsigned count) && { thiz()->__forward__ (count); return *thiz(); } |
| iter_t& operator ++ () & { thiz()->__next__ (); return *thiz(); } |
| iter_t operator ++ () && { thiz()->__next__ (); return *thiz(); } |
| iter_t& operator -= (unsigned count) & { thiz()->__rewind__ (count); return *thiz(); } |
| iter_t operator -= (unsigned count) && { thiz()->__rewind__ (count); return *thiz(); } |
| iter_t& operator -- () & { thiz()->__prev__ (); return *thiz(); } |
| iter_t operator -- () && { thiz()->__prev__ (); return *thiz(); } |
| iter_t operator + (unsigned count) const { auto c = thiz()->iter (); c += count; return c; } |
| friend iter_t operator + (unsigned count, const iter_t &it) { return it + count; } |
| iter_t operator ++ (int) { iter_t c (*thiz()); ++*thiz(); return c; } |
| iter_t operator - (unsigned count) const { auto c = thiz()->iter (); c -= count; return c; } |
| iter_t operator -- (int) { iter_t c (*thiz()); --*thiz(); return c; } |
| template <typename T> |
| iter_t& operator >> (T &v) & { v = **thiz(); ++*thiz(); return *thiz(); } |
| template <typename T> |
| iter_t operator >> (T &v) && { v = **thiz(); ++*thiz(); return *thiz(); } |
| template <typename T> |
| iter_t& operator << (const T v) & { **thiz() = v; ++*thiz(); return *thiz(); } |
| template <typename T> |
| iter_t operator << (const T v) && { **thiz() = v; ++*thiz(); return *thiz(); } |
| |
| protected: |
| hb_iter_t () = default; |
| hb_iter_t (const hb_iter_t &o HB_UNUSED) = default; |
| hb_iter_t (hb_iter_t &&o HB_UNUSED) = default; |
| hb_iter_t& operator = (const hb_iter_t &o HB_UNUSED) = default; |
| hb_iter_t& operator = (hb_iter_t &&o HB_UNUSED) = default; |
| }; |
| |
| #define HB_ITER_USING(Name) \ |
| using item_t = typename Name::item_t; \ |
| using Name::begin; \ |
| using Name::end; \ |
| using Name::get_item_size; \ |
| using Name::is_iterator; \ |
| using Name::iter; \ |
| using Name::operator bool; \ |
| using Name::len; \ |
| using Name::operator ->; \ |
| using Name::operator *; \ |
| using Name::operator []; \ |
| using Name::operator +=; \ |
| using Name::operator ++; \ |
| using Name::operator -=; \ |
| using Name::operator --; \ |
| using Name::operator +; \ |
| using Name::operator -; \ |
| using Name::operator >>; \ |
| using Name::operator <<; \ |
| static_assert (true, "") |
| |
| /* Returns iterator / item type of a type. */ |
| template <typename Iterable> |
| using hb_iter_type = decltype (hb_deref (hb_declval (Iterable)).iter ()); |
| template <typename Iterable> |
| using hb_item_type = decltype (*hb_deref (hb_declval (Iterable)).iter ()); |
| |
| |
| template <typename> struct hb_array_t; |
| template <typename> struct hb_sorted_array_t; |
| |
| struct |
| { |
| template <typename T> hb_iter_type<T> |
| operator () (T&& c) const |
| { return hb_deref (std::forward<T> (c)).iter (); } |
| |
| /* Specialization for C arrays. */ |
| |
| template <typename Type> inline hb_array_t<Type> |
| operator () (Type *array, unsigned int length) const |
| { return hb_array_t<Type> (array, length); } |
| |
| template <typename Type, unsigned int length> hb_array_t<Type> |
| operator () (Type (&array)[length]) const |
| { return hb_array_t<Type> (array, length); } |
| |
| } |
| HB_FUNCOBJ (hb_iter); |
| struct |
| { |
| template <typename T> unsigned |
| operator () (T&& c) const |
| { return c.len (); } |
| |
| } |
| HB_FUNCOBJ (hb_len); |
| |
| /* Mixin to fill in what the subclass doesn't provide. */ |
| template <typename iter_t, typename item_t = typename iter_t::__item_t__> |
| struct hb_iter_fallback_mixin_t |
| { |
| private: |
| /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */ |
| const iter_t* thiz () const { return static_cast<const iter_t *> (this); } |
| iter_t* thiz () { return static_cast< iter_t *> (this); } |
| public: |
| |
| /* Access: Implement __item__(), or __item_at__() if random-access. */ |
| item_t __item__ () const { return (*thiz())[0]; } |
| item_t __item_at__ (unsigned i) const { return *(*thiz() + i); } |
| |
| /* Termination: Implement __more__(), or __len__() if random-access. */ |
| bool __more__ () const { return bool (thiz()->len ()); } |
| unsigned __len__ () const |
| { iter_t c (*thiz()); unsigned l = 0; while (c) { c++; l++; } return l; } |
| |
| /* Advancing: Implement __next__(), or __forward__() if random-access. */ |
| void __next__ () { *thiz() += 1; } |
| void __forward__ (unsigned n) { while (*thiz() && n--) ++*thiz(); } |
| |
| /* Rewinding: Implement __prev__() or __rewind__() if bidirectional. */ |
| void __prev__ () { *thiz() -= 1; } |
| void __rewind__ (unsigned n) { while (*thiz() && n--) --*thiz(); } |
| |
| /* Range-based for: Implement __end__() if can be done faster, |
| * and operator!=. */ |
| iter_t __end__ () const |
| { |
| if (thiz()->is_random_access_iterator) |
| return *thiz() + thiz()->len (); |
| /* Above expression loops twice. Following loops once. */ |
| auto it = *thiz(); |
| while (it) ++it; |
| return it; |
| } |
| |
| protected: |
| hb_iter_fallback_mixin_t () = default; |
| hb_iter_fallback_mixin_t (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default; |
| hb_iter_fallback_mixin_t (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default; |
| hb_iter_fallback_mixin_t& operator = (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default; |
| hb_iter_fallback_mixin_t& operator = (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default; |
| }; |
| |
| template <typename iter_t, typename item_t = typename iter_t::__item_t__> |
| struct hb_iter_with_fallback_t : |
| hb_iter_t<iter_t, item_t>, |
| hb_iter_fallback_mixin_t<iter_t, item_t> |
| { |
| protected: |
| hb_iter_with_fallback_t () = default; |
| hb_iter_with_fallback_t (const hb_iter_with_fallback_t &o HB_UNUSED) = default; |
| hb_iter_with_fallback_t (hb_iter_with_fallback_t &&o HB_UNUSED) = default; |
| hb_iter_with_fallback_t& operator = (const hb_iter_with_fallback_t &o HB_UNUSED) = default; |
| hb_iter_with_fallback_t& operator = (hb_iter_with_fallback_t &&o HB_UNUSED) = default; |
| }; |
| |
| /* |
| * Meta-programming predicates. |
| */ |
| |
| /* hb_is_iterator() / hb_is_iterator_of() */ |
| |
| template<typename Iter, typename Item> |
| struct hb_is_iterator_of |
| { |
| template <typename Item2 = Item> |
| static hb_true_type impl (hb_priority<2>, hb_iter_t<Iter, hb_type_identity<Item2>> *); |
| static hb_false_type impl (hb_priority<0>, const void *); |
| |
| public: |
| static constexpr bool value = decltype (impl (hb_prioritize, hb_declval (Iter*)))::value; |
| }; |
| #define hb_is_iterator_of(Iter, Item) hb_is_iterator_of<Iter, Item>::value |
| #define hb_is_iterator(Iter) hb_is_iterator_of (Iter, typename Iter::item_t) |
| |
| /* hb_is_iterable() */ |
| |
| template <typename T> |
| struct hb_is_iterable |
| { |
| private: |
| |
| template <typename U> |
| static auto impl (hb_priority<1>) -> decltype (hb_declval (U).iter (), hb_true_type ()); |
| |
| template <typename> |
| static hb_false_type impl (hb_priority<0>); |
| |
| public: |
| static constexpr bool value = decltype (impl<T> (hb_prioritize))::value; |
| }; |
| #define hb_is_iterable(Iterable) hb_is_iterable<Iterable>::value |
| |
| /* hb_is_source_of() / hb_is_sink_of() */ |
| |
| template<typename Iter, typename Item> |
| struct hb_is_source_of |
| { |
| private: |
| template <typename Iter2 = Iter, |
| hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<const Item>))> |
| static hb_true_type impl (hb_priority<2>); |
| template <typename Iter2 = Iter> |
| static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) >> hb_declval (Item &), hb_true_type ()); |
| static hb_false_type impl (hb_priority<0>); |
| |
| public: |
| static constexpr bool value = decltype (impl (hb_prioritize))::value; |
| }; |
| #define hb_is_source_of(Iter, Item) hb_is_source_of<Iter, Item>::value |
| |
| template<typename Iter, typename Item> |
| struct hb_is_sink_of |
| { |
| private: |
| template <typename Iter2 = Iter, |
| hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<Item>))> |
| static hb_true_type impl (hb_priority<2>); |
| template <typename Iter2 = Iter> |
| static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) << hb_declval (Item), hb_true_type ()); |
| static hb_false_type impl (hb_priority<0>); |
| |
| public: |
| static constexpr bool value = decltype (impl (hb_prioritize))::value; |
| }; |
| #define hb_is_sink_of(Iter, Item) hb_is_sink_of<Iter, Item>::value |
| |
| /* This is commonly used, so define: */ |
| #define hb_is_sorted_source_of(Iter, Item) \ |
| (hb_is_source_of(Iter, Item) && Iter::is_sorted_iterator) |
| |
| |
| /* Range-based 'for' for iterables. */ |
| |
| template <typename Iterable, |
| hb_requires (hb_is_iterable (Iterable))> |
| static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ()) |
| |
| template <typename Iterable, |
| hb_requires (hb_is_iterable (Iterable))> |
| static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ()) |
| |
| /* begin()/end() are NOT looked up non-ADL. So each namespace must declare them. |
| * Do it for namespace OT. */ |
| namespace OT { |
| |
| template <typename Iterable, |
| hb_requires (hb_is_iterable (Iterable))> |
| static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ()) |
| |
| template <typename Iterable, |
| hb_requires (hb_is_iterable (Iterable))> |
| static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ()) |
| |
| } |
| |
| |
| /* |
| * Adaptors, combiners, etc. |
| */ |
| |
| template <typename Lhs, typename Rhs, |
| hb_requires (hb_is_iterator (Lhs))> |
| static inline auto |
| operator | (Lhs&& lhs, Rhs&& rhs) HB_AUTO_RETURN (std::forward<Rhs> (rhs) (std::forward<Lhs> (lhs))) |
| |
| /* hb_map(), hb_filter(), hb_reduce() */ |
| |
| enum class hb_function_sortedness_t { |
| NOT_SORTED, |
| RETAINS_SORTING, |
| SORTED, |
| }; |
| |
| template <typename Iter, typename Proj, hb_function_sortedness_t Sorted, |
| hb_requires (hb_is_iterator (Iter))> |
| struct hb_map_iter_t : |
| hb_iter_t<hb_map_iter_t<Iter, Proj, Sorted>, |
| decltype (hb_get (hb_declval (Proj), *hb_declval (Iter)))> |
| { |
| hb_map_iter_t (const Iter& it, Proj f_) : it (it), f (f_) {} |
| |
| typedef decltype (hb_get (hb_declval (Proj), *hb_declval (Iter))) __item_t__; |
| static constexpr bool is_random_access_iterator = Iter::is_random_access_iterator; |
| static constexpr bool is_sorted_iterator = |
| Sorted == hb_function_sortedness_t::SORTED ? true : |
| Sorted == hb_function_sortedness_t::RETAINS_SORTING ? Iter::is_sorted_iterator : |
| false; |
| __item_t__ __item__ () const { return hb_get (f.get (), *it); } |
| __item_t__ __item_at__ (unsigned i) const { return hb_get (f.get (), it[i]); } |
| bool __more__ () const { return bool (it); } |
| unsigned __len__ () const { return it.len (); } |
| void __next__ () { ++it; } |
| void __forward__ (unsigned n) { it += n; } |
| void __prev__ () { --it; } |
| void __rewind__ (unsigned n) { it -= n; } |
| hb_map_iter_t __end__ () const { return hb_map_iter_t (it.end (), f); } |
| bool operator != (const hb_map_iter_t& o) const |
| { return it != o.it; } |
| |
| private: |
| Iter it; |
| hb_reference_wrapper<Proj> f; |
| }; |
| |
| template <typename Proj, hb_function_sortedness_t Sorted> |
| struct hb_map_iter_factory_t |
| { |
| hb_map_iter_factory_t (Proj f) : f (f) {} |
| |
| template <typename Iter, |
| hb_requires (hb_is_iterator (Iter))> |
| hb_map_iter_t<Iter, Proj, Sorted> |
| operator () (Iter it) |
| { return hb_map_iter_t<Iter, Proj, Sorted> (it, f); } |
| |
| private: |
| Proj f; |
| }; |
| struct |
| { |
| template <typename Proj> |
| hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> |
| operator () (Proj&& f) const |
| { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> (f); } |
| } |
| HB_FUNCOBJ (hb_map); |
| struct |
| { |
| template <typename Proj> |
| hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> |
| operator () (Proj&& f) const |
| { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> (f); } |
| } |
| HB_FUNCOBJ (hb_map_retains_sorting); |
| struct |
| { |
| template <typename Proj> |
| hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> |
| operator () (Proj&& f) const |
| { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> (f); } |
| } |
| HB_FUNCOBJ (hb_map_sorted); |
| |
| template <typename Iter, typename Pred, typename Proj, |
| hb_requires (hb_is_iterator (Iter))> |
| struct hb_filter_iter_t : |
| hb_iter_with_fallback_t<hb_filter_iter_t<Iter, Pred, Proj>, |
| typename Iter::item_t> |
| { |
| hb_filter_iter_t (const Iter& it_, Pred p_, Proj f_) : it (it_), p (p_), f (f_) |
| { while (it && !hb_has (p.get (), hb_get (f.get (), *it))) ++it; } |
| |
| typedef typename Iter::item_t __item_t__; |
| static constexpr bool is_sorted_iterator = Iter::is_sorted_iterator; |
| __item_t__ __item__ () const { return *it; } |
| bool __more__ () const { return bool (it); } |
| void __next__ () { do ++it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); } |
| void __prev__ () { do --it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); } |
| hb_filter_iter_t __end__ () const { return hb_filter_iter_t (it.end (), p, f); } |
| bool operator != (const hb_filter_iter_t& o) const |
| { return it != o.it; } |
| |
| private: |
| Iter it; |
| hb_reference_wrapper<Pred> p; |
| hb_reference_wrapper<Proj> f; |
| }; |
| template <typename Pred, typename Proj> |
| struct hb_filter_iter_factory_t |
| { |
| hb_filter_iter_factory_t (Pred p, Proj f) : p (p), f (f) {} |
| |
| template <typename Iter, |
| hb_requires (hb_is_iterator (Iter))> |
| hb_filter_iter_t<Iter, Pred, Proj> |
| operator () (Iter it) |
| { return hb_filter_iter_t<Iter, Pred, Proj> (it, p, f); } |
| |
| private: |
| Pred p; |
| Proj f; |
| }; |
| struct |
| { |
| template <typename Pred = decltype ((hb_identity)), |
| typename Proj = decltype ((hb_identity))> |
| hb_filter_iter_factory_t<Pred, Proj> |
| operator () (Pred&& p = hb_identity, Proj&& f = hb_identity) const |
| { return hb_filter_iter_factory_t<Pred, Proj> (p, f); } |
| } |
| HB_FUNCOBJ (hb_filter); |
| |
| template <typename Redu, typename InitT> |
| struct hb_reduce_t |
| { |
| hb_reduce_t (Redu r, InitT init_value) : r (r), init_value (init_value) {} |
| |
| template <typename Iter, |
| hb_requires (hb_is_iterator (Iter)), |
| typename AccuT = hb_decay<decltype (hb_declval (Redu) (hb_declval (InitT), hb_declval (typename Iter::item_t)))>> |
| AccuT |
| operator () (Iter it) |
| { |
| AccuT value = init_value; |
| for (; it; ++it) |
| value = r (value, *it); |
| return value; |
| } |
| |
| private: |
| Redu r; |
| InitT init_value; |
| }; |
| struct |
| { |
| template <typename Redu, typename InitT> |
| hb_reduce_t<Redu, InitT> |
| operator () (Redu&& r, InitT init_value) const |
| { return hb_reduce_t<Redu, InitT> (r, init_value); } |
| } |
| HB_FUNCOBJ (hb_reduce); |
| |
| |
| /* hb_zip() */ |
| |
| template <typename A, typename B> |
| struct hb_zip_iter_t : |
| hb_iter_t<hb_zip_iter_t<A, B>, |
| hb_pair_t<typename A::item_t, typename B::item_t>> |
| { |
| hb_zip_iter_t () {} |
| hb_zip_iter_t (const A& a, const B& b) : a (a), b (b) {} |
| |
| typedef hb_pair_t<typename A::item_t, typename B::item_t> __item_t__; |
| static constexpr bool is_random_access_iterator = |
| A::is_random_access_iterator && |
| B::is_random_access_iterator; |
| /* Note. The following categorization is only valid if A is strictly sorted, |
| * ie. does NOT have duplicates. Previously I tried to categorize sortedness |
| * more granularly, see commits: |
| * |
| * 513762849a683914fc266a17ddf38f133cccf072 |
| * 4d3cf2adb669c345cc43832d11689271995e160a |
| * |
| * However, that was not enough, since hb_sorted_array_t, hb_sorted_vector_t, |
| * SortedArrayOf, etc all needed to be updated to add more variants. At that |
| * point I saw it not worth the effort, and instead we now deem all sorted |
| * collections as essentially strictly-sorted for the purposes of zip. |
| * |
| * The above assumption is not as bad as it sounds. Our "sorted" comes with |
| * no guarantees. It's just a contract, put in place to help you remember, |
| * and think about, whether an iterator you receive is expected to be |
| * sorted or not. As such, it's not perfect by definition, and should not |
| * be treated so. The inaccuracy here just errs in the direction of being |
| * more permissive, so your code compiles instead of erring on the side of |
| * marking your zipped iterator unsorted in which case your code won't |
| * compile. |
| * |
| * This semantical limitation does NOT affect logic in any other place I |
| * know of as of this writing. |
| */ |
| static constexpr bool is_sorted_iterator = A::is_sorted_iterator; |
| |
| __item_t__ __item__ () const { return __item_t__ (*a, *b); } |
| __item_t__ __item_at__ (unsigned i) const { return __item_t__ (a[i], b[i]); } |
| bool __more__ () const { return bool (a) && bool (b); } |
| unsigned __len__ () const { return hb_min (a.len (), b.len ()); } |
| void __next__ () { ++a; ++b; } |
| void __forward__ (unsigned n) { a += n; b += n; } |
| void __prev__ () { --a; --b; } |
| void __rewind__ (unsigned n) { a -= n; b -= n; } |
| hb_zip_iter_t __end__ () const { return hb_zip_iter_t (a.end (), b.end ()); } |
| /* Note, we should stop if ANY of the iters reaches end. As such two compare |
| * unequal if both items are unequal, NOT if either is unequal. */ |
| bool operator != (const hb_zip_iter_t& o) const |
| { return a != o.a && b != o.b; } |
| |
| private: |
| A a; |
| B b; |
| }; |
| struct |
| { HB_PARTIALIZE(2); |
| template <typename A, typename B, |
| hb_requires (hb_is_iterable (A) && hb_is_iterable (B))> |
| hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> |
| operator () (A&& a, B&& b) const |
| { return hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); } |
| } |
| HB_FUNCOBJ (hb_zip); |
| |
| /* hb_concat() */ |
| |
| template <typename A, typename B> |
| struct hb_concat_iter_t : |
| hb_iter_t<hb_concat_iter_t<A, B>, typename A::item_t> |
| { |
| hb_concat_iter_t () {} |
| hb_concat_iter_t (A& a, B& b) : a (a), b (b) {} |
| hb_concat_iter_t (const A& a, const B& b) : a (a), b (b) {} |
| |
| |
| typedef typename A::item_t __item_t__; |
| static constexpr bool is_random_access_iterator = |
| A::is_random_access_iterator && |
| B::is_random_access_iterator; |
| static constexpr bool is_sorted_iterator = false; |
| |
| __item_t__ __item__ () const |
| { |
| if (!a) |
| return *b; |
| return *a; |
| } |
| |
| __item_t__ __item_at__ (unsigned i) const |
| { |
| unsigned a_len = a.len (); |
| if (i < a_len) |
| return a[i]; |
| return b[i - a_len]; |
| } |
| |
| bool __more__ () const { return bool (a) || bool (b); } |
| |
| unsigned __len__ () const { return a.len () + b.len (); } |
| |
| void __next__ () |
| { |
| if (a) |
| ++a; |
| else |
| ++b; |
| } |
| |
| void __forward__ (unsigned n) |
| { |
| if (!n) return; |
| if (!is_random_access_iterator) { |
| while (n-- && *this) { |
| (*this)++; |
| } |
| return; |
| } |
| |
| unsigned a_len = a.len (); |
| if (n > a_len) { |
| n -= a_len; |
| a.__forward__ (a_len); |
| b.__forward__ (n); |
| } else { |
| a.__forward__ (n); |
| } |
| } |
| |
| hb_concat_iter_t __end__ () const { return hb_concat_iter_t (a.end (), b.end ()); } |
| bool operator != (const hb_concat_iter_t& o) const |
| { |
| return a != o.a |
| || b != o.b; |
| } |
| |
| private: |
| A a; |
| B b; |
| }; |
| struct |
| { HB_PARTIALIZE(2); |
| template <typename A, typename B, |
| hb_requires (hb_is_iterable (A) && hb_is_iterable (B))> |
| hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>> |
| operator () (A&& a, B&& b) const |
| { return hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); } |
| } |
| HB_FUNCOBJ (hb_concat); |
| |
| /* hb_apply() */ |
| |
| template <typename Appl> |
| struct hb_apply_t |
| { |
| hb_apply_t (Appl a) : a (a) {} |
| |
| template <typename Iter, |
| hb_requires (hb_is_iterator (Iter))> |
| void operator () (Iter it) |
| { |
| for (; it; ++it) |
| (void) hb_invoke (a, *it); |
| } |
| |
| private: |
| Appl a; |
| }; |
| struct |
| { |
| template <typename Appl> hb_apply_t<Appl> |
| operator () (Appl&& a) const |
| { return hb_apply_t<Appl> (a); } |
| |
| template <typename Appl> hb_apply_t<Appl&> |
| operator () (Appl *a) const |
| { return hb_apply_t<Appl&> (*a); } |
| } |
| HB_FUNCOBJ (hb_apply); |
| |
| /* hb_range()/hb_iota()/hb_repeat() */ |
| |
| template <typename T, typename S> |
| struct hb_range_iter_t : |
| hb_iter_t<hb_range_iter_t<T, S>, T> |
| { |
| hb_range_iter_t (T start, T end_, S step) : v (start), end_ (end_for (start, end_, step)), step (step) {} |
| |
| typedef T __item_t__; |
| static constexpr bool is_random_access_iterator = true; |
| static constexpr bool is_sorted_iterator = true; |
| __item_t__ __item__ () const { return hb_ridentity (v); } |
| __item_t__ __item_at__ (unsigned j) const { return v + j * step; } |
| bool __more__ () const { return v != end_; } |
| unsigned __len__ () const { return !step ? UINT_MAX : (end_ - v) / step; } |
| void __next__ () { v += step; } |
| void __forward__ (unsigned n) { v += n * step; } |
| void __prev__ () { v -= step; } |
| void __rewind__ (unsigned n) { v -= n * step; } |
| hb_range_iter_t __end__ () const { return hb_range_iter_t (end_, end_, step); } |
| bool operator != (const hb_range_iter_t& o) const |
| { return v != o.v; } |
| |
| private: |
| static inline T end_for (T start, T end_, S step) |
| { |
| if (!step) |
| return end_; |
| auto res = (end_ - start) % step; |
| if (!res) |
| return end_; |
| end_ += step - res; |
| return end_; |
| } |
| |
| private: |
| T v; |
| T end_; |
| S step; |
| }; |
| struct |
| { |
| template <typename T = unsigned> hb_range_iter_t<T, unsigned> |
| operator () (T end = (unsigned) -1) const |
| { return hb_range_iter_t<T, unsigned> (0, end, 1u); } |
| |
| template <typename T, typename S = unsigned> hb_range_iter_t<T, S> |
| operator () (T start, T end, S step = 1u) const |
| { return hb_range_iter_t<T, S> (start, end, step); } |
| } |
| HB_FUNCOBJ (hb_range); |
| |
| template <typename T, typename S> |
| struct hb_iota_iter_t : |
| hb_iter_with_fallback_t<hb_iota_iter_t<T, S>, T> |
| { |
| hb_iota_iter_t (T start, S step) : v (start), step (step) {} |
| |
| private: |
| |
| template <typename S2 = S> |
| auto |
| inc (hb_type_identity<S2> s, hb_priority<1>) |
| -> hb_void_t<decltype (hb_invoke (std::forward<S2> (s), hb_declval<T&> ()))> |
| { v = hb_invoke (std::forward<S2> (s), v); } |
| |
| void |
| inc (S s, hb_priority<0>) |
| { v += s; } |
| |
| public: |
| |
| typedef T __item_t__; |
| static constexpr bool is_random_access_iterator = true; |
| static constexpr bool is_sorted_iterator = true; |
| __item_t__ __item__ () const { return hb_ridentity (v); } |
| bool __more__ () const { return true; } |
| unsigned __len__ () const { return UINT_MAX; } |
| void __next__ () { inc (step, hb_prioritize); } |
| void __prev__ () { v -= step; } |
| hb_iota_iter_t __end__ () const { return *this; } |
| bool operator != (const hb_iota_iter_t& o) const { return true; } |
| |
| private: |
| T v; |
| S step; |
| }; |
| struct |
| { |
| template <typename T = unsigned, typename S = unsigned> hb_iota_iter_t<T, S> |
| operator () (T start = 0u, S step = 1u) const |
| { return hb_iota_iter_t<T, S> (start, step); } |
| } |
| HB_FUNCOBJ (hb_iota); |
| |
| template <typename T> |
| struct hb_repeat_iter_t : |
| hb_iter_t<hb_repeat_iter_t<T>, T> |
| { |
| hb_repeat_iter_t (T value) : v (value) {} |
| |
| typedef T __item_t__; |
| static constexpr bool is_random_access_iterator = true; |
| static constexpr bool is_sorted_iterator = true; |
| __item_t__ __item__ () const { return v; } |
| __item_t__ __item_at__ (unsigned j) const { return v; } |
| bool __more__ () const { return true; } |
| unsigned __len__ () const { return UINT_MAX; } |
| void __next__ () {} |
| void __forward__ (unsigned) {} |
| void __prev__ () {} |
| void __rewind__ (unsigned) {} |
| hb_repeat_iter_t __end__ () const { return *this; } |
| bool operator != (const hb_repeat_iter_t& o) const { return true; } |
| |
| private: |
| T v; |
| }; |
| struct |
| { |
| template <typename T> hb_repeat_iter_t<T> |
| operator () (T value) const |
| { return hb_repeat_iter_t<T> (value); } |
| } |
| HB_FUNCOBJ (hb_repeat); |
| |
| /* hb_enumerate()/hb_take() */ |
| |
| struct |
| { |
| template <typename Iterable, |
| typename Index = unsigned, |
| hb_requires (hb_is_iterable (Iterable))> |
| auto operator () (Iterable&& it, Index start = 0u) const HB_AUTO_RETURN |
| ( hb_zip (hb_iota (start), it) ) |
| } |
| HB_FUNCOBJ (hb_enumerate); |
| |
| struct |
| { HB_PARTIALIZE(2); |
| template <typename Iterable, |
| hb_requires (hb_is_iterable (Iterable))> |
| auto operator () (Iterable&& it, unsigned count) const HB_AUTO_RETURN |
| ( hb_zip (hb_range (count), it) | hb_map (hb_second) ) |
| |
| /* Specialization arrays. */ |
| |
| template <typename Type> inline hb_array_t<Type> |
| operator () (hb_array_t<Type> array, unsigned count) const |
| { return array.sub_array (0, count); } |
| |
| template <typename Type> inline hb_sorted_array_t<Type> |
| operator () (hb_sorted_array_t<Type> array, unsigned count) const |
| { return array.sub_array (0, count); } |
| } |
| HB_FUNCOBJ (hb_take); |
| |
| struct |
| { HB_PARTIALIZE(2); |
| template <typename Iter, |
| hb_requires (hb_is_iterator (Iter))> |
| auto operator () (Iter it, unsigned count) const HB_AUTO_RETURN |
| ( |
| + hb_iota (it, hb_add (count)) |
| | hb_map (hb_take (count)) |
| | hb_take ((hb_len (it) + count - 1) / count) |
| ) |
| } |
| HB_FUNCOBJ (hb_chop); |
| |
| /* hb_sink() */ |
| |
| template <typename Sink> |
| struct hb_sink_t |
| { |
| hb_sink_t (Sink s) : s (s) {} |
| |
| template <typename Iter, |
| hb_requires (hb_is_iterator (Iter))> |
| void operator () (Iter it) |
| { |
| for (; it; ++it) |
| s << *it; |
| } |
| |
| private: |
| Sink s; |
| }; |
| struct |
| { |
| template <typename Sink> hb_sink_t<Sink> |
| operator () (Sink&& s) const |
| { return hb_sink_t<Sink> (s); } |
| |
| template <typename Sink> hb_sink_t<Sink&> |
| operator () (Sink *s) const |
| { return hb_sink_t<Sink&> (*s); } |
| } |
| HB_FUNCOBJ (hb_sink); |
| |
| /* hb-drain: hb_sink to void / blackhole / /dev/null. */ |
| |
| struct |
| { |
| template <typename Iter, |
| hb_requires (hb_is_iterator (Iter))> |
| void operator () (Iter it) const |
| { |
| for (; it; ++it) |
| (void) *it; |
| } |
| } |
| HB_FUNCOBJ (hb_drain); |
| |
| /* hb_unzip(): unzip and sink to two sinks. */ |
| |
| template <typename Sink1, typename Sink2> |
| struct hb_unzip_t |
| { |
| hb_unzip_t (Sink1 s1, Sink2 s2) : s1 (s1), s2 (s2) {} |
| |
| template <typename Iter, |
| hb_requires (hb_is_iterator (Iter))> |
| void operator () (Iter it) |
| { |
| for (; it; ++it) |
| { |
| const auto &v = *it; |
| s1 << v.first; |
| s2 << v.second; |
| } |
| } |
| |
| private: |
| Sink1 s1; |
| Sink2 s2; |
| }; |
| struct |
| { |
| template <typename Sink1, typename Sink2> hb_unzip_t<Sink1, Sink2> |
| operator () (Sink1&& s1, Sink2&& s2) const |
| { return hb_unzip_t<Sink1, Sink2> (s1, s2); } |
| |
| template <typename Sink1, typename Sink2> hb_unzip_t<Sink1&, Sink2&> |
| operator () (Sink1 *s1, Sink2 *s2) const |
| { return hb_unzip_t<Sink1&, Sink2&> (*s1, *s2); } |
| } |
| HB_FUNCOBJ (hb_unzip); |
| |
| |
| /* hb-all, hb-any, hb-none. */ |
| |
| struct |
| { |
| template <typename Iterable, |
| typename Pred = decltype ((hb_identity)), |
| typename Proj = decltype ((hb_identity)), |
| hb_requires (hb_is_iterable (Iterable))> |
| bool operator () (Iterable&& c, |
| Pred&& p = hb_identity, |
| Proj&& f = hb_identity) const |
| { |
| for (auto it = hb_iter (c); it; ++it) |
| if (!hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) |
| return false; |
| return true; |
| } |
| } |
| HB_FUNCOBJ (hb_all); |
| struct |
| { |
| template <typename Iterable, |
| typename Pred = decltype ((hb_identity)), |
| typename Proj = decltype ((hb_identity)), |
| hb_requires (hb_is_iterable (Iterable))> |
| bool operator () (Iterable&& c, |
| Pred&& p = hb_identity, |
| Proj&& f = hb_identity) const |
| { |
| for (auto it = hb_iter (c); it; ++it) |
| if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) |
| return true; |
| return false; |
| } |
| } |
| HB_FUNCOBJ (hb_any); |
| struct |
| { |
| template <typename Iterable, |
| typename Pred = decltype ((hb_identity)), |
| typename Proj = decltype ((hb_identity)), |
| hb_requires (hb_is_iterable (Iterable))> |
| bool operator () (Iterable&& c, |
| Pred&& p = hb_identity, |
| Proj&& f = hb_identity) const |
| { |
| for (auto it = hb_iter (c); it; ++it) |
| if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it))) |
| return false; |
| return true; |
| } |
| } |
| HB_FUNCOBJ (hb_none); |
| |
| /* |
| * Algorithms operating on iterators. |
| */ |
| |
| template <typename C, typename V, |
| hb_requires (hb_is_iterable (C))> |
| inline void |
| hb_fill (C&& c, const V &v) |
| { |
| for (auto i = hb_iter (c); i; i++) |
| *i = v; |
| } |
| |
| template <typename S, typename D> |
| inline void |
| hb_copy (S&& is, D&& id) |
| { |
| hb_iter (is) | hb_sink (id); |
| } |
| |
| |
| #endif /* HB_ITER_HH */ |