blob: abe4c8330c0a12bd5a308e7ebc1197c67fd64942 [file] [log] [blame]
#ifndef OT_GLYF_COMPOSITEGLYPH_HH
#define OT_GLYF_COMPOSITEGLYPH_HH
#include "../../hb-open-type.hh"
namespace OT {
namespace glyf_impl {
struct CompositeGlyphRecord
{
protected:
enum composite_glyph_flag_t
{
ARG_1_AND_2_ARE_WORDS = 0x0001,
ARGS_ARE_XY_VALUES = 0x0002,
ROUND_XY_TO_GRID = 0x0004,
WE_HAVE_A_SCALE = 0x0008,
MORE_COMPONENTS = 0x0020,
WE_HAVE_AN_X_AND_Y_SCALE = 0x0040,
WE_HAVE_A_TWO_BY_TWO = 0x0080,
WE_HAVE_INSTRUCTIONS = 0x0100,
USE_MY_METRICS = 0x0200,
OVERLAP_COMPOUND = 0x0400,
SCALED_COMPONENT_OFFSET = 0x0800,
UNSCALED_COMPONENT_OFFSET = 0x1000,
GID_IS_24BIT = 0x2000
};
public:
unsigned int get_size () const
{
unsigned int size = min_size;
/* glyphIndex is 24bit instead of 16bit */
if (flags & GID_IS_24BIT) size += HBGlyphID24::static_size - HBGlyphID16::static_size;
/* arg1 and 2 are int16 */
if (flags & ARG_1_AND_2_ARE_WORDS) size += 4;
/* arg1 and 2 are int8 */
else size += 2;
/* One x 16 bit (scale) */
if (flags & WE_HAVE_A_SCALE) size += 2;
/* Two x 16 bit (xscale, yscale) */
else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) size += 4;
/* Four x 16 bit (xscale, scale01, scale10, yscale) */
else if (flags & WE_HAVE_A_TWO_BY_TWO) size += 8;
return size;
}
void drop_instructions_flag () { flags = (uint16_t) flags & ~WE_HAVE_INSTRUCTIONS; }
void set_overlaps_flag ()
{
flags = (uint16_t) flags | OVERLAP_COMPOUND;
}
bool has_instructions () const { return flags & WE_HAVE_INSTRUCTIONS; }
bool has_more () const { return flags & MORE_COMPONENTS; }
bool is_use_my_metrics () const { return flags & USE_MY_METRICS; }
bool is_anchored () const { return !(flags & ARGS_ARE_XY_VALUES); }
void get_anchor_points (unsigned int &point1, unsigned int &point2) const
{
const auto *p = &StructAfter<const HBUINT8> (flags);
if (flags & GID_IS_24BIT)
p += HBGlyphID24::static_size;
else
p += HBGlyphID16::static_size;
if (flags & ARG_1_AND_2_ARE_WORDS)
{
point1 = ((const HBUINT16 *) p)[0];
point2 = ((const HBUINT16 *) p)[1];
}
else
{
point1 = p[0];
point2 = p[1];
}
}
void transform_points (contour_point_vector_t &points) const
{
float matrix[4];
contour_point_t trans;
if (get_transformation (matrix, trans))
{
if (scaled_offsets ())
{
points.translate (trans);
points.transform (matrix);
}
else
{
points.transform (matrix);
points.translate (trans);
}
}
}
protected:
bool scaled_offsets () const
{ return (flags & (SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET)) == SCALED_COMPONENT_OFFSET; }
bool get_transformation (float (&matrix)[4], contour_point_t &trans) const
{
matrix[0] = matrix[3] = 1.f;
matrix[1] = matrix[2] = 0.f;
const auto *p = &StructAfter<const HBINT8> (flags);
if (flags & GID_IS_24BIT)
p += HBGlyphID24::static_size;
else
p += HBGlyphID16::static_size;
int tx, ty;
if (flags & ARG_1_AND_2_ARE_WORDS)
{
tx = *(const HBINT16 *) p;
p += HBINT16::static_size;
ty = *(const HBINT16 *) p;
p += HBINT16::static_size;
}
else
{
tx = *p++;
ty = *p++;
}
if (is_anchored ()) tx = ty = 0;
trans.init ((float) tx, (float) ty);
{
const F2DOT14 *points = (const F2DOT14 *) p;
if (flags & WE_HAVE_A_SCALE)
{
matrix[0] = matrix[3] = points[0].to_float ();
return true;
}
else if (flags & WE_HAVE_AN_X_AND_Y_SCALE)
{
matrix[0] = points[0].to_float ();
matrix[3] = points[1].to_float ();
return true;
}
else if (flags & WE_HAVE_A_TWO_BY_TWO)
{
matrix[0] = points[0].to_float ();
matrix[1] = points[1].to_float ();
matrix[2] = points[2].to_float ();
matrix[3] = points[3].to_float ();
return true;
}
}
return tx || ty;
}
public:
hb_codepoint_t get_gid () const
{
if (flags & GID_IS_24BIT)
return StructAfter<const HBGlyphID24> (flags);
else
return StructAfter<const HBGlyphID16> (flags);
}
void set_gid (hb_codepoint_t gid)
{
if (flags & GID_IS_24BIT)
StructAfter<HBGlyphID24> (flags) = gid;
else
/* TODO assert? */
StructAfter<HBGlyphID16> (flags) = gid;
}
protected:
HBUINT16 flags;
HBUINT24 pad;
public:
DEFINE_SIZE_MIN (4);
};
struct composite_iter_t : hb_iter_with_fallback_t<composite_iter_t, const CompositeGlyphRecord &>
{
typedef const CompositeGlyphRecord *__item_t__;
composite_iter_t (hb_bytes_t glyph_, __item_t__ current_) :
glyph (glyph_), current (nullptr), current_size (0)
{
set_current (current_);
}
composite_iter_t () : glyph (hb_bytes_t ()), current (nullptr), current_size (0) {}
item_t __item__ () const { return *current; }
bool __more__ () const { return current; }
void __next__ ()
{
if (!current->has_more ()) { current = nullptr; return; }
set_current (&StructAtOffset<CompositeGlyphRecord> (current, current_size));
}
composite_iter_t __end__ () const { return composite_iter_t (); }
bool operator != (const composite_iter_t& o) const
{ return current != o.current; }
void set_current (__item_t__ current_)
{
if (!glyph.check_range (current_, CompositeGlyphRecord::min_size))
{
current = nullptr;
current_size = 0;
return;
}
unsigned size = current_->get_size ();
if (!glyph.check_range (current_, size))
{
current = nullptr;
current_size = 0;
return;
}
current = current_;
current_size = size;
}
private:
hb_bytes_t glyph;
__item_t__ current;
unsigned current_size;
};
struct CompositeGlyph
{
const GlyphHeader &header;
hb_bytes_t bytes;
CompositeGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) :
header (header_), bytes (bytes_) {}
composite_iter_t iter () const
{ return composite_iter_t (bytes, &StructAfter<CompositeGlyphRecord, GlyphHeader> (header)); }
unsigned int instructions_length (hb_bytes_t bytes) const
{
unsigned int start = bytes.length;
unsigned int end = bytes.length;
const CompositeGlyphRecord *last = nullptr;
for (auto &item : iter ())
last = &item;
if (unlikely (!last)) return 0;
if (last->has_instructions ())
start = (char *) last - &bytes + last->get_size ();
if (unlikely (start > end)) return 0;
return end - start;
}
/* Trimming for composites not implemented.
* If removing hints it falls out of that. */
const hb_bytes_t trim_padding () const { return bytes; }
void drop_hints ()
{
for (const auto &_ : iter ())
const_cast<CompositeGlyphRecord &> (_).drop_instructions_flag ();
}
/* Chop instructions off the end */
void drop_hints_bytes (hb_bytes_t &dest_start) const
{ dest_start = bytes.sub_array (0, bytes.length - instructions_length (bytes)); }
void set_overlaps_flag ()
{
CompositeGlyphRecord& glyph_chain = const_cast<CompositeGlyphRecord &> (
StructAfter<CompositeGlyphRecord, GlyphHeader> (header));
if (!bytes.check_range(&glyph_chain, CompositeGlyphRecord::min_size))
return;
glyph_chain.set_overlaps_flag ();
}
};
} /* namespace glyf_impl */
} /* namespace OT */
#endif /* OT_GLYF_COMPOSITEGLYPH_HH */