| // Copyright 2015 Google Inc. All rights reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "benchmark_runner.h" |
| #include "benchmark/benchmark.h" |
| #include "benchmark_api_internal.h" |
| #include "internal_macros.h" |
| |
| #ifndef BENCHMARK_OS_WINDOWS |
| #ifndef BENCHMARK_OS_FUCHSIA |
| #include <sys/resource.h> |
| #endif |
| #include <sys/time.h> |
| #include <unistd.h> |
| #endif |
| |
| #include <algorithm> |
| #include <atomic> |
| #include <condition_variable> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <fstream> |
| #include <iostream> |
| #include <memory> |
| #include <string> |
| #include <thread> |
| #include <utility> |
| |
| #include "check.h" |
| #include "colorprint.h" |
| #include "commandlineflags.h" |
| #include "complexity.h" |
| #include "counter.h" |
| #include "internal_macros.h" |
| #include "log.h" |
| #include "mutex.h" |
| #include "re.h" |
| #include "statistics.h" |
| #include "string_util.h" |
| #include "thread_manager.h" |
| #include "thread_timer.h" |
| |
| namespace benchmark { |
| |
| namespace internal { |
| |
| MemoryManager* memory_manager = nullptr; |
| |
| namespace { |
| |
| static const size_t kMaxIterations = 1000000000; |
| |
| BenchmarkReporter::Run CreateRunReport( |
| const benchmark::internal::BenchmarkInstance& b, |
| const internal::ThreadManager::Result& results, size_t memory_iterations, |
| const MemoryManager::Result& memory_result, double seconds) { |
| // Create report about this benchmark run. |
| BenchmarkReporter::Run report; |
| |
| report.run_name = b.name; |
| report.error_occurred = results.has_error_; |
| report.error_message = results.error_message_; |
| report.report_label = results.report_label_; |
| // This is the total iterations across all threads. |
| report.iterations = results.iterations; |
| report.time_unit = b.time_unit; |
| |
| if (!report.error_occurred) { |
| if (b.use_manual_time) { |
| report.real_accumulated_time = results.manual_time_used; |
| } else { |
| report.real_accumulated_time = results.real_time_used; |
| } |
| report.cpu_accumulated_time = results.cpu_time_used; |
| report.complexity_n = results.complexity_n; |
| report.complexity = b.complexity; |
| report.complexity_lambda = b.complexity_lambda; |
| report.statistics = b.statistics; |
| report.counters = results.counters; |
| |
| if (memory_iterations > 0) { |
| report.has_memory_result = true; |
| report.allocs_per_iter = |
| memory_iterations ? static_cast<double>(memory_result.num_allocs) / |
| memory_iterations |
| : 0; |
| report.max_bytes_used = memory_result.max_bytes_used; |
| } |
| |
| internal::Finish(&report.counters, results.iterations, seconds, b.threads); |
| } |
| return report; |
| } |
| |
| // Execute one thread of benchmark b for the specified number of iterations. |
| // Adds the stats collected for the thread into *total. |
| void RunInThread(const BenchmarkInstance* b, size_t iters, int thread_id, |
| ThreadManager* manager) { |
| internal::ThreadTimer timer; |
| State st = b->Run(iters, thread_id, &timer, manager); |
| CHECK(st.iterations() >= st.max_iterations) |
| << "Benchmark returned before State::KeepRunning() returned false!"; |
| { |
| MutexLock l(manager->GetBenchmarkMutex()); |
| internal::ThreadManager::Result& results = manager->results; |
| results.iterations += st.iterations(); |
| results.cpu_time_used += timer.cpu_time_used(); |
| results.real_time_used += timer.real_time_used(); |
| results.manual_time_used += timer.manual_time_used(); |
| results.complexity_n += st.complexity_length_n(); |
| internal::Increment(&results.counters, st.counters); |
| } |
| manager->NotifyThreadComplete(); |
| } |
| |
| class BenchmarkRunner { |
| public: |
| BenchmarkRunner(const benchmark::internal::BenchmarkInstance& b_, |
| std::vector<BenchmarkReporter::Run>* complexity_reports_) |
| : b(b_), |
| complexity_reports(*complexity_reports_), |
| min_time(!IsZero(b.min_time) ? b.min_time : FLAGS_benchmark_min_time), |
| repeats(b.repetitions != 0 ? b.repetitions |
| : FLAGS_benchmark_repetitions), |
| has_explicit_iteration_count(b.iterations != 0), |
| pool(b.threads - 1), |
| iters(has_explicit_iteration_count ? b.iterations : 1) { |
| run_results.display_report_aggregates_only = |
| (FLAGS_benchmark_report_aggregates_only || |
| FLAGS_benchmark_display_aggregates_only); |
| run_results.file_report_aggregates_only = |
| FLAGS_benchmark_report_aggregates_only; |
| if (b.aggregation_report_mode != internal::ARM_Unspecified) { |
| run_results.display_report_aggregates_only = |
| (b.aggregation_report_mode & |
| internal::ARM_DisplayReportAggregatesOnly); |
| run_results.file_report_aggregates_only = |
| (b.aggregation_report_mode & internal::ARM_FileReportAggregatesOnly); |
| } |
| |
| for (int repetition_num = 0; repetition_num < repeats; repetition_num++) { |
| const bool is_the_first_repetition = repetition_num == 0; |
| DoOneRepetition(is_the_first_repetition); |
| } |
| |
| // Calculate additional statistics |
| run_results.aggregates_only = ComputeStats(run_results.non_aggregates); |
| |
| // Maybe calculate complexity report |
| if ((b.complexity != oNone) && b.last_benchmark_instance) { |
| auto additional_run_stats = ComputeBigO(complexity_reports); |
| run_results.aggregates_only.insert(run_results.aggregates_only.end(), |
| additional_run_stats.begin(), |
| additional_run_stats.end()); |
| complexity_reports.clear(); |
| } |
| } |
| |
| RunResults&& get_results() { return std::move(run_results); } |
| |
| private: |
| RunResults run_results; |
| |
| const benchmark::internal::BenchmarkInstance& b; |
| std::vector<BenchmarkReporter::Run>& complexity_reports; |
| |
| const double min_time; |
| const int repeats; |
| const bool has_explicit_iteration_count; |
| |
| std::vector<std::thread> pool; |
| |
| size_t iters; // preserved between repetitions! |
| // So only the first repetition has to find/calculate it, |
| // the other repetitions will just use that precomputed iteration count. |
| |
| struct IterationResults { |
| internal::ThreadManager::Result results; |
| size_t iters; |
| double seconds; |
| }; |
| IterationResults DoNIterations() { |
| VLOG(2) << "Running " << b.name << " for " << iters << "\n"; |
| |
| std::unique_ptr<internal::ThreadManager> manager; |
| manager.reset(new internal::ThreadManager(b.threads)); |
| |
| // Run all but one thread in separate threads |
| for (std::size_t ti = 0; ti < pool.size(); ++ti) { |
| pool[ti] = std::thread(&RunInThread, &b, iters, static_cast<int>(ti + 1), |
| manager.get()); |
| } |
| // And run one thread here directly. |
| // (If we were asked to run just one thread, we don't create new threads.) |
| // Yes, we need to do this here *after* we start the separate threads. |
| RunInThread(&b, iters, 0, manager.get()); |
| |
| // The main thread has finished. Now let's wait for the other threads. |
| manager->WaitForAllThreads(); |
| for (std::thread& thread : pool) thread.join(); |
| |
| IterationResults i; |
| // Acquire the measurements/counters from the manager, UNDER THE LOCK! |
| { |
| MutexLock l(manager->GetBenchmarkMutex()); |
| i.results = manager->results; |
| } |
| |
| // And get rid of the manager. |
| manager.reset(); |
| |
| // Adjust real/manual time stats since they were reported per thread. |
| i.results.real_time_used /= b.threads; |
| i.results.manual_time_used /= b.threads; |
| |
| VLOG(2) << "Ran in " << i.results.cpu_time_used << "/" |
| << i.results.real_time_used << "\n"; |
| |
| // So for how long were we running? |
| i.iters = iters; |
| // Base decisions off of real time if requested by this benchmark. |
| i.seconds = i.results.cpu_time_used; |
| if (b.use_manual_time) { |
| i.seconds = i.results.manual_time_used; |
| } else if (b.use_real_time) { |
| i.seconds = i.results.real_time_used; |
| } |
| |
| return i; |
| } |
| |
| size_t PredictNumItersNeeded(const IterationResults& i) const { |
| // See how much iterations should be increased by. |
| // Note: Avoid division by zero with max(seconds, 1ns). |
| double multiplier = min_time * 1.4 / std::max(i.seconds, 1e-9); |
| // If our last run was at least 10% of FLAGS_benchmark_min_time then we |
| // use the multiplier directly. |
| // Otherwise we use at most 10 times expansion. |
| // NOTE: When the last run was at least 10% of the min time the max |
| // expansion should be 14x. |
| bool is_significant = (i.seconds / min_time) > 0.1; |
| multiplier = is_significant ? multiplier : std::min(10.0, multiplier); |
| if (multiplier <= 1.0) multiplier = 2.0; |
| |
| // So what seems to be the sufficiently-large iteration count? Round up. |
| const size_t max_next_iters = |
| 0.5 + std::max(multiplier * i.iters, i.iters + 1.0); |
| // But we do have *some* sanity limits though.. |
| const size_t next_iters = std::min(max_next_iters, kMaxIterations); |
| |
| VLOG(3) << "Next iters: " << next_iters << ", " << multiplier << "\n"; |
| return next_iters; // round up before conversion to integer. |
| } |
| |
| bool ShouldReportIterationResults(const IterationResults& i) const { |
| // Determine if this run should be reported; |
| // Either it has run for a sufficient amount of time |
| // or because an error was reported. |
| return i.results.has_error_ || |
| i.iters >= kMaxIterations || // Too many iterations already. |
| i.seconds >= min_time || // The elapsed time is large enough. |
| // CPU time is specified but the elapsed real time greatly exceeds |
| // the minimum time. |
| // Note that user provided timers are except from this sanity check. |
| ((i.results.real_time_used >= 5 * min_time) && !b.use_manual_time); |
| } |
| |
| void DoOneRepetition(bool is_the_first_repetition) { |
| IterationResults i; |
| |
| // We *may* be gradually increasing the length (iteration count) |
| // of the benchmark until we decide the results are significant. |
| // And once we do, we report those last results and exit. |
| // Please do note that the if there are repetitions, the iteration count |
| // is *only* calculated for the *first* repetition, and other repetitions |
| // simply use that precomputed iteration count. |
| for (;;) { |
| i = DoNIterations(); |
| |
| // Do we consider the results to be significant? |
| // If we are doing repetitions, and the first repetition was already done, |
| // it has calculated the correct iteration time, so we have run that very |
| // iteration count just now. No need to calculate anything. Just report. |
| // Else, the normal rules apply. |
| const bool results_are_significant = !is_the_first_repetition || |
| has_explicit_iteration_count || |
| ShouldReportIterationResults(i); |
| |
| if (results_are_significant) break; // Good, let's report them! |
| |
| // Nope, bad iteration. Let's re-estimate the hopefully-sufficient |
| // iteration count, and run the benchmark again... |
| |
| iters = PredictNumItersNeeded(i); |
| assert(iters > i.iters && |
| "if we did more iterations than we want to do the next time, " |
| "then we should have accepted the current iteration run."); |
| } |
| |
| // Oh, one last thing, we need to also produce the 'memory measurements'.. |
| MemoryManager::Result memory_result; |
| size_t memory_iterations = 0; |
| if (memory_manager != nullptr) { |
| // Only run a few iterations to reduce the impact of one-time |
| // allocations in benchmarks that are not properly managed. |
| memory_iterations = std::min<size_t>(16, iters); |
| memory_manager->Start(); |
| std::unique_ptr<internal::ThreadManager> manager; |
| manager.reset(new internal::ThreadManager(1)); |
| RunInThread(&b, memory_iterations, 0, manager.get()); |
| manager->WaitForAllThreads(); |
| manager.reset(); |
| |
| memory_manager->Stop(&memory_result); |
| } |
| |
| // Ok, now actualy report. |
| BenchmarkReporter::Run report = CreateRunReport( |
| b, i.results, memory_iterations, memory_result, i.seconds); |
| |
| if (!report.error_occurred && b.complexity != oNone) |
| complexity_reports.push_back(report); |
| |
| run_results.non_aggregates.push_back(report); |
| } |
| }; |
| |
| } // end namespace |
| |
| RunResults RunBenchmark( |
| const benchmark::internal::BenchmarkInstance& b, |
| std::vector<BenchmarkReporter::Run>* complexity_reports) { |
| internal::BenchmarkRunner r(b, complexity_reports); |
| return r.get_results(); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace benchmark |