blob: f57c80c850e23329de990845ccb4676c91d6b310 [file] [log] [blame]
// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP___TREE
#define _LIBCPP___TREE
#include <__config>
#include <iterator>
#include <memory>
#include <stdexcept>
#include <algorithm>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
#pragma GCC system_header
#endif
_LIBCPP_BEGIN_NAMESPACE_STD
template <class _Tp, class _Compare, class _Allocator> class __tree;
template <class _Tp, class _NodePtr, class _DiffType>
class _LIBCPP_VISIBLE __tree_iterator;
template <class _Tp, class _ConstNodePtr, class _DiffType>
class _LIBCPP_VISIBLE __tree_const_iterator;
template <class _Key, class _Tp, class _Compare, class _Allocator>
class _LIBCPP_VISIBLE map;
template <class _Key, class _Tp, class _Compare, class _Allocator>
class _LIBCPP_VISIBLE multimap;
template <class _Key, class _Compare, class _Allocator>
class _LIBCPP_VISIBLE set;
template <class _Key, class _Compare, class _Allocator>
class _LIBCPP_VISIBLE multiset;
/*
_NodePtr algorithms
The algorithms taking _NodePtr are red black tree algorithms. Those
algorithms taking a parameter named __root should assume that __root
points to a proper red black tree (unless otherwise specified).
Each algorithm herein assumes that __root->__parent_ points to a non-null
structure which has a member __left_ which points back to __root. No other
member is read or written to at __root->__parent_.
__root->__parent_ will be referred to below (in comments only) as end_node.
end_node->__left_ is an externably accessible lvalue for __root, and can be
changed by node insertion and removal (without explicit reference to end_node).
All nodes (with the exception of end_node), even the node referred to as
__root, have a non-null __parent_ field.
*/
// Returns: true if __x is a left child of its parent, else false
// Precondition: __x != nullptr.
template <class _NodePtr>
inline _LIBCPP_INLINE_VISIBILITY
bool
__tree_is_left_child(_NodePtr __x) _NOEXCEPT
{
return __x == __x->__parent_->__left_;
}
// Determintes if the subtree rooted at __x is a proper red black subtree. If
// __x is a proper subtree, returns the black height (null counts as 1). If
// __x is an improper subtree, returns 0.
template <class _NodePtr>
unsigned
__tree_sub_invariant(_NodePtr __x)
{
if (__x == nullptr)
return 1;
// parent consistency checked by caller
// check __x->__left_ consistency
if (__x->__left_ != nullptr && __x->__left_->__parent_ != __x)
return 0;
// check __x->__right_ consistency
if (__x->__right_ != nullptr && __x->__right_->__parent_ != __x)
return 0;
// check __x->__left_ != __x->__right_ unless both are nullptr
if (__x->__left_ == __x->__right_ && __x->__left_ != nullptr)
return 0;
// If this is red, neither child can be red
if (!__x->__is_black_)
{
if (__x->__left_ && !__x->__left_->__is_black_)
return 0;
if (__x->__right_ && !__x->__right_->__is_black_)
return 0;
}
unsigned __h = __tree_sub_invariant(__x->__left_);
if (__h == 0)
return 0; // invalid left subtree
if (__h != __tree_sub_invariant(__x->__right_))
return 0; // invalid or different height right subtree
return __h + __x->__is_black_; // return black height of this node
}
// Determintes if the red black tree rooted at __root is a proper red black tree.
// __root == nullptr is a proper tree. Returns true is __root is a proper
// red black tree, else returns false.
template <class _NodePtr>
bool
__tree_invariant(_NodePtr __root)
{
if (__root == nullptr)
return true;
// check __x->__parent_ consistency
if (__root->__parent_ == nullptr)
return false;
if (!__tree_is_left_child(__root))
return false;
// root must be black
if (!__root->__is_black_)
return false;
// do normal node checks
return __tree_sub_invariant(__root) != 0;
}
// Returns: pointer to the left-most node under __x.
// Precondition: __x != nullptr.
template <class _NodePtr>
inline _LIBCPP_INLINE_VISIBILITY
_NodePtr
__tree_min(_NodePtr __x) _NOEXCEPT
{
while (__x->__left_ != nullptr)
__x = __x->__left_;
return __x;
}
// Returns: pointer to the right-most node under __x.
// Precondition: __x != nullptr.
template <class _NodePtr>
inline _LIBCPP_INLINE_VISIBILITY
_NodePtr
__tree_max(_NodePtr __x) _NOEXCEPT
{
while (__x->__right_ != nullptr)
__x = __x->__right_;
return __x;
}
// Returns: pointer to the next in-order node after __x.
// Precondition: __x != nullptr.
template <class _NodePtr>
_NodePtr
__tree_next(_NodePtr __x) _NOEXCEPT
{
if (__x->__right_ != nullptr)
return __tree_min(__x->__right_);
while (!__tree_is_left_child(__x))
__x = __x->__parent_;
return __x->__parent_;
}
// Returns: pointer to the previous in-order node before __x.
// Precondition: __x != nullptr.
template <class _NodePtr>
_NodePtr
__tree_prev(_NodePtr __x) _NOEXCEPT
{
if (__x->__left_ != nullptr)
return __tree_max(__x->__left_);
while (__tree_is_left_child(__x))
__x = __x->__parent_;
return __x->__parent_;
}
// Returns: pointer to a node which has no children
// Precondition: __x != nullptr.
template <class _NodePtr>
_NodePtr
__tree_leaf(_NodePtr __x) _NOEXCEPT
{
while (true)
{
if (__x->__left_ != nullptr)
{
__x = __x->__left_;
continue;
}
if (__x->__right_ != nullptr)
{
__x = __x->__right_;
continue;
}
break;
}
return __x;
}
// Effects: Makes __x->__right_ the subtree root with __x as its left child
// while preserving in-order order.
// Precondition: __x->__right_ != nullptr
template <class _NodePtr>
void
__tree_left_rotate(_NodePtr __x) _NOEXCEPT
{
_NodePtr __y = __x->__right_;
__x->__right_ = __y->__left_;
if (__x->__right_ != nullptr)
__x->__right_->__parent_ = __x;
__y->__parent_ = __x->__parent_;
if (__tree_is_left_child(__x))
__x->__parent_->__left_ = __y;
else
__x->__parent_->__right_ = __y;
__y->__left_ = __x;
__x->__parent_ = __y;
}
// Effects: Makes __x->__left_ the subtree root with __x as its right child
// while preserving in-order order.
// Precondition: __x->__left_ != nullptr
template <class _NodePtr>
void
__tree_right_rotate(_NodePtr __x) _NOEXCEPT
{
_NodePtr __y = __x->__left_;
__x->__left_ = __y->__right_;
if (__x->__left_ != nullptr)
__x->__left_->__parent_ = __x;
__y->__parent_ = __x->__parent_;
if (__tree_is_left_child(__x))
__x->__parent_->__left_ = __y;
else
__x->__parent_->__right_ = __y;
__y->__right_ = __x;
__x->__parent_ = __y;
}
// Effects: Rebalances __root after attaching __x to a leaf.
// Precondition: __root != nulptr && __x != nullptr.
// __x has no children.
// __x == __root or == a direct or indirect child of __root.
// If __x were to be unlinked from __root (setting __root to
// nullptr if __root == __x), __tree_invariant(__root) == true.
// Postcondition: __tree_invariant(end_node->__left_) == true. end_node->__left_
// may be different than the value passed in as __root.
template <class _NodePtr>
void
__tree_balance_after_insert(_NodePtr __root, _NodePtr __x) _NOEXCEPT
{
__x->__is_black_ = __x == __root;
while (__x != __root && !__x->__parent_->__is_black_)
{
// __x->__parent_ != __root because __x->__parent_->__is_black == false
if (__tree_is_left_child(__x->__parent_))
{
_NodePtr __y = __x->__parent_->__parent_->__right_;
if (__y != nullptr && !__y->__is_black_)
{
__x = __x->__parent_;
__x->__is_black_ = true;
__x = __x->__parent_;
__x->__is_black_ = __x == __root;
__y->__is_black_ = true;
}
else
{
if (!__tree_is_left_child(__x))
{
__x = __x->__parent_;
__tree_left_rotate(__x);
}
__x = __x->__parent_;
__x->__is_black_ = true;
__x = __x->__parent_;
__x->__is_black_ = false;
__tree_right_rotate(__x);
break;
}
}
else
{
_NodePtr __y = __x->__parent_->__parent_->__left_;
if (__y != nullptr && !__y->__is_black_)
{
__x = __x->__parent_;
__x->__is_black_ = true;
__x = __x->__parent_;
__x->__is_black_ = __x == __root;
__y->__is_black_ = true;
}
else
{
if (__tree_is_left_child(__x))
{
__x = __x->__parent_;
__tree_right_rotate(__x);
}
__x = __x->__parent_;
__x->__is_black_ = true;
__x = __x->__parent_;
__x->__is_black_ = false;
__tree_left_rotate(__x);
break;
}
}
}
}
// Precondition: __root != nullptr && __z != nullptr.
// __tree_invariant(__root) == true.
// __z == __root or == a direct or indirect child of __root.
// Effects: unlinks __z from the tree rooted at __root, rebalancing as needed.
// Postcondition: __tree_invariant(end_node->__left_) == true && end_node->__left_
// nor any of its children refer to __z. end_node->__left_
// may be different than the value passed in as __root.
template <class _NodePtr>
void
__tree_remove(_NodePtr __root, _NodePtr __z) _NOEXCEPT
{
// __z will be removed from the tree. Client still needs to destruct/deallocate it
// __y is either __z, or if __z has two children, __tree_next(__z).
// __y will have at most one child.
// __y will be the initial hole in the tree (make the hole at a leaf)
_NodePtr __y = (__z->__left_ == nullptr || __z->__right_ == nullptr) ?
__z : __tree_next(__z);
// __x is __y's possibly null single child
_NodePtr __x = __y->__left_ != nullptr ? __y->__left_ : __y->__right_;
// __w is __x's possibly null uncle (will become __x's sibling)
_NodePtr __w = nullptr;
// link __x to __y's parent, and find __w
if (__x != nullptr)
__x->__parent_ = __y->__parent_;
if (__tree_is_left_child(__y))
{
__y->__parent_->__left_ = __x;
if (__y != __root)
__w = __y->__parent_->__right_;
else
__root = __x; // __w == nullptr
}
else
{
__y->__parent_->__right_ = __x;
// __y can't be root if it is a right child
__w = __y->__parent_->__left_;
}
bool __removed_black = __y->__is_black_;
// If we didn't remove __z, do so now by splicing in __y for __z,
// but copy __z's color. This does not impact __x or __w.
if (__y != __z)
{
// __z->__left_ != nulptr but __z->__right_ might == __x == nullptr
__y->__parent_ = __z->__parent_;
if (__tree_is_left_child(__z))
__y->__parent_->__left_ = __y;
else
__y->__parent_->__right_ = __y;
__y->__left_ = __z->__left_;
__y->__left_->__parent_ = __y;
__y->__right_ = __z->__right_;
if (__y->__right_ != nullptr)
__y->__right_->__parent_ = __y;
__y->__is_black_ = __z->__is_black_;
if (__root == __z)
__root = __y;
}
// There is no need to rebalance if we removed a red, or if we removed
// the last node.
if (__removed_black && __root != nullptr)
{
// Rebalance:
// __x has an implicit black color (transferred from the removed __y)
// associated with it, no matter what its color is.
// If __x is __root (in which case it can't be null), it is supposed
// to be black anyway, and if it is doubly black, then the double
// can just be ignored.
// If __x is red (in which case it can't be null), then it can absorb
// the implicit black just by setting its color to black.
// Since __y was black and only had one child (which __x points to), __x
// is either red with no children, else null, otherwise __y would have
// different black heights under left and right pointers.
// if (__x == __root || __x != nullptr && !__x->__is_black_)
if (__x != nullptr)
__x->__is_black_ = true;
else
{
// Else __x isn't root, and is "doubly black", even though it may
// be null. __w can not be null here, else the parent would
// see a black height >= 2 on the __x side and a black height
// of 1 on the __w side (__w must be a non-null black or a red
// with a non-null black child).
while (true)
{
if (!__tree_is_left_child(__w)) // if x is left child
{
if (!__w->__is_black_)
{
__w->__is_black_ = true;
__w->__parent_->__is_black_ = false;
__tree_left_rotate(__w->__parent_);
// __x is still valid
// reset __root only if necessary
if (__root == __w->__left_)
__root = __w;
// reset sibling, and it still can't be null
__w = __w->__left_->__right_;
}
// __w->__is_black_ is now true, __w may have null children
if ((__w->__left_ == nullptr || __w->__left_->__is_black_) &&
(__w->__right_ == nullptr || __w->__right_->__is_black_))
{
__w->__is_black_ = false;
__x = __w->__parent_;
// __x can no longer be null
if (__x == __root || !__x->__is_black_)
{
__x->__is_black_ = true;
break;
}
// reset sibling, and it still can't be null
__w = __tree_is_left_child(__x) ?
__x->__parent_->__right_ :
__x->__parent_->__left_;
// continue;
}
else // __w has a red child
{
if (__w->__right_ == nullptr || __w->__right_->__is_black_)
{
// __w left child is non-null and red
__w->__left_->__is_black_ = true;
__w->__is_black_ = false;
__tree_right_rotate(__w);
// __w is known not to be root, so root hasn't changed
// reset sibling, and it still can't be null
__w = __w->__parent_;
}
// __w has a right red child, left child may be null
__w->__is_black_ = __w->__parent_->__is_black_;
__w->__parent_->__is_black_ = true;
__w->__right_->__is_black_ = true;
__tree_left_rotate(__w->__parent_);
break;
}
}
else
{
if (!__w->__is_black_)
{
__w->__is_black_ = true;
__w->__parent_->__is_black_ = false;
__tree_right_rotate(__w->__parent_);
// __x is still valid
// reset __root only if necessary
if (__root == __w->__right_)
__root = __w;
// reset sibling, and it still can't be null
__w = __w->__right_->__left_;
}
// __w->__is_black_ is now true, __w may have null children
if ((__w->__left_ == nullptr || __w->__left_->__is_black_) &&
(__w->__right_ == nullptr || __w->__right_->__is_black_))
{
__w->__is_black_ = false;
__x = __w->__parent_;
// __x can no longer be null
if (!__x->__is_black_ || __x == __root)
{
__x->__is_black_ = true;
break;
}
// reset sibling, and it still can't be null
__w = __tree_is_left_child(__x) ?
__x->__parent_->__right_ :
__x->__parent_->__left_;
// continue;
}
else // __w has a red child
{
if (__w->__left_ == nullptr || __w->__left_->__is_black_)
{
// __w right child is non-null and red
__w->__right_->__is_black_ = true;
__w->__is_black_ = false;
__tree_left_rotate(__w);
// __w is known not to be root, so root hasn't changed
// reset sibling, and it still can't be null
__w = __w->__parent_;
}
// __w has a left red child, right child may be null
__w->__is_black_ = __w->__parent_->__is_black_;
__w->__parent_->__is_black_ = true;
__w->__left_->__is_black_ = true;
__tree_right_rotate(__w->__parent_);
break;
}
}
}
}
}
}
template <class _Allocator> class __map_node_destructor;
template <class _Allocator>
class __tree_node_destructor
{
typedef _Allocator allocator_type;
typedef allocator_traits<allocator_type> __alloc_traits;
typedef typename __alloc_traits::value_type::value_type value_type;
public:
typedef typename __alloc_traits::pointer pointer;
private:
allocator_type& __na_;
__tree_node_destructor& operator=(const __tree_node_destructor&);
public:
bool __value_constructed;
_LIBCPP_INLINE_VISIBILITY
explicit __tree_node_destructor(allocator_type& __na) _NOEXCEPT
: __na_(__na),
__value_constructed(false)
{}
_LIBCPP_INLINE_VISIBILITY
void operator()(pointer __p) _NOEXCEPT
{
if (__value_constructed)
__alloc_traits::destroy(__na_, _VSTD::addressof(__p->__value_));
if (__p)
__alloc_traits::deallocate(__na_, __p, 1);
}
template <class> friend class __map_node_destructor;
};
// node
template <class _Pointer>
class __tree_end_node
{
public:
typedef _Pointer pointer;
pointer __left_;
_LIBCPP_INLINE_VISIBILITY
__tree_end_node() _NOEXCEPT : __left_() {}
};
template <class _VoidPtr>
class __tree_node_base
: public __tree_end_node
<
typename pointer_traits<_VoidPtr>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<__tree_node_base<_VoidPtr> >
#else
rebind<__tree_node_base<_VoidPtr> >::other
#endif
>
{
__tree_node_base(const __tree_node_base&);
__tree_node_base& operator=(const __tree_node_base&);
public:
typedef typename pointer_traits<_VoidPtr>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<__tree_node_base>
#else
rebind<__tree_node_base>::other
#endif
pointer;
typedef typename pointer_traits<_VoidPtr>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<const __tree_node_base>
#else
rebind<const __tree_node_base>::other
#endif
const_pointer;
typedef __tree_end_node<pointer> base;
pointer __right_;
pointer __parent_;
bool __is_black_;
_LIBCPP_INLINE_VISIBILITY
__tree_node_base() _NOEXCEPT
: __right_(), __parent_(), __is_black_(false) {}
};
template <class _Tp, class _VoidPtr>
class __tree_node
: public __tree_node_base<_VoidPtr>
{
public:
typedef __tree_node_base<_VoidPtr> base;
typedef _Tp value_type;
value_type __value_;
#if !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS)
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
explicit __tree_node(_Args&& ...__args)
: __value_(_VSTD::forward<_Args>(__args)...) {}
#else // !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS)
_LIBCPP_INLINE_VISIBILITY
explicit __tree_node(const value_type& __v)
: __value_(__v) {}
#endif // !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS)
};
template <class _TreeIterator> class __map_iterator;
template <class _TreeIterator> class __map_const_iterator;
template <class _Tp, class _NodePtr, class _DiffType>
class _LIBCPP_VISIBLE __tree_iterator
{
typedef _NodePtr __node_pointer;
typedef typename pointer_traits<__node_pointer>::element_type __node;
typedef typename __node::base __node_base;
typedef typename __node_base::pointer __node_base_pointer;
__node_pointer __ptr_;
typedef pointer_traits<__node_pointer> __pointer_traits;
public:
typedef bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _DiffType difference_type;
typedef value_type& reference;
typedef typename pointer_traits<__node_pointer>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<value_type>
#else
rebind<value_type>::other
#endif
pointer;
_LIBCPP_INLINE_VISIBILITY __tree_iterator() _NOEXCEPT {}
_LIBCPP_INLINE_VISIBILITY reference operator*() const {return __ptr_->__value_;}
_LIBCPP_INLINE_VISIBILITY pointer operator->() const {return &__ptr_->__value_;}
_LIBCPP_INLINE_VISIBILITY
__tree_iterator& operator++()
{__ptr_ = static_cast<__node_pointer>(__tree_next(static_cast<__node_base_pointer>(__ptr_)));
return *this;}
_LIBCPP_INLINE_VISIBILITY
__tree_iterator operator++(int)
{__tree_iterator __t(*this); ++(*this); return __t;}
_LIBCPP_INLINE_VISIBILITY
__tree_iterator& operator--()
{__ptr_ = static_cast<__node_pointer>(__tree_prev(static_cast<__node_base_pointer>(__ptr_)));
return *this;}
_LIBCPP_INLINE_VISIBILITY
__tree_iterator operator--(int)
{__tree_iterator __t(*this); --(*this); return __t;}
friend _LIBCPP_INLINE_VISIBILITY
bool operator==(const __tree_iterator& __x, const __tree_iterator& __y)
{return __x.__ptr_ == __y.__ptr_;}
friend _LIBCPP_INLINE_VISIBILITY
bool operator!=(const __tree_iterator& __x, const __tree_iterator& __y)
{return !(__x == __y);}
private:
_LIBCPP_INLINE_VISIBILITY
explicit __tree_iterator(__node_pointer __p) _NOEXCEPT : __ptr_(__p) {}
template <class, class, class> friend class __tree;
template <class, class, class> friend class _LIBCPP_VISIBLE __tree_const_iterator;
template <class> friend class _LIBCPP_VISIBLE __map_iterator;
template <class, class, class, class> friend class _LIBCPP_VISIBLE map;
template <class, class, class, class> friend class _LIBCPP_VISIBLE multimap;
template <class, class, class> friend class _LIBCPP_VISIBLE set;
template <class, class, class> friend class _LIBCPP_VISIBLE multiset;
};
template <class _Tp, class _ConstNodePtr, class _DiffType>
class _LIBCPP_VISIBLE __tree_const_iterator
{
typedef _ConstNodePtr __node_pointer;
typedef typename pointer_traits<__node_pointer>::element_type __node;
typedef const typename __node::base __node_base;
typedef typename pointer_traits<__node_pointer>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<__node_base>
#else
rebind<__node_base>::other
#endif
__node_base_pointer;
__node_pointer __ptr_;
typedef pointer_traits<__node_pointer> __pointer_traits;
public:
typedef bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _DiffType difference_type;
typedef const value_type& reference;
typedef typename pointer_traits<__node_pointer>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<const value_type>
#else
rebind<const value_type>::other
#endif
pointer;
_LIBCPP_INLINE_VISIBILITY __tree_const_iterator() {}
private:
typedef typename remove_const<__node>::type __non_const_node;
typedef typename pointer_traits<__node_pointer>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<__non_const_node>
#else
rebind<__non_const_node>::other
#endif
__non_const_node_pointer;
typedef __tree_iterator<value_type, __non_const_node_pointer, difference_type>
__non_const_iterator;
public:
_LIBCPP_INLINE_VISIBILITY
__tree_const_iterator(__non_const_iterator __p) _NOEXCEPT
: __ptr_(__p.__ptr_) {}
_LIBCPP_INLINE_VISIBILITY reference operator*() const {return __ptr_->__value_;}
_LIBCPP_INLINE_VISIBILITY pointer operator->() const {return &__ptr_->__value_;}
_LIBCPP_INLINE_VISIBILITY
__tree_const_iterator& operator++()
{__ptr_ = static_cast<__node_pointer>(__tree_next(static_cast<__node_base_pointer>(__ptr_)));
return *this;}
_LIBCPP_INLINE_VISIBILITY
__tree_const_iterator operator++(int)
{__tree_const_iterator __t(*this); ++(*this); return __t;}
_LIBCPP_INLINE_VISIBILITY
__tree_const_iterator& operator--()
{__ptr_ = static_cast<__node_pointer>(__tree_prev(static_cast<__node_base_pointer>(__ptr_)));
return *this;}
_LIBCPP_INLINE_VISIBILITY
__tree_const_iterator operator--(int)
{__tree_const_iterator __t(*this); --(*this); return __t;}
friend _LIBCPP_INLINE_VISIBILITY
bool operator==(const __tree_const_iterator& __x, const __tree_const_iterator& __y)
{return __x.__ptr_ == __y.__ptr_;}
friend _LIBCPP_INLINE_VISIBILITY
bool operator!=(const __tree_const_iterator& __x, const __tree_const_iterator& __y)
{return !(__x == __y);}
private:
_LIBCPP_INLINE_VISIBILITY
explicit __tree_const_iterator(__node_pointer __p) _NOEXCEPT
: __ptr_(__p) {}
template <class, class, class> friend class __tree;
template <class, class, class, class> friend class _LIBCPP_VISIBLE map;
template <class, class, class, class> friend class _LIBCPP_VISIBLE multimap;
template <class, class, class> friend class _LIBCPP_VISIBLE set;
template <class, class, class> friend class _LIBCPP_VISIBLE multiset;
template <class> friend class _LIBCPP_VISIBLE __map_const_iterator;
};
template <class _Tp, class _Compare, class _Allocator>
class __tree
{
public:
typedef _Tp value_type;
typedef _Compare value_compare;
typedef _Allocator allocator_type;
typedef allocator_traits<allocator_type> __alloc_traits;
typedef typename __alloc_traits::pointer pointer;
typedef typename __alloc_traits::const_pointer const_pointer;
typedef typename __alloc_traits::size_type size_type;
typedef typename __alloc_traits::difference_type difference_type;
typedef __tree_node<value_type, typename __alloc_traits::void_pointer> __node;
typedef __tree_node_base<typename __alloc_traits::void_pointer> __node_base;
typedef typename __alloc_traits::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind_alloc<__node>
#else
rebind_alloc<__node>::other
#endif
__node_allocator;
typedef allocator_traits<__node_allocator> __node_traits;
typedef typename __node_traits::pointer __node_pointer;
typedef typename __node_traits::const_pointer __node_const_pointer;
typedef typename __node_base::pointer __node_base_pointer;
typedef typename __node_base::const_pointer __node_base_const_pointer;
private:
typedef typename __node_base::base __end_node_t;
typedef typename pointer_traits<__node_pointer>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<__end_node_t>
#else
rebind<__end_node_t>::other
#endif
__end_node_ptr;
typedef typename pointer_traits<__node_pointer>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<const __end_node_t>
#else
rebind<const __end_node_t>::other
#endif
__end_node_const_ptr;
__node_pointer __begin_node_;
__compressed_pair<__end_node_t, __node_allocator> __pair1_;
__compressed_pair<size_type, value_compare> __pair3_;
public:
_LIBCPP_INLINE_VISIBILITY
__node_pointer __end_node() _NOEXCEPT
{
return static_cast<__node_pointer>
(
pointer_traits<__end_node_ptr>::pointer_to(__pair1_.first())
);
}
_LIBCPP_INLINE_VISIBILITY
__node_const_pointer __end_node() const _NOEXCEPT
{
return static_cast<__node_const_pointer>
(
pointer_traits<__end_node_const_ptr>::pointer_to(__pair1_.first())
);
}
_LIBCPP_INLINE_VISIBILITY
__node_allocator& __node_alloc() _NOEXCEPT {return __pair1_.second();}
private:
_LIBCPP_INLINE_VISIBILITY
const __node_allocator& __node_alloc() const _NOEXCEPT
{return __pair1_.second();}
_LIBCPP_INLINE_VISIBILITY
__node_pointer& __begin_node() _NOEXCEPT {return __begin_node_;}
_LIBCPP_INLINE_VISIBILITY
const __node_pointer& __begin_node() const _NOEXCEPT {return __begin_node_;}
public:
_LIBCPP_INLINE_VISIBILITY
allocator_type __alloc() const _NOEXCEPT
{return allocator_type(__node_alloc());}
private:
_LIBCPP_INLINE_VISIBILITY
size_type& size() _NOEXCEPT {return __pair3_.first();}
public:
_LIBCPP_INLINE_VISIBILITY
const size_type& size() const _NOEXCEPT {return __pair3_.first();}
_LIBCPP_INLINE_VISIBILITY
value_compare& value_comp() _NOEXCEPT {return __pair3_.second();}
_LIBCPP_INLINE_VISIBILITY
const value_compare& value_comp() const _NOEXCEPT
{return __pair3_.second();}
public:
_LIBCPP_INLINE_VISIBILITY
__node_pointer __root() _NOEXCEPT
{return static_cast<__node_pointer> (__end_node()->__left_);}
_LIBCPP_INLINE_VISIBILITY
__node_const_pointer __root() const _NOEXCEPT
{return static_cast<__node_const_pointer>(__end_node()->__left_);}
typedef __tree_iterator<value_type, __node_pointer, difference_type> iterator;
typedef __tree_const_iterator<value_type, __node_const_pointer, difference_type> const_iterator;
explicit __tree(const value_compare& __comp)
_NOEXCEPT_(
is_nothrow_default_constructible<__node_allocator>::value &&
is_nothrow_copy_constructible<value_compare>::value);
explicit __tree(const allocator_type& __a);
__tree(const value_compare& __comp, const allocator_type& __a);
__tree(const __tree& __t);
__tree& operator=(const __tree& __t);
template <class _InputIterator>
void __assign_unique(_InputIterator __first, _InputIterator __last);
template <class _InputIterator>
void __assign_multi(_InputIterator __first, _InputIterator __last);
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
__tree(__tree&& __t)
_NOEXCEPT_(
is_nothrow_move_constructible<__node_allocator>::value &&
is_nothrow_move_constructible<value_compare>::value);
__tree(__tree&& __t, const allocator_type& __a);
__tree& operator=(__tree&& __t)
_NOEXCEPT_(
__node_traits::propagate_on_container_move_assignment::value &&
is_nothrow_move_assignable<value_compare>::value &&
is_nothrow_move_assignable<__node_allocator>::value);
#endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES
~__tree();
_LIBCPP_INLINE_VISIBILITY
iterator begin() _NOEXCEPT {return iterator(__begin_node());}
_LIBCPP_INLINE_VISIBILITY
const_iterator begin() const _NOEXCEPT {return const_iterator(__begin_node());}
_LIBCPP_INLINE_VISIBILITY
iterator end() _NOEXCEPT {return iterator(__end_node());}
_LIBCPP_INLINE_VISIBILITY
const_iterator end() const _NOEXCEPT {return const_iterator(__end_node());}
_LIBCPP_INLINE_VISIBILITY
size_type max_size() const _NOEXCEPT
{return __node_traits::max_size(__node_alloc());}
void clear() _NOEXCEPT;
void swap(__tree& __t)
_NOEXCEPT_(
__is_nothrow_swappable<value_compare>::value &&
(!__node_traits::propagate_on_container_swap::value ||
__is_nothrow_swappable<__node_allocator>::value));
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
#ifndef _LIBCPP_HAS_NO_VARIADICS
template <class... _Args>
pair<iterator, bool>
__emplace_unique(_Args&&... __args);
template <class... _Args>
iterator
__emplace_multi(_Args&&... __args);
template <class... _Args>
iterator
__emplace_hint_unique(const_iterator __p, _Args&&... __args);
template <class... _Args>
iterator
__emplace_hint_multi(const_iterator __p, _Args&&... __args);
#endif // _LIBCPP_HAS_NO_VARIADICS
template <class _Vp>
pair<iterator, bool> __insert_unique(_Vp&& __v);
template <class _Vp>
iterator __insert_unique(const_iterator __p, _Vp&& __v);
template <class _Vp>
iterator __insert_multi(_Vp&& __v);
template <class _Vp>
iterator __insert_multi(const_iterator __p, _Vp&& __v);
#endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES
pair<iterator, bool> __insert_unique(const value_type& __v);
iterator __insert_unique(const_iterator __p, const value_type& __v);
iterator __insert_multi(const value_type& __v);
iterator __insert_multi(const_iterator __p, const value_type& __v);
pair<iterator, bool> __node_insert_unique(__node_pointer __nd);
iterator __node_insert_unique(const_iterator __p,
__node_pointer __nd);
iterator __node_insert_multi(__node_pointer __nd);
iterator __node_insert_multi(const_iterator __p, __node_pointer __nd);
iterator erase(const_iterator __p);
iterator erase(const_iterator __f, const_iterator __l);
template <class _Key>
size_type __erase_unique(const _Key& __k);
template <class _Key>
size_type __erase_multi(const _Key& __k);
void __insert_node_at(__node_base_pointer __parent,
__node_base_pointer& __child,
__node_base_pointer __new_node);
template <class _Key>
iterator find(const _Key& __v);
template <class _Key>
const_iterator find(const _Key& __v) const;
template <class _Key>
size_type __count_unique(const _Key& __k) const;
template <class _Key>
size_type __count_multi(const _Key& __k) const;
template <class _Key>
_LIBCPP_INLINE_VISIBILITY
iterator lower_bound(const _Key& __v)
{return __lower_bound(__v, __root(), __end_node());}
template <class _Key>
iterator __lower_bound(const _Key& __v,
__node_pointer __root,
__node_pointer __result);
template <class _Key>
_LIBCPP_INLINE_VISIBILITY
const_iterator lower_bound(const _Key& __v) const
{return __lower_bound(__v, __root(), __end_node());}
template <class _Key>
const_iterator __lower_bound(const _Key& __v,
__node_const_pointer __root,
__node_const_pointer __result) const;
template <class _Key>
_LIBCPP_INLINE_VISIBILITY
iterator upper_bound(const _Key& __v)
{return __upper_bound(__v, __root(), __end_node());}
template <class _Key>
iterator __upper_bound(const _Key& __v,
__node_pointer __root,
__node_pointer __result);
template <class _Key>
_LIBCPP_INLINE_VISIBILITY
const_iterator upper_bound(const _Key& __v) const
{return __upper_bound(__v, __root(), __end_node());}
template <class _Key>
const_iterator __upper_bound(const _Key& __v,
__node_const_pointer __root,
__node_const_pointer __result) const;
template <class _Key>
pair<iterator, iterator>
__equal_range_unique(const _Key& __k);
template <class _Key>
pair<const_iterator, const_iterator>
__equal_range_unique(const _Key& __k) const;
template <class _Key>
pair<iterator, iterator>
__equal_range_multi(const _Key& __k);
template <class _Key>
pair<const_iterator, const_iterator>
__equal_range_multi(const _Key& __k) const;
typedef __tree_node_destructor<__node_allocator> _Dp;
typedef unique_ptr<__node, _Dp> __node_holder;
__node_holder remove(const_iterator __p) _NOEXCEPT;
private:
typename __node_base::pointer&
__find_leaf_low(typename __node_base::pointer& __parent, const value_type& __v);
typename __node_base::pointer&
__find_leaf_high(typename __node_base::pointer& __parent, const value_type& __v);
typename __node_base::pointer&
__find_leaf(const_iterator __hint,
typename __node_base::pointer& __parent, const value_type& __v);
template <class _Key>
typename __node_base::pointer&
__find_equal(typename __node_base::pointer& __parent, const _Key& __v);
template <class _Key>
typename __node_base::pointer&
__find_equal(const_iterator __hint, typename __node_base::pointer& __parent,
const _Key& __v);
#if !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS)
template <class ..._Args>
__node_holder __construct_node(_Args&& ...__args);
#else // !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS)
__node_holder __construct_node(const value_type& __v);
#endif
void destroy(__node_pointer __nd) _NOEXCEPT;
_LIBCPP_INLINE_VISIBILITY
void __copy_assign_alloc(const __tree& __t)
{__copy_assign_alloc(__t, integral_constant<bool,
__node_traits::propagate_on_container_copy_assignment::value>());}
_LIBCPP_INLINE_VISIBILITY
void __copy_assign_alloc(const __tree& __t, true_type)
{__node_alloc() = __t.__node_alloc();}
_LIBCPP_INLINE_VISIBILITY
void __copy_assign_alloc(const __tree& __t, false_type) {}
void __move_assign(__tree& __t, false_type);
void __move_assign(__tree& __t, true_type)
_NOEXCEPT_(is_nothrow_move_assignable<value_compare>::value &&
is_nothrow_move_assignable<__node_allocator>::value);
_LIBCPP_INLINE_VISIBILITY
void __move_assign_alloc(__tree& __t)
_NOEXCEPT_(
!__node_traits::propagate_on_container_move_assignment::value ||
is_nothrow_move_assignable<__node_allocator>::value)
{__move_assign_alloc(__t, integral_constant<bool,
__node_traits::propagate_on_container_move_assignment::value>());}
_LIBCPP_INLINE_VISIBILITY
void __move_assign_alloc(__tree& __t, true_type)
_NOEXCEPT_(is_nothrow_move_assignable<__node_allocator>::value)
{__node_alloc() = _VSTD::move(__t.__node_alloc());}
_LIBCPP_INLINE_VISIBILITY
void __move_assign_alloc(__tree& __t, false_type) _NOEXCEPT {}
_LIBCPP_INLINE_VISIBILITY
static void __swap_alloc(__node_allocator& __x, __node_allocator& __y)
_NOEXCEPT_(
!__node_traits::propagate_on_container_swap::value ||
__is_nothrow_swappable<__node_allocator>::value)
{__swap_alloc(__x, __y, integral_constant<bool,
__node_traits::propagate_on_container_swap::value>());}
_LIBCPP_INLINE_VISIBILITY
static void __swap_alloc(__node_allocator& __x, __node_allocator& __y, true_type)
_NOEXCEPT_(__is_nothrow_swappable<__node_allocator>::value)
{
using _VSTD::swap;
swap(__x, __y);
}
_LIBCPP_INLINE_VISIBILITY
static void __swap_alloc(__node_allocator& __x, __node_allocator& __y, false_type)
_NOEXCEPT
{}
__node_pointer __detach();
static __node_pointer __detach(__node_pointer);
};
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(const value_compare& __comp)
_NOEXCEPT_(
is_nothrow_default_constructible<__node_allocator>::value &&
is_nothrow_copy_constructible<value_compare>::value)
: __pair3_(0, __comp)
{
__begin_node() = __end_node();
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(const allocator_type& __a)
: __pair1_(__node_allocator(__a)),
__begin_node_(__node_pointer()),
__pair3_(0)
{
__begin_node() = __end_node();
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(const value_compare& __comp,
const allocator_type& __a)
: __pair1_(__node_allocator(__a)),
__begin_node_(__node_pointer()),
__pair3_(0, __comp)
{
__begin_node() = __end_node();
}
// Precondition: size() != 0
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_pointer
__tree<_Tp, _Compare, _Allocator>::__detach()
{
__node_pointer __cache = __begin_node();
__begin_node() = __end_node();
__end_node()->__left_->__parent_ = nullptr;
__end_node()->__left_ = nullptr;
size() = 0;
// __cache->__left_ == nullptr
if (__cache->__right_ != nullptr)
__cache = static_cast<__node_pointer>(__cache->__right_);
// __cache->__left_ == nullptr
// __cache->__right_ == nullptr
return __cache;
}
// Precondition: __cache != nullptr
// __cache->left_ == nullptr
// __cache->right_ == nullptr
// This is no longer a red-black tree
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_pointer
__tree<_Tp, _Compare, _Allocator>::__detach(__node_pointer __cache)
{
if (__cache->__parent_ == nullptr)
return nullptr;
if (__tree_is_left_child(__cache))
{
__cache->__parent_->__left_ = nullptr;
__cache = static_cast<__node_pointer>(__cache->__parent_);
if (__cache->__right_ == nullptr)
return __cache;
return static_cast<__node_pointer>(__tree_leaf(__cache->__right_));
}
// __cache is right child
__cache->__parent_->__right_ = nullptr;
__cache = static_cast<__node_pointer>(__cache->__parent_);
if (__cache->__left_ == nullptr)
return __cache;
return static_cast<__node_pointer>(__tree_leaf(__cache->__left_));
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>&
__tree<_Tp, _Compare, _Allocator>::operator=(const __tree& __t)
{
if (this != &__t)
{
value_comp() = __t.value_comp();
__copy_assign_alloc(__t);
__assign_multi(__t.begin(), __t.end());
}
return *this;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _InputIterator>
void
__tree<_Tp, _Compare, _Allocator>::__assign_unique(_InputIterator __first, _InputIterator __last)
{
if (size() != 0)
{
__node_pointer __cache = __detach();
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
for (; __cache != nullptr && __first != __last; ++__first)
{
__cache->__value_ = *__first;
__node_pointer __next = __detach(__cache);
__node_insert_unique(__cache);
__cache = __next;
}
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
while (__cache->__parent_ != nullptr)
__cache = static_cast<__node_pointer>(__cache->__parent_);
destroy(__cache);
throw;
}
#endif // _LIBCPP_NO_EXCEPTIONS
if (__cache != nullptr)
{
while (__cache->__parent_ != nullptr)
__cache = static_cast<__node_pointer>(__cache->__parent_);
destroy(__cache);
}
}
for (; __first != __last; ++__first)
__insert_unique(*__first);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _InputIterator>
void
__tree<_Tp, _Compare, _Allocator>::__assign_multi(_InputIterator __first, _InputIterator __last)
{
if (size() != 0)
{
__node_pointer __cache = __detach();
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
for (; __cache != nullptr && __first != __last; ++__first)
{
__cache->__value_ = *__first;
__node_pointer __next = __detach(__cache);
__node_insert_multi(__cache);
__cache = __next;
}
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
while (__cache->__parent_ != nullptr)
__cache = static_cast<__node_pointer>(__cache->__parent_);
destroy(__cache);
throw;
}
#endif // _LIBCPP_NO_EXCEPTIONS
if (__cache != nullptr)
{
while (__cache->__parent_ != nullptr)
__cache = static_cast<__node_pointer>(__cache->__parent_);
destroy(__cache);
}
}
for (; __first != __last; ++__first)
__insert_multi(*__first);
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(const __tree& __t)
: __begin_node_(__node_pointer()),
__pair1_(__node_traits::select_on_container_copy_construction(__t.__node_alloc())),
__pair3_(0, __t.value_comp())
{
__begin_node() = __end_node();
}
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(__tree&& __t)
_NOEXCEPT_(
is_nothrow_move_constructible<__node_allocator>::value &&
is_nothrow_move_constructible<value_compare>::value)
: __begin_node_(_VSTD::move(__t.__begin_node_)),
__pair1_(_VSTD::move(__t.__pair1_)),
__pair3_(_VSTD::move(__t.__pair3_))
{
if (size() == 0)
__begin_node() = __end_node();
else
{
__end_node()->__left_->__parent_ = __end_node();
__t.__begin_node() = __t.__end_node();
__t.__end_node()->__left_ = nullptr;
__t.size() = 0;
}
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::__tree(__tree&& __t, const allocator_type& __a)
: __pair1_(__node_allocator(__a)),
__pair3_(0, _VSTD::move(__t.value_comp()))
{
if (__a == __t.__alloc())
{
if (__t.size() == 0)
__begin_node() = __end_node();
else
{
__begin_node() = __t.__begin_node();
__end_node()->__left_ = __t.__end_node()->__left_;
__end_node()->__left_->__parent_ = __end_node();
size() = __t.size();
__t.__begin_node() = __t.__end_node();
__t.__end_node()->__left_ = nullptr;
__t.size() = 0;
}
}
else
{
__begin_node() = __end_node();
}
}
template <class _Tp, class _Compare, class _Allocator>
void
__tree<_Tp, _Compare, _Allocator>::__move_assign(__tree& __t, true_type)
_NOEXCEPT_(is_nothrow_move_assignable<value_compare>::value &&
is_nothrow_move_assignable<__node_allocator>::value)
{
destroy(static_cast<__node_pointer>(__end_node()->__left_));
__begin_node_ = __t.__begin_node_;
__pair1_.first() = __t.__pair1_.first();
__move_assign_alloc(__t);
__pair3_ = _VSTD::move(__t.__pair3_);
if (size() == 0)
__begin_node() = __end_node();
else
{
__end_node()->__left_->__parent_ = __end_node();
__t.__begin_node() = __t.__end_node();
__t.__end_node()->__left_ = nullptr;
__t.size() = 0;
}
}
template <class _Tp, class _Compare, class _Allocator>
void
__tree<_Tp, _Compare, _Allocator>::__move_assign(__tree& __t, false_type)
{
if (__node_alloc() == __t.__node_alloc())
__move_assign(__t, true_type());
else
{
value_comp() = _VSTD::move(__t.value_comp());
const_iterator __e = end();
if (size() != 0)
{
__node_pointer __cache = __detach();
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
while (__cache != nullptr && __t.size() != 0)
{
__cache->__value_ = _VSTD::move(__t.remove(__t.begin())->__value_);
__node_pointer __next = __detach(__cache);
__node_insert_multi(__cache);
__cache = __next;
}
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
while (__cache->__parent_ != nullptr)
__cache = static_cast<__node_pointer>(__cache->__parent_);
destroy(__cache);
throw;
}
#endif // _LIBCPP_NO_EXCEPTIONS
if (__cache != nullptr)
{
while (__cache->__parent_ != nullptr)
__cache = static_cast<__node_pointer>(__cache->__parent_);
destroy(__cache);
}
}
while (__t.size() != 0)
__insert_multi(__e, _VSTD::move(__t.remove(__t.begin())->__value_));
}
}
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>&
__tree<_Tp, _Compare, _Allocator>::operator=(__tree&& __t)
_NOEXCEPT_(
__node_traits::propagate_on_container_move_assignment::value &&
is_nothrow_move_assignable<value_compare>::value &&
is_nothrow_move_assignable<__node_allocator>::value)
{
__move_assign(__t, integral_constant<bool,
__node_traits::propagate_on_container_move_assignment::value>());
return *this;
}
#endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _Tp, class _Compare, class _Allocator>
__tree<_Tp, _Compare, _Allocator>::~__tree()
{
destroy(__root());
}
template <class _Tp, class _Compare, class _Allocator>
void
__tree<_Tp, _Compare, _Allocator>::destroy(__node_pointer __nd) _NOEXCEPT
{
if (__nd != nullptr)
{
destroy(static_cast<__node_pointer>(__nd->__left_));
destroy(static_cast<__node_pointer>(__nd->__right_));
__node_allocator& __na = __node_alloc();
__node_traits::destroy(__na, _VSTD::addressof(__nd->__value_));
__node_traits::deallocate(__na, __nd, 1);
}
}
template <class _Tp, class _Compare, class _Allocator>
void
__tree<_Tp, _Compare, _Allocator>::swap(__tree& __t)
_NOEXCEPT_(
__is_nothrow_swappable<value_compare>::value &&
(!__node_traits::propagate_on_container_swap::value ||
__is_nothrow_swappable<__node_allocator>::value))
{
using _VSTD::swap;
swap(__begin_node_, __t.__begin_node_);
swap(__pair1_.first(), __t.__pair1_.first());
__swap_alloc(__node_alloc(), __t.__node_alloc());
__pair3_.swap(__t.__pair3_);
if (size() == 0)
__begin_node() = __end_node();
else
__end_node()->__left_->__parent_ = __end_node();
if (__t.size() == 0)
__t.__begin_node() = __t.__end_node();
else
__t.__end_node()->__left_->__parent_ = __t.__end_node();
}
template <class _Tp, class _Compare, class _Allocator>
void
__tree<_Tp, _Compare, _Allocator>::clear() _NOEXCEPT
{
destroy(__root());
size() = 0;
__begin_node() = __end_node();
__end_node()->__left_ = nullptr;
}
// Find lower_bound place to insert
// Set __parent to parent of null leaf
// Return reference to null leaf
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer&
__tree<_Tp, _Compare, _Allocator>::__find_leaf_low(typename __node_base::pointer& __parent,
const value_type& __v)
{
__node_pointer __nd = __root();
if (__nd != nullptr)
{
while (true)
{
if (value_comp()(__nd->__value_, __v))
{
if (__nd->__right_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__right_);
else
{
__parent = __nd;
return __parent->__right_;
}
}
else
{
if (__nd->__left_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__left_);
else
{
__parent = __nd;
return __parent->__left_;
}
}
}
}
__parent = __end_node();
return __parent->__left_;
}
// Find upper_bound place to insert
// Set __parent to parent of null leaf
// Return reference to null leaf
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer&
__tree<_Tp, _Compare, _Allocator>::__find_leaf_high(typename __node_base::pointer& __parent,
const value_type& __v)
{
__node_pointer __nd = __root();
if (__nd != nullptr)
{
while (true)
{
if (value_comp()(__v, __nd->__value_))
{
if (__nd->__left_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__left_);
else
{
__parent = __nd;
return __parent->__left_;
}
}
else
{
if (__nd->__right_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__right_);
else
{
__parent = __nd;
return __parent->__right_;
}
}
}
}
__parent = __end_node();
return __parent->__left_;
}
// Find leaf place to insert closest to __hint
// First check prior to __hint.
// Next check after __hint.
// Next do O(log N) search.
// Set __parent to parent of null leaf
// Return reference to null leaf
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer&
__tree<_Tp, _Compare, _Allocator>::__find_leaf(const_iterator __hint,
typename __node_base::pointer& __parent,
const value_type& __v)
{
if (__hint == end() || !value_comp()(*__hint, __v)) // check before
{
// __v <= *__hint
const_iterator __prior = __hint;
if (__prior == begin() || !value_comp()(__v, *--__prior))
{
// *prev(__hint) <= __v <= *__hint
if (__hint.__ptr_->__left_ == nullptr)
{
__parent = const_cast<__node_pointer&>(__hint.__ptr_);
return __parent->__left_;
}
else
{
__parent = const_cast<__node_pointer&>(__prior.__ptr_);
return __parent->__right_;
}
}
// __v < *prev(__hint)
return __find_leaf_high(__parent, __v);
}
// else __v > *__hint
return __find_leaf_low(__parent, __v);
}
// Find place to insert if __v doesn't exist
// Set __parent to parent of null leaf
// Return reference to null leaf
// If __v exists, set parent to node of __v and return reference to node of __v
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer&
__tree<_Tp, _Compare, _Allocator>::__find_equal(typename __node_base::pointer& __parent,
const _Key& __v)
{
__node_pointer __nd = __root();
if (__nd != nullptr)
{
while (true)
{
if (value_comp()(__v, __nd->__value_))
{
if (__nd->__left_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__left_);
else
{
__parent = __nd;
return __parent->__left_;
}
}
else if (value_comp()(__nd->__value_, __v))
{
if (__nd->__right_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__right_);
else
{
__parent = __nd;
return __parent->__right_;
}
}
else
{
__parent = __nd;
return __parent;
}
}
}
__parent = __end_node();
return __parent->__left_;
}
// Find place to insert if __v doesn't exist
// First check prior to __hint.
// Next check after __hint.
// Next do O(log N) search.
// Set __parent to parent of null leaf
// Return reference to null leaf
// If __v exists, set parent to node of __v and return reference to node of __v
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer&
__tree<_Tp, _Compare, _Allocator>::__find_equal(const_iterator __hint,
typename __node_base::pointer& __parent,
const _Key& __v)
{
if (__hint == end() || value_comp()(__v, *__hint)) // check before
{
// __v < *__hint
const_iterator __prior = __hint;
if (__prior == begin() || value_comp()(*--__prior, __v))
{
// *prev(__hint) < __v < *__hint
if (__hint.__ptr_->__left_ == nullptr)
{
__parent = const_cast<__node_pointer&>(__hint.__ptr_);
return __parent->__left_;
}
else
{
__parent = const_cast<__node_pointer&>(__prior.__ptr_);
return __parent->__right_;
}
}
// __v <= *prev(__hint)
return __find_equal(__parent, __v);
}
else if (value_comp()(*__hint, __v)) // check after
{
// *__hint < __v
const_iterator __next = _VSTD::next(__hint);
if (__next == end() || value_comp()(__v, *__next))
{
// *__hint < __v < *_VSTD::next(__hint)
if (__hint.__ptr_->__right_ == nullptr)
{
__parent = const_cast<__node_pointer&>(__hint.__ptr_);
return __parent->__right_;
}
else
{
__parent = const_cast<__node_pointer&>(__next.__ptr_);
return __parent->__left_;
}
}
// *next(__hint) <= __v
return __find_equal(__parent, __v);
}
// else __v == *__hint
__parent = const_cast<__node_pointer&>(__hint.__ptr_);
return __parent;
}
template <class _Tp, class _Compare, class _Allocator>
void
__tree<_Tp, _Compare, _Allocator>::__insert_node_at(__node_base_pointer __parent,
__node_base_pointer& __child,
__node_base_pointer __new_node)
{
__new_node->__left_ = nullptr;
__new_node->__right_ = nullptr;
__new_node->__parent_ = __parent;
__child = __new_node;
if (__begin_node()->__left_ != nullptr)
__begin_node() = static_cast<__node_pointer>(__begin_node()->__left_);
__tree_balance_after_insert(__end_node()->__left_, __child);
++size();
}
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
#ifndef _LIBCPP_HAS_NO_VARIADICS
template <class _Tp, class _Compare, class _Allocator>
template <class ..._Args>
typename __tree<_Tp, _Compare, _Allocator>::__node_holder
__tree<_Tp, _Compare, _Allocator>::__construct_node(_Args&& ...__args)
{
__node_allocator& __na = __node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _Dp(__na));
__node_traits::construct(__na, _VSTD::addressof(__h->__value_), _VSTD::forward<_Args>(__args)...);
__h.get_deleter().__value_constructed = true;
return __h;
}
template <class _Tp, class _Compare, class _Allocator>
template <class... _Args>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator, bool>
__tree<_Tp, _Compare, _Allocator>::__emplace_unique(_Args&&... __args)
{
__node_holder __h = __construct_node(_VSTD::forward<_Args>(__args)...);
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal(__parent, __h->__value_);
__node_pointer __r = static_cast<__node_pointer>(__child);
bool __inserted = false;
if (__child == nullptr)
{
__insert_node_at(__parent, __child, __h.get());
__r = __h.release();
__inserted = true;
}
return pair<iterator, bool>(iterator(__r), __inserted);
}
template <class _Tp, class _Compare, class _Allocator>
template <class... _Args>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__emplace_hint_unique(const_iterator __p, _Args&&... __args)
{
__node_holder __h = __construct_node(_VSTD::forward<_Args>(__args)...);
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal(__p, __parent, __h->__value_);
__node_pointer __r = static_cast<__node_pointer>(__child);
if (__child == nullptr)
{
__insert_node_at(__parent, __child, __h.get());
__r = __h.release();
}
return iterator(__r);
}
template <class _Tp, class _Compare, class _Allocator>
template <class... _Args>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__emplace_multi(_Args&&... __args)
{
__node_holder __h = __construct_node(_VSTD::forward<_Args>(__args)...);
__node_base_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __h->__value_);
__insert_node_at(__parent, __child, __h.get());
return iterator(static_cast<__node_pointer>(__h.release()));
}
template <class _Tp, class _Compare, class _Allocator>
template <class... _Args>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__emplace_hint_multi(const_iterator __p,
_Args&&... __args)
{
__node_holder __h = __construct_node(_VSTD::forward<_Args>(__args)...);
__node_base_pointer __parent;
__node_base_pointer& __child = __find_leaf(__p, __parent, __h->__value_);
__insert_node_at(__parent, __child, __h.get());
return iterator(static_cast<__node_pointer>(__h.release()));
}
#endif // _LIBCPP_HAS_NO_VARIADICS
template <class _Tp, class _Compare, class _Allocator>
template <class _Vp>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator, bool>
__tree<_Tp, _Compare, _Allocator>::__insert_unique(_Vp&& __v)
{
__node_holder __h = __construct_node(_VSTD::forward<_Vp>(__v));
pair<iterator, bool> __r = __node_insert_unique(__h.get());
if (__r.second)
__h.release();
return __r;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Vp>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__insert_unique(const_iterator __p, _Vp&& __v)
{
__node_holder __h = __construct_node(_VSTD::forward<_Vp>(__v));
iterator __r = __node_insert_unique(__p, __h.get());
if (__r.__ptr_ == __h.get())
__h.release();
return __r;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Vp>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__insert_multi(_Vp&& __v)
{
__node_holder __h = __construct_node(_VSTD::forward<_Vp>(__v));
__node_base_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __h->__value_);
__insert_node_at(__parent, __child, __h.get());
return iterator(__h.release());
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Vp>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__insert_multi(const_iterator __p, _Vp&& __v)
{
__node_holder __h = __construct_node(_VSTD::forward<_Vp>(__v));
__node_base_pointer __parent;
__node_base_pointer& __child = __find_leaf(__p, __parent, __h->__value_);
__insert_node_at(__parent, __child, __h.get());
return iterator(__h.release());
}
#else // _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_holder
__tree<_Tp, _Compare, _Allocator>::__construct_node(const value_type& __v)
{
__node_allocator& __na = __node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _Dp(__na));
__node_traits::construct(__na, _VSTD::addressof(__h->__value_), __v);
__h.get_deleter().__value_constructed = true;
return _VSTD::move(__h);
}
#endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES
template <class _Tp, class _Compare, class _Allocator>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator, bool>
__tree<_Tp, _Compare, _Allocator>::__insert_unique(const value_type& __v)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal(__parent, __v);
__node_pointer __r = static_cast<__node_pointer>(__child);
bool __inserted = false;
if (__child == nullptr)
{
__node_holder __h = __construct_node(__v);
__insert_node_at(__parent, __child, __h.get());
__r = __h.release();
__inserted = true;
}
return pair<iterator, bool>(iterator(__r), __inserted);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__insert_unique(const_iterator __p, const value_type& __v)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal(__p, __parent, __v);
__node_pointer __r = static_cast<__node_pointer>(__child);
if (__child == nullptr)
{
__node_holder __h = __construct_node(__v);
__insert_node_at(__parent, __child, __h.get());
__r = __h.release();
}
return iterator(__r);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__insert_multi(const value_type& __v)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __v);
__node_holder __h = __construct_node(__v);
__insert_node_at(__parent, __child, __h.get());
return iterator(__h.release());
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__insert_multi(const_iterator __p, const value_type& __v)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_leaf(__p, __parent, __v);
__node_holder __h = __construct_node(__v);
__insert_node_at(__parent, __child, __h.get());
return iterator(__h.release());
}
template <class _Tp, class _Compare, class _Allocator>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator, bool>
__tree<_Tp, _Compare, _Allocator>::__node_insert_unique(__node_pointer __nd)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal(__parent, __nd->__value_);
__node_pointer __r = static_cast<__node_pointer>(__child);
bool __inserted = false;
if (__child == nullptr)
{
__insert_node_at(__parent, __child, __nd);
__r = __nd;
__inserted = true;
}
return pair<iterator, bool>(iterator(__r), __inserted);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__node_insert_unique(const_iterator __p,
__node_pointer __nd)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal(__p, __parent, __nd->__value_);
__node_pointer __r = static_cast<__node_pointer>(__child);
if (__child == nullptr)
{
__insert_node_at(__parent, __child, __nd);
__r = __nd;
}
return iterator(__r);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__node_insert_multi(__node_pointer __nd)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_leaf_high(__parent, __nd->__value_);
__insert_node_at(__parent, __child, __nd);
return iterator(__nd);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__node_insert_multi(const_iterator __p,
__node_pointer __nd)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_leaf(__p, __parent, __nd->__value_);
__insert_node_at(__parent, __child, __nd);
return iterator(__nd);
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::erase(const_iterator __p)
{
__node_pointer __np = const_cast<__node_pointer>(__p.__ptr_);
iterator __r(__np);
++__r;
if (__begin_node() == __np)
__begin_node() = __r.__ptr_;
--size();
__node_allocator& __na = __node_alloc();
__node_traits::destroy(__na, const_cast<value_type*>(_VSTD::addressof(*__p)));
__tree_remove(__end_node()->__left_,
static_cast<__node_base_pointer>(__np));
__node_traits::deallocate(__na, __np, 1);
return __r;
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::erase(const_iterator __f, const_iterator __l)
{
while (__f != __l)
__f = erase(__f);
return iterator(const_cast<__node_pointer>(__l.__ptr_));
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::size_type
__tree<_Tp, _Compare, _Allocator>::__erase_unique(const _Key& __k)
{
iterator __i = find(__k);
if (__i == end())
return 0;
erase(__i);
return 1;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::size_type
__tree<_Tp, _Compare, _Allocator>::__erase_multi(const _Key& __k)
{
pair<iterator, iterator> __p = __equal_range_multi(__k);
size_type __r = 0;
for (; __p.first != __p.second; ++__r)
__p.first = erase(__p.first);
return __r;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::find(const _Key& __v)
{
iterator __p = __lower_bound(__v, __root(), __end_node());
if (__p != end() && !value_comp()(__v, *__p))
return __p;
return end();
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::const_iterator
__tree<_Tp, _Compare, _Allocator>::find(const _Key& __v) const
{
const_iterator __p = __lower_bound(__v, __root(), __end_node());
if (__p != end() && !value_comp()(__v, *__p))
return __p;
return end();
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::size_type
__tree<_Tp, _Compare, _Allocator>::__count_unique(const _Key& __k) const
{
__node_const_pointer __result = __end_node();
__node_const_pointer __rt = __root();
while (__rt != nullptr)
{
if (value_comp()(__k, __rt->__value_))
{
__result = __rt;
__rt = static_cast<__node_const_pointer>(__rt->__left_);
}
else if (value_comp()(__rt->__value_, __k))
__rt = static_cast<__node_const_pointer>(__rt->__right_);
else
return 1;
}
return 0;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::size_type
__tree<_Tp, _Compare, _Allocator>::__count_multi(const _Key& __k) const
{
typedef pair<const_iterator, const_iterator> _Pp;
__node_const_pointer __result = __end_node();
__node_const_pointer __rt = __root();
while (__rt != nullptr)
{
if (value_comp()(__k, __rt->__value_))
{
__result = __rt;
__rt = static_cast<__node_const_pointer>(__rt->__left_);
}
else if (value_comp()(__rt->__value_, __k))
__rt = static_cast<__node_const_pointer>(__rt->__right_);
else
return _VSTD::distance(
__lower_bound(__k, static_cast<__node_const_pointer>(__rt->__left_), __rt),
__upper_bound(__k, static_cast<__node_const_pointer>(__rt->__right_), __result)
);
}
return 0;
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__lower_bound(const _Key& __v,
__node_pointer __root,
__node_pointer __result)
{
while (__root != nullptr)
{
if (!value_comp()(__root->__value_, __v))
{
__result = __root;
__root = static_cast<__node_pointer>(__root->__left_);
}
else
__root = static_cast<__node_pointer>(__root->__right_);
}
return iterator(__result);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::const_iterator
__tree<_Tp, _Compare, _Allocator>::__lower_bound(const _Key& __v,
__node_const_pointer __root,
__node_const_pointer __result) const
{
while (__root != nullptr)
{
if (!value_comp()(__root->__value_, __v))
{
__result = __root;
__root = static_cast<__node_const_pointer>(__root->__left_);
}
else
__root = static_cast<__node_const_pointer>(__root->__right_);
}
return const_iterator(__result);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::iterator
__tree<_Tp, _Compare, _Allocator>::__upper_bound(const _Key& __v,
__node_pointer __root,
__node_pointer __result)
{
while (__root != nullptr)
{
if (value_comp()(__v, __root->__value_))
{
__result = __root;
__root = static_cast<__node_pointer>(__root->__left_);
}
else
__root = static_cast<__node_pointer>(__root->__right_);
}
return iterator(__result);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
typename __tree<_Tp, _Compare, _Allocator>::const_iterator
__tree<_Tp, _Compare, _Allocator>::__upper_bound(const _Key& __v,
__node_const_pointer __root,
__node_const_pointer __result) const
{
while (__root != nullptr)
{
if (value_comp()(__v, __root->__value_))
{
__result = __root;
__root = static_cast<__node_const_pointer>(__root->__left_);
}
else
__root = static_cast<__node_const_pointer>(__root->__right_);
}
return const_iterator(__result);
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator,
typename __tree<_Tp, _Compare, _Allocator>::iterator>
__tree<_Tp, _Compare, _Allocator>::__equal_range_unique(const _Key& __k)
{
typedef pair<iterator, iterator> _Pp;
__node_pointer __result = __end_node();
__node_pointer __rt = __root();
while (__rt != nullptr)
{
if (value_comp()(__k, __rt->__value_))
{
__result = __rt;
__rt = static_cast<__node_pointer>(__rt->__left_);
}
else if (value_comp()(__rt->__value_, __k))
__rt = static_cast<__node_pointer>(__rt->__right_);
else
return _Pp(iterator(__rt),
iterator(
__rt->__right_ != nullptr ?
static_cast<__node_pointer>(__tree_min(__rt->__right_))
: __result));
}
return _Pp(iterator(__result), iterator(__result));
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
pair<typename __tree<_Tp, _Compare, _Allocator>::const_iterator,
typename __tree<_Tp, _Compare, _Allocator>::const_iterator>
__tree<_Tp, _Compare, _Allocator>::__equal_range_unique(const _Key& __k) const
{
typedef pair<const_iterator, const_iterator> _Pp;
__node_const_pointer __result = __end_node();
__node_const_pointer __rt = __root();
while (__rt != nullptr)
{
if (value_comp()(__k, __rt->__value_))
{
__result = __rt;
__rt = static_cast<__node_const_pointer>(__rt->__left_);
}
else if (value_comp()(__rt->__value_, __k))
__rt = static_cast<__node_const_pointer>(__rt->__right_);
else
return _Pp(const_iterator(__rt),
const_iterator(
__rt->__right_ != nullptr ?
static_cast<__node_const_pointer>(__tree_min(__rt->__right_))
: __result));
}
return _Pp(const_iterator(__result), const_iterator(__result));
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
pair<typename __tree<_Tp, _Compare, _Allocator>::iterator,
typename __tree<_Tp, _Compare, _Allocator>::iterator>
__tree<_Tp, _Compare, _Allocator>::__equal_range_multi(const _Key& __k)
{
typedef pair<iterator, iterator> _Pp;
__node_pointer __result = __end_node();
__node_pointer __rt = __root();
while (__rt != nullptr)
{
if (value_comp()(__k, __rt->__value_))
{
__result = __rt;
__rt = static_cast<__node_pointer>(__rt->__left_);
}
else if (value_comp()(__rt->__value_, __k))
__rt = static_cast<__node_pointer>(__rt->__right_);
else
return _Pp(__lower_bound(__k, static_cast<__node_pointer>(__rt->__left_), __rt),
__upper_bound(__k, static_cast<__node_pointer>(__rt->__right_), __result));
}
return _Pp(iterator(__result), iterator(__result));
}
template <class _Tp, class _Compare, class _Allocator>
template <class _Key>
pair<typename __tree<_Tp, _Compare, _Allocator>::const_iterator,
typename __tree<_Tp, _Compare, _Allocator>::const_iterator>
__tree<_Tp, _Compare, _Allocator>::__equal_range_multi(const _Key& __k) const
{
typedef pair<const_iterator, const_iterator> _Pp;
__node_const_pointer __result = __end_node();
__node_const_pointer __rt = __root();
while (__rt != nullptr)
{
if (value_comp()(__k, __rt->__value_))
{
__result = __rt;
__rt = static_cast<__node_const_pointer>(__rt->__left_);
}
else if (value_comp()(__rt->__value_, __k))
__rt = static_cast<__node_const_pointer>(__rt->__right_);
else
return _Pp(__lower_bound(__k, static_cast<__node_const_pointer>(__rt->__left_), __rt),
__upper_bound(__k, static_cast<__node_const_pointer>(__rt->__right_), __result));
}
return _Pp(const_iterator(__result), const_iterator(__result));
}
template <class _Tp, class _Compare, class _Allocator>
typename __tree<_Tp, _Compare, _Allocator>::__node_holder
__tree<_Tp, _Compare, _Allocator>::remove(const_iterator __p) _NOEXCEPT
{
__node_pointer __np = const_cast<__node_pointer>(__p.__ptr_);
if (__begin_node() == __np)
{
if (__np->__right_ != nullptr)
__begin_node() = static_cast<__node_pointer>(__np->__right_);
else
__begin_node() = static_cast<__node_pointer>(__np->__parent_);
}
--size();
__tree_remove(__end_node()->__left_,
static_cast<__node_base_pointer>(__np));
return __node_holder(__np, _Dp(__node_alloc()));
}
template <class _Tp, class _Compare, class _Allocator>
inline _LIBCPP_INLINE_VISIBILITY
void
swap(__tree<_Tp, _Compare, _Allocator>& __x,
__tree<_Tp, _Compare, _Allocator>& __y)
_NOEXCEPT_(_NOEXCEPT_(__x.swap(__y)))
{
__x.swap(__y);
}
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP___TREE