| //===----------------------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // <map> |
| |
| // class multimap |
| |
| // iterator upper_bound(const key_type& k); |
| // const_iterator upper_bound(const key_type& k) const; |
| |
| #include <map> |
| #include <cassert> |
| |
| #include "min_allocator.h" |
| #include "private_constructor.hpp" |
| |
| int main() |
| { |
| typedef std::pair<const int, double> V; |
| { |
| typedef std::multimap<int, double> M; |
| { |
| typedef M::iterator R; |
| V ar[] = |
| { |
| V(5, 1), |
| V(5, 2), |
| V(5, 3), |
| V(7, 1), |
| V(7, 2), |
| V(7, 3), |
| V(9, 1), |
| V(9, 2), |
| V(9, 3) |
| }; |
| M m(ar, ar+sizeof(ar)/sizeof(ar[0])); |
| R r = m.upper_bound(4); |
| assert(r == m.begin()); |
| r = m.upper_bound(5); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(6); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(7); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(8); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(9); |
| assert(r == next(m.begin(), 9)); |
| r = m.upper_bound(10); |
| assert(r == m.end()); |
| } |
| { |
| typedef M::const_iterator R; |
| V ar[] = |
| { |
| V(5, 1), |
| V(5, 2), |
| V(5, 3), |
| V(7, 1), |
| V(7, 2), |
| V(7, 3), |
| V(9, 1), |
| V(9, 2), |
| V(9, 3) |
| }; |
| const M m(ar, ar+sizeof(ar)/sizeof(ar[0])); |
| R r = m.upper_bound(4); |
| assert(r == m.begin()); |
| r = m.upper_bound(5); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(6); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(7); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(8); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(9); |
| assert(r == next(m.begin(), 9)); |
| r = m.upper_bound(10); |
| assert(r == m.end()); |
| } |
| } |
| #if __cplusplus >= 201103L |
| { |
| typedef std::multimap<int, double, std::less<int>, min_allocator<std::pair<const int, double>>> M; |
| { |
| typedef M::iterator R; |
| V ar[] = |
| { |
| V(5, 1), |
| V(5, 2), |
| V(5, 3), |
| V(7, 1), |
| V(7, 2), |
| V(7, 3), |
| V(9, 1), |
| V(9, 2), |
| V(9, 3) |
| }; |
| M m(ar, ar+sizeof(ar)/sizeof(ar[0])); |
| R r = m.upper_bound(4); |
| assert(r == m.begin()); |
| r = m.upper_bound(5); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(6); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(7); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(8); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(9); |
| assert(r == next(m.begin(), 9)); |
| r = m.upper_bound(10); |
| assert(r == m.end()); |
| } |
| { |
| typedef M::const_iterator R; |
| V ar[] = |
| { |
| V(5, 1), |
| V(5, 2), |
| V(5, 3), |
| V(7, 1), |
| V(7, 2), |
| V(7, 3), |
| V(9, 1), |
| V(9, 2), |
| V(9, 3) |
| }; |
| const M m(ar, ar+sizeof(ar)/sizeof(ar[0])); |
| R r = m.upper_bound(4); |
| assert(r == m.begin()); |
| r = m.upper_bound(5); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(6); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(7); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(8); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(9); |
| assert(r == next(m.begin(), 9)); |
| r = m.upper_bound(10); |
| assert(r == m.end()); |
| } |
| } |
| #endif |
| #if _LIBCPP_STD_VER > 11 |
| { |
| typedef std::pair<const int, double> V; |
| typedef std::multimap<int, double, std::less<>> M; |
| typedef M::iterator R; |
| V ar[] = |
| { |
| V(5, 1), |
| V(5, 2), |
| V(5, 3), |
| V(7, 1), |
| V(7, 2), |
| V(7, 3), |
| V(9, 1), |
| V(9, 2), |
| V(9, 3) |
| }; |
| M m(ar, ar+sizeof(ar)/sizeof(ar[0])); |
| R r = m.upper_bound(4); |
| assert(r == m.begin()); |
| r = m.upper_bound(5); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(6); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(7); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(8); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(9); |
| assert(r == next(m.begin(), 9)); |
| r = m.upper_bound(10); |
| assert(r == m.end()); |
| } |
| |
| { |
| typedef PrivateConstructor PC; |
| typedef std::multimap<PC, double, std::less<>> M; |
| typedef M::iterator R; |
| |
| M m; |
| m.insert ( std::make_pair<PC, double> ( PC::make(5), 1 )); |
| m.insert ( std::make_pair<PC, double> ( PC::make(5), 2 )); |
| m.insert ( std::make_pair<PC, double> ( PC::make(5), 3 )); |
| m.insert ( std::make_pair<PC, double> ( PC::make(7), 1 )); |
| m.insert ( std::make_pair<PC, double> ( PC::make(7), 2 )); |
| m.insert ( std::make_pair<PC, double> ( PC::make(7), 3 )); |
| m.insert ( std::make_pair<PC, double> ( PC::make(9), 1 )); |
| m.insert ( std::make_pair<PC, double> ( PC::make(9), 2 )); |
| m.insert ( std::make_pair<PC, double> ( PC::make(9), 3 )); |
| |
| R r = m.upper_bound(4); |
| assert(r == m.begin()); |
| r = m.upper_bound(5); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(6); |
| assert(r == next(m.begin(), 3)); |
| r = m.upper_bound(7); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(8); |
| assert(r == next(m.begin(), 6)); |
| r = m.upper_bound(9); |
| assert(r == next(m.begin(), 9)); |
| r = m.upper_bound(10); |
| assert(r == m.end()); |
| } |
| |
| #endif |
| } |