| /* |
| * Copyright (c) 1997-2007 The Stanford SRP Authentication Project |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be |
| * included in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
| * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * IN NO EVENT SHALL STANFORD BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
| * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
| * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
| * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
| * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| * Redistributions in source or binary form must retain an intact copy |
| * of this copyright notice. |
| */ |
| |
| #include "t_defines.h" |
| |
| #ifdef HAVE_UNISTD_H |
| #include <unistd.h> |
| #endif /* HAVE_UNISTD_H */ |
| |
| #include <stdio.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <fcntl.h> |
| |
| #ifdef WIN32 |
| #include <process.h> |
| #include <io.h> |
| #endif |
| |
| #include "t_sha.h" |
| |
| #ifndef NULL |
| #define NULL 0 |
| #endif |
| |
| #ifdef OPENSSL |
| #include <openssl/opensslv.h> |
| #include <openssl/rand.h> |
| #elif defined(TOMCRYPT) |
| #include "tomcrypt.h" |
| static prng_state g_rng; |
| static unsigned char entropy[32]; |
| #elif defined(CRYPTOLIB) |
| # include "libcrypt.h" |
| static unsigned char crpool[64]; |
| #else |
| static unsigned char randpool[SHA_DIGESTSIZE], randout[SHA_DIGESTSIZE]; |
| static unsigned long randcnt = 0; |
| static unsigned int outpos = 0; |
| SHA1_CTX randctxt; |
| #endif /* OPENSSL */ |
| |
| /* |
| * t_envhash - Generate a 160-bit SHA hash of the environment |
| * |
| * This routine performs an SHA hash of all the "name=value" pairs |
| * in the environment concatenated together and dumps them in the |
| * output. While it is true that anyone on the system can see |
| * your environment, someone not on the system will have a very |
| * difficult time guessing it, especially since some systems play |
| * tricks with variable ordering and sometimes define quirky |
| * environment variables like $WINDOWID or $_. |
| */ |
| extern char ** environ; |
| |
| static void |
| t_envhash(out) |
| unsigned char * out; |
| { |
| char ** ptr; |
| char ebuf[256]; |
| SHA1_CTX ctxt; |
| |
| SHA1Init(&ctxt); |
| for(ptr = environ; *ptr; ++ptr) { |
| strncpy(ebuf, *ptr, 255); |
| ebuf[255] = '\0'; |
| SHA1Update(&ctxt, ebuf, strlen(ebuf)); |
| } |
| SHA1Final(out, &ctxt); |
| } |
| |
| /* |
| * t_fshash - Generate a 160-bit SHA hash from the file system |
| * |
| * This routine climbs up the directory tree from the current |
| * directory, running stat() on each directory until it hits the |
| * root directory. This information is sensitive to the last |
| * access/modification times of all the directories above you, |
| * so someone who lists one of those directories injects some |
| * entropy into the system. Obviously, this hash is very sensitive |
| * to your current directory when the program is run. |
| * |
| * For good measure, it also performs an fstat on the standard input, |
| * usually your tty, throws that into the buffer, creates a file in |
| * /tmp (the inode is unpredictable on a busy system), and runs stat() |
| * on that before deleting it. |
| * |
| * The entire buffer is run once through SHA to obtain the final result. |
| */ |
| static void |
| t_fshash(out) |
| unsigned char * out; |
| { |
| char dotpath[128]; |
| struct stat st; |
| SHA1_CTX ctxt; |
| int i, pinode; |
| dev_t pdev; |
| |
| SHA1Init(&ctxt); |
| if(stat(".", &st) >= 0) { |
| SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
| pinode = st.st_ino; |
| pdev = st.st_dev; |
| strcpy(dotpath, ".."); |
| for(i = 0; i < 40; ++i) { |
| if(stat(dotpath, &st) < 0) |
| break; |
| if(st.st_ino == pinode && st.st_dev == pdev) |
| break; |
| SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
| pinode = st.st_ino; |
| pdev = st.st_dev; |
| strcat(dotpath, "/.."); |
| } |
| } |
| |
| if(fstat(0, &st) >= 0) |
| SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
| |
| sprintf(dotpath, "/tmp/rnd.%d", getpid()); |
| if(creat(dotpath, 0600) >= 0 && stat(dotpath, &st) >= 0) |
| SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st)); |
| unlink(dotpath); |
| |
| SHA1Final(out, &ctxt); |
| } |
| |
| /* |
| * Generate a high-entropy seed for the strong random number generator. |
| * This uses a wide variety of quickly gathered and somewhat unpredictable |
| * system information. The 'preseed' structure is assembled from: |
| * |
| * The system time in seconds |
| * The system time in microseconds |
| * The current process ID |
| * The parent process ID |
| * A hash of the user's environment |
| * A hash gathered from the file system |
| * Input from a random device, if available |
| * Timings of system interrupts |
| * |
| * The entire structure (60 bytes on most systems) is fed to SHA to produce |
| * a 160-bit seed for the strong random number generator. It is believed |
| * that in the worst case (on a quiet system with no random device versus |
| * an attacker who has access to the system already), the seed contains at |
| * least about 80 bits of entropy. Versus an attacker who does not have |
| * access to the system, the entropy should be slightly over 128 bits. |
| */ |
| static char initialized = 0; |
| |
| static struct { |
| unsigned int trand1; |
| time_t sec; |
| time_t subsec; |
| short pid; |
| short ppid; |
| unsigned char envh[SHA_DIGESTSIZE]; |
| unsigned char fsh[SHA_DIGESTSIZE]; |
| unsigned char devrand[20]; |
| unsigned int trand2; |
| } preseed; |
| |
| unsigned long raw_truerand(); |
| |
| static void |
| t_initrand() |
| { |
| SHA1_CTX ctxt; |
| #ifdef USE_FTIME |
| struct timeb t; |
| #else |
| struct timeval t; |
| #endif |
| int i, r=0; |
| |
| if(initialized) |
| return; |
| |
| initialized = 1; |
| |
| #if defined(OPENSSL) /* OpenSSL has nifty win32 entropy-gathering code */ |
| #if OPENSSL_VERSION_NUMBER >= 0x00905100 |
| r = RAND_status(); |
| #if defined(WINDOWS) || defined(WIN32) |
| if(r) /* Don't do the Unix-y stuff on Windows if possible */ |
| return; |
| #else |
| #endif |
| #endif |
| |
| #elif defined(TOMCRYPT) |
| yarrow_start(&g_rng); |
| r = rng_get_bytes(entropy, sizeof(entropy), NULL); |
| if(r > 0) { |
| yarrow_add_entropy(entropy, r, &g_rng); |
| memset(entropy, 0, sizeof(entropy)); |
| # if defined(WINDOWS) || defined(WIN32) |
| /* Don't do the Unix-y stuff on Windows if possible */ |
| yarrow_ready(&g_rng); |
| return; |
| # endif |
| } |
| #endif |
| |
| #if !defined(WINDOWS) && !defined(WIN32) |
| i = open("/dev/urandom", O_RDONLY); |
| if(i > 0) { |
| r += read(i, preseed.devrand, sizeof(preseed.devrand)); |
| close(i); |
| } |
| #endif /* !WINDOWS && !WIN32 */ |
| |
| /* Resort to truerand only if desperate for some Real entropy */ |
| if(r == 0) |
| preseed.trand1 = raw_truerand(); |
| |
| #ifdef USE_FTIME |
| ftime(&t); |
| preseed.sec = t.time; |
| preseed.subsec = t.millitm; |
| #else |
| gettimeofday(&t, NULL); |
| preseed.sec = t.tv_sec; |
| preseed.subsec = t.tv_usec; |
| #endif |
| preseed.pid = getpid(); |
| #ifndef WIN32 |
| preseed.ppid = getppid(); |
| #endif |
| t_envhash(preseed.envh); |
| t_fshash(preseed.fsh); |
| |
| if(r == 0) |
| preseed.trand2 = raw_truerand(); |
| |
| #ifdef OPENSSL |
| RAND_seed((unsigned char *)&preseed, sizeof(preseed)); |
| #elif defined(TOMCRYPT) |
| yarrow_add_entropy((unsigned char *)&preseed, sizeof(preseed), &g_rng); |
| yarrow_ready(&g_rng); |
| #elif defined(CRYPTOLIB) |
| t_mgf1(crpool, sizeof(crpool), (unsigned char *) &preseed, sizeof(preseed)); |
| seedDesRandom(crpool, sizeof(crpool)); |
| memset(crpool, 0, sizeof(crpool)); |
| #elif defined(GCRYPT) |
| gcry_random_add_bytes((unsigned char *)&preseed, sizeof(preseed), -1); |
| #else |
| SHA1Init(&ctxt); |
| SHA1Update(&ctxt, (unsigned char *) &preseed, sizeof(preseed)); |
| SHA1Final(randpool, &ctxt); |
| memset((unsigned char *) &ctxt, 0, sizeof(ctxt)); |
| outpos = 0; |
| #endif /* OPENSSL */ |
| memset((unsigned char *) &preseed, 0, sizeof(preseed)); |
| } |
| |
| #define NUM_RANDOMS 12 |
| |
| _TYPE( void ) |
| t_stronginitrand() |
| { |
| #if 1 /* t_initrand() has been improved enough to make this unnecessary */ |
| t_initrand(); |
| #else |
| SHA1_CTX ctxt; |
| unsigned int rawrand[NUM_RANDOMS]; |
| int i; |
| |
| if(!initialized) |
| t_initrand(); |
| for(i = 0; i < NUM_RANDOMS; ++i) |
| rawrand[i] = raw_truerand(); |
| SHA1Init(&ctxt); |
| SHA1Update(&ctxt, (unsigned char *) rawrand, sizeof(rawrand)); |
| SHA1Final(randkey2, &ctxt); |
| memset(rawrand, 0, sizeof(rawrand)); |
| #endif |
| } |
| |
| /* |
| * The strong random number generator. This uses a 160-bit seed |
| * and uses SHA-1 in a feedback configuration to generate successive |
| * outputs. If S[0] is set to the initial seed, then: |
| * |
| * S[i+1] = SHA-1(i || S[i]) |
| * A[i] = SHA-1(S[i]) |
| * |
| * where the A[i] are the output blocks starting with i=0. |
| * Each cycle generates 20 bytes of new output. |
| */ |
| _TYPE( void ) |
| t_random(data, size) |
| unsigned char * data; |
| unsigned size; |
| { |
| if(!initialized) |
| t_initrand(); |
| |
| if(size <= 0) /* t_random(NULL, 0) forces seed initialization */ |
| return; |
| |
| #ifdef OPENSSL |
| RAND_bytes(data, size); |
| #elif defined(TOMCRYPT) |
| yarrow_read(data, size, &g_rng); |
| #elif defined(GCRYPT) |
| gcry_randomize(data, size, GCRY_STRONG_RANDOM); |
| #elif defined(CRYPTOLIB) |
| randomBytes(data, size, PSEUDO); |
| #else |
| while(size > outpos) { |
| if(outpos > 0) { |
| memcpy(data, randout + (sizeof(randout) - outpos), outpos); |
| data += outpos; |
| size -= outpos; |
| } |
| |
| /* Recycle */ |
| SHA1Init(&randctxt); |
| SHA1Update(&randctxt, randpool, sizeof(randpool)); |
| SHA1Final(randout, &randctxt); |
| SHA1Init(&randctxt); |
| SHA1Update(&randctxt, (unsigned char *) &randcnt, sizeof(randcnt)); |
| SHA1Update(&randctxt, randpool, sizeof(randpool)); |
| SHA1Final(randpool, &randctxt); |
| ++randcnt; |
| outpos = sizeof(randout); |
| } |
| |
| if(size > 0) { |
| memcpy(data, randout + (sizeof(randout) - outpos), size); |
| outpos -= size; |
| } |
| #endif |
| } |
| |
| /* |
| * The interleaved session-key hash. This separates the even and the odd |
| * bytes of the input (ignoring the first byte if the input length is odd), |
| * hashes them separately, and re-interleaves the two outputs to form a |
| * single 320-bit value. |
| */ |
| _TYPE( unsigned char * ) |
| t_sessionkey(key, sk, sklen) |
| unsigned char * key; |
| unsigned char * sk; |
| unsigned sklen; |
| { |
| unsigned i, klen; |
| unsigned char * hbuf; |
| unsigned char hout[SHA_DIGESTSIZE]; |
| SHA1_CTX ctxt; |
| |
| while(sklen > 0 && *sk == 0) { /* Skip leading 0's */ |
| --sklen; |
| ++sk; |
| } |
| |
| klen = sklen / 2; |
| if((hbuf = malloc(klen * sizeof(char))) == 0) |
| return 0; |
| |
| for(i = 0; i < klen; ++i) |
| hbuf[i] = sk[sklen - 2 * i - 1]; |
| SHA1Init(&ctxt); |
| SHA1Update(&ctxt, hbuf, klen); |
| SHA1Final(hout, &ctxt); |
| for(i = 0; i < sizeof(hout); ++i) |
| key[2 * i] = hout[i]; |
| |
| for(i = 0; i < klen; ++i) |
| hbuf[i] = sk[sklen - 2 * i - 2]; |
| SHA1Init(&ctxt); |
| SHA1Update(&ctxt, hbuf, klen); |
| SHA1Final(hout, &ctxt); |
| for(i = 0; i < sizeof(hout); ++i) |
| key[2 * i + 1] = hout[i]; |
| |
| memset(hout, 0, sizeof(hout)); |
| memset(hbuf, 0, klen); |
| free(hbuf); |
| return key; |
| } |
| |
| _TYPE( void ) |
| t_mgf1(mask, masklen, seed, seedlen) |
| unsigned char * mask; |
| unsigned masklen; |
| const unsigned char * seed; |
| unsigned seedlen; |
| { |
| SHA1_CTX ctxt; |
| unsigned i = 0; |
| unsigned pos = 0; |
| unsigned char cnt[4]; |
| unsigned char hout[SHA_DIGESTSIZE]; |
| |
| while(pos < masklen) { |
| cnt[0] = (i >> 24) & 0xFF; |
| cnt[1] = (i >> 16) & 0xFF; |
| cnt[2] = (i >> 8) & 0xFF; |
| cnt[3] = i & 0xFF; |
| SHA1Init(&ctxt); |
| SHA1Update(&ctxt, seed, seedlen); |
| SHA1Update(&ctxt, cnt, 4); |
| |
| if(pos + SHA_DIGESTSIZE > masklen) { |
| SHA1Final(hout, &ctxt); |
| memcpy(mask + pos, hout, masklen - pos); |
| pos = masklen; |
| } |
| else { |
| SHA1Final(mask + pos, &ctxt); |
| pos += SHA_DIGESTSIZE; |
| } |
| |
| ++i; |
| } |
| |
| memset(hout, 0, sizeof(hout)); |
| memset((unsigned char *)&ctxt, 0, sizeof(ctxt)); |
| } |