| #include "t_defines.h" |
| #include "t_sha.h" |
| |
| #ifdef CRYPTOLIB_SHA |
| |
| /* A wrapper around CryptoLib's shsFinal that delivers output in octets */ |
| void |
| shsFinalBytes(unsigned char digest[20], SHS_CTX* context) |
| { |
| int i; |
| unsigned long r; |
| unsigned char *p = digest; |
| |
| shsFinal(context); |
| for(i = 0; i < 5; ++i) { |
| r = context->h[i]; |
| *p++ = (unsigned char)((r >> 24) & 0xff); |
| *p++ = (unsigned char)((r >> 16) & 0xff); |
| *p++ = (unsigned char)((r >> 8) & 0xff); |
| *p++ = (unsigned char)(r & 0xff); |
| } |
| } |
| |
| #elif defined(GCRYPT_SHA) |
| /* Wrappers for gcrypt's md interface */ |
| |
| void |
| SHA1Init_gcry(SHA1_CTX * ctx) |
| { |
| gcry_md_open(ctx, GCRY_MD_SHA1, 0); |
| } |
| |
| void |
| SHA1Update_gcry(SHA1_CTX * ctx, const void *data, unsigned int len) |
| { |
| gcry_md_write(*ctx, data, len); |
| } |
| |
| void |
| SHA1Final_gcry(unsigned char digest[20], SHA1_CTX * ctx) |
| { |
| memcpy(digest, gcry_md_read(*ctx, GCRY_MD_SHA1), 20); |
| gcry_md_close(*ctx); |
| } |
| |
| void |
| SHA512Init_gcry(SHA512_CTX * ctx) |
| { |
| gcry_md_open(ctx, GCRY_MD_SHA512, 0); |
| } |
| |
| void |
| SHA512Update_gcry(SHA512_CTX * ctx, const void *data, unsigned int len) |
| { |
| gcry_md_write(*ctx, data, len); |
| } |
| |
| void |
| SHA512Final_gcry(unsigned char digest[64], SHA512_CTX * ctx) |
| { |
| memcpy(digest, gcry_md_read(*ctx, GCRY_MD_SHA512), 64); |
| gcry_md_close(*ctx); |
| } |
| |
| #elif defined(MBEDTLS_SHA) |
| /* Wrappers for mbedtls's md interface */ |
| |
| void |
| SHA1Init_mbed(SHA1_CTX * ctx) |
| { |
| mbedtls_md_init(ctx); |
| mbedtls_md_setup(ctx, mbedtls_md_info_from_type(MBEDTLS_MD_SHA1), 0); |
| mbedtls_md_starts(ctx); |
| } |
| |
| void |
| SHA1Update_mbed(SHA1_CTX * ctx, const void *data, unsigned int len) |
| { |
| mbedtls_md_update(ctx, data, len); |
| } |
| |
| void |
| SHA1Final_mbed(unsigned char digest[20], SHA1_CTX * ctx) |
| { |
| mbedtls_md_finish(ctx, digest); |
| mbedtls_md_free(ctx); |
| } |
| |
| void |
| SHA512Init_mbed(SHA512_CTX * ctx) |
| { |
| mbedtls_md_init(ctx); |
| mbedtls_md_setup(ctx, mbedtls_md_info_from_type(MBEDTLS_MD_SHA512), 0); |
| mbedtls_md_starts(ctx); |
| } |
| |
| void |
| SHA512Update_mbed(SHA512_CTX * ctx, const void *data, unsigned int len) |
| { |
| mbedtls_md_update(ctx, data, len); |
| } |
| |
| void |
| SHA512Final_mbed(unsigned char digest[64], SHA512_CTX * ctx) |
| { |
| mbedtls_md_finish(ctx, digest); |
| mbedtls_md_free(ctx); |
| } |
| |
| #elif defined(OPENSSL_SHA) |
| #if OPENSSL_VERSION_NUMBER >= 0x30000000L |
| void |
| SHA1Init_openssl(SHA1_CTX *ctx) |
| { |
| *ctx = EVP_MD_CTX_new(); |
| EVP_DigestInit(*ctx, EVP_sha1()); |
| } |
| |
| void SHA1Update_openssl(SHA1_CTX *ctx, const void *data, unsigned int len) |
| { |
| EVP_DigestUpdate(*ctx, data, (size_t)len); |
| } |
| |
| void SHA1Final_openssl(unsigned char digest[20], SHA1_CTX *ctx) |
| { |
| EVP_DigestFinal(*ctx, digest, NULL); |
| EVP_MD_CTX_destroy(*ctx); |
| } |
| |
| void |
| SHA512Init_openssl(SHA512_CTX *ctx) |
| { |
| *ctx = EVP_MD_CTX_new(); |
| EVP_DigestInit(*ctx, EVP_sha512()); |
| } |
| |
| void SHA512Update_openssl(SHA512_CTX *ctx, const void *data, unsigned int len) |
| { |
| EVP_DigestUpdate(*ctx, data, (size_t)len); |
| } |
| |
| void SHA512Final_openssl(unsigned char digest[64], SHA512_CTX *ctx) |
| { |
| EVP_DigestFinal(*ctx, digest, NULL); |
| EVP_MD_CTX_destroy(*ctx); |
| } |
| #endif |
| #elif !defined(OPENSSL_SHA) && !defined(TOMCRYPT_SHA) |
| /* Use the free SHA1 if the library doesn't have it */ |
| |
| /* |
| SHA-1 in C |
| By Steve Reid <steve@edmweb.com> |
| 100% Public Domain |
| |
| Test Vectors (from FIPS PUB 180-1) |
| "abc" |
| A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" |
| 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 |
| A million repetitions of "a" |
| 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F |
| */ |
| |
| /* #define LITTLE_ENDIAN * This should be #define'd if true. */ |
| /* #define SHA1HANDSOFF * Copies data before messing with it. */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| static void SHA1Transform(uint32 state[5], const unsigned char buffer[64]); |
| |
| #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) |
| |
| /* blk0() and blk() perform the initial expand. */ |
| /* I got the idea of expanding during the round function from SSLeay */ |
| #ifndef WORDS_BIGENDIAN |
| #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ |
| |(rol(block->l[i],8)&0x00FF00FF)) |
| #else |
| #define blk0(i) block->l[i] |
| #endif |
| #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ |
| ^block->l[(i+2)&15]^block->l[i&15],1)) |
| |
| /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ |
| #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); |
| #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); |
| #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); |
| #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); |
| #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); |
| |
| /* Hash a single 512-bit block. This is the core of the algorithm. */ |
| |
| static void SHA1Transform(uint32 state[5], const unsigned char buffer[64]) |
| { |
| uint32 a, b, c, d, e; |
| typedef union { |
| unsigned char c[64]; |
| uint32 l[16]; |
| } CHAR64LONG16; |
| CHAR64LONG16* block; |
| #ifdef SHA1HANDSOFF |
| static unsigned char workspace[64]; |
| block = (CHAR64LONG16*)workspace; |
| memcpy(block, buffer, 64); |
| #else |
| block = (CHAR64LONG16*)buffer; |
| #endif |
| /* Copy context->state[] to working vars */ |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| /* 4 rounds of 20 operations each. Loop unrolled. */ |
| R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); |
| R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); |
| R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); |
| R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); |
| R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
| R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
| R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
| R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
| R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
| R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
| R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
| R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
| R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
| R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
| R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
| R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
| R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
| R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
| R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
| R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
| /* Add the working vars back into context.state[] */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| /* Wipe variables */ |
| a = b = c = d = e = 0; |
| } |
| |
| |
| /* SHA1Init - Initialize new context */ |
| |
| void SHA1Init(SHA1_CTX* context) |
| { |
| /* SHA1 initialization constants */ |
| context->state[0] = 0x67452301; |
| context->state[1] = 0xEFCDAB89; |
| context->state[2] = 0x98BADCFE; |
| context->state[3] = 0x10325476; |
| context->state[4] = 0xC3D2E1F0; |
| context->count[0] = context->count[1] = 0; |
| } |
| |
| |
| /* Run your data through this. */ |
| |
| void SHA1Update(SHA1_CTX* context, const unsigned char* data, unsigned int len) |
| { |
| unsigned int i, j; |
| |
| j = (context->count[0] >> 3) & 63; |
| if ((context->count[0] += len << 3) < (len << 3)) context->count[1]++; |
| context->count[1] += (len >> 29); |
| if ((j + len) > 63) { |
| memcpy(&context->buffer[j], data, (i = 64-j)); |
| SHA1Transform(context->state, context->buffer); |
| for ( ; i + 63 < len; i += 64) { |
| SHA1Transform(context->state, &data[i]); |
| } |
| j = 0; |
| } |
| else i = 0; |
| memcpy(&context->buffer[j], &data[i], len - i); |
| } |
| |
| |
| /* Add padding and return the message digest. */ |
| |
| void SHA1Final(unsigned char digest[20], SHA1_CTX* context) |
| { |
| uint32 i, j; |
| unsigned char finalcount[8]; |
| |
| for (i = 0; i < 8; i++) { |
| finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] |
| >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ |
| } |
| SHA1Update(context, (unsigned char *)"\200", 1); |
| while ((context->count[0] & 504) != 448) { |
| SHA1Update(context, (unsigned char *)"\0", 1); |
| } |
| SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ |
| for (i = 0; i < 20; i++) { |
| digest[i] = (unsigned char) |
| ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); |
| } |
| /* Wipe variables */ |
| i = j = 0; |
| memset(context->buffer, 0, 64); |
| memset(context->state, 0, 20); |
| memset(context->count, 0, 8); |
| memset(&finalcount, 0, 8); |
| #ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */ |
| SHA1Transform(context->state, context->buffer); |
| #endif |
| } |
| #endif |