|  | /* | 
|  | * jcphuff.c | 
|  | * | 
|  | * Copyright (C) 1995-1997, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains Huffman entropy encoding routines for progressive JPEG. | 
|  | * | 
|  | * We do not support output suspension in this module, since the library | 
|  | * currently does not allow multiple-scan files to be written with output | 
|  | * suspension. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  | #include "jchuff.h"		/* Declarations shared with jchuff.c */ | 
|  |  | 
|  | #ifdef C_PROGRESSIVE_SUPPORTED | 
|  |  | 
|  | /* Expanded entropy encoder object for progressive Huffman encoding. */ | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_entropy_encoder pub; /* public fields */ | 
|  |  | 
|  | /* Mode flag: TRUE for optimization, FALSE for actual data output */ | 
|  | boolean gather_statistics; | 
|  |  | 
|  | /* Bit-level coding status. | 
|  | * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. | 
|  | */ | 
|  | JOCTET * next_output_byte;	/* => next byte to write in buffer */ | 
|  | size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ | 
|  | INT32 put_buffer;		/* current bit-accumulation buffer */ | 
|  | int put_bits;			/* # of bits now in it */ | 
|  | j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */ | 
|  |  | 
|  | /* Coding status for DC components */ | 
|  | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | 
|  |  | 
|  | /* Coding status for AC components */ | 
|  | int ac_tbl_no;		/* the table number of the single component */ | 
|  | unsigned int EOBRUN;		/* run length of EOBs */ | 
|  | unsigned int BE;		/* # of buffered correction bits before MCU */ | 
|  | char * bit_buffer;		/* buffer for correction bits (1 per char) */ | 
|  | /* packing correction bits tightly would save some space but cost time... */ | 
|  |  | 
|  | unsigned int restarts_to_go;	/* MCUs left in this restart interval */ | 
|  | int next_restart_num;		/* next restart number to write (0-7) */ | 
|  |  | 
|  | /* Pointers to derived tables (these workspaces have image lifespan). | 
|  | * Since any one scan codes only DC or only AC, we only need one set | 
|  | * of tables, not one for DC and one for AC. | 
|  | */ | 
|  | c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; | 
|  |  | 
|  | /* Statistics tables for optimization; again, one set is enough */ | 
|  | long * count_ptrs[NUM_HUFF_TBLS]; | 
|  | } phuff_entropy_encoder; | 
|  |  | 
|  | typedef phuff_entropy_encoder * phuff_entropy_ptr; | 
|  |  | 
|  | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit | 
|  | * buffer can hold.  Larger sizes may slightly improve compression, but | 
|  | * 1000 is already well into the realm of overkill. | 
|  | * The minimum safe size is 64 bits. | 
|  | */ | 
|  |  | 
|  | #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */ | 
|  |  | 
|  | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. | 
|  | * We assume that int right shift is unsigned if INT32 right shift is, | 
|  | * which should be safe. | 
|  | */ | 
|  |  | 
|  | #ifdef RIGHT_SHIFT_IS_UNSIGNED | 
|  | #define ISHIFT_TEMPS	int ishift_temp; | 
|  | #define IRIGHT_SHIFT(x,shft)  \ | 
|  | ((ishift_temp = (x)) < 0 ? \ | 
|  | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ | 
|  | (ishift_temp >> (shft))) | 
|  | #else | 
|  | #define ISHIFT_TEMPS | 
|  | #define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) | 
|  | #endif | 
|  |  | 
|  | /* Forward declarations */ | 
|  | METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); | 
|  | METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for a Huffman-compressed scan using progressive JPEG. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | boolean is_DC_band; | 
|  | int ci, tbl; | 
|  | jpeg_component_info * compptr; | 
|  |  | 
|  | entropy->cinfo = cinfo; | 
|  | entropy->gather_statistics = gather_statistics; | 
|  |  | 
|  | is_DC_band = (cinfo->Ss == 0); | 
|  |  | 
|  | /* We assume jcmaster.c already validated the scan parameters. */ | 
|  |  | 
|  | /* Select execution routines */ | 
|  | if (cinfo->Ah == 0) { | 
|  | if (is_DC_band) | 
|  | entropy->pub.encode_mcu = encode_mcu_DC_first; | 
|  | else | 
|  | entropy->pub.encode_mcu = encode_mcu_AC_first; | 
|  | } else { | 
|  | if (is_DC_band) | 
|  | entropy->pub.encode_mcu = encode_mcu_DC_refine; | 
|  | else { | 
|  | entropy->pub.encode_mcu = encode_mcu_AC_refine; | 
|  | /* AC refinement needs a correction bit buffer */ | 
|  | if (entropy->bit_buffer == NULL) | 
|  | entropy->bit_buffer = (char *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | MAX_CORR_BITS * SIZEOF(char)); | 
|  | } | 
|  | } | 
|  | if (gather_statistics) | 
|  | entropy->pub.finish_pass = finish_pass_gather_phuff; | 
|  | else | 
|  | entropy->pub.finish_pass = finish_pass_phuff; | 
|  |  | 
|  | /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 | 
|  | * for AC coefficients. | 
|  | */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | /* Initialize DC predictions to 0 */ | 
|  | entropy->last_dc_val[ci] = 0; | 
|  | /* Get table index */ | 
|  | if (is_DC_band) { | 
|  | if (cinfo->Ah != 0)	/* DC refinement needs no table */ | 
|  | continue; | 
|  | tbl = compptr->dc_tbl_no; | 
|  | } else { | 
|  | entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; | 
|  | } | 
|  | if (gather_statistics) { | 
|  | /* Check for invalid table index */ | 
|  | /* (make_c_derived_tbl does this in the other path) */ | 
|  | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) | 
|  | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); | 
|  | /* Allocate and zero the statistics tables */ | 
|  | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ | 
|  | if (entropy->count_ptrs[tbl] == NULL) | 
|  | entropy->count_ptrs[tbl] = (long *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | 257 * SIZEOF(long)); | 
|  | MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); | 
|  | } else { | 
|  | /* Compute derived values for Huffman table */ | 
|  | /* We may do this more than once for a table, but it's not expensive */ | 
|  | jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, | 
|  | & entropy->derived_tbls[tbl]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize AC stuff */ | 
|  | entropy->EOBRUN = 0; | 
|  | entropy->BE = 0; | 
|  |  | 
|  | /* Initialize bit buffer to empty */ | 
|  | entropy->put_buffer = 0; | 
|  | entropy->put_bits = 0; | 
|  |  | 
|  | /* Initialize restart stuff */ | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Outputting bytes to the file. | 
|  | * NB: these must be called only when actually outputting, | 
|  | * that is, entropy->gather_statistics == FALSE. | 
|  | */ | 
|  |  | 
|  | /* Emit a byte */ | 
|  | #define emit_byte(entropy,val)  \ | 
|  | { *(entropy)->next_output_byte++ = (JOCTET) (val);  \ | 
|  | if (--(entropy)->free_in_buffer == 0)  \ | 
|  | dump_buffer(entropy); } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | dump_buffer (phuff_entropy_ptr entropy) | 
|  | /* Empty the output buffer; we do not support suspension in this module. */ | 
|  | { | 
|  | struct jpeg_destination_mgr * dest = entropy->cinfo->dest; | 
|  |  | 
|  | if (! (*dest->empty_output_buffer) (entropy->cinfo)) | 
|  | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); | 
|  | /* After a successful buffer dump, must reset buffer pointers */ | 
|  | entropy->next_output_byte = dest->next_output_byte; | 
|  | entropy->free_in_buffer = dest->free_in_buffer; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Outputting bits to the file */ | 
|  |  | 
|  | /* Only the right 24 bits of put_buffer are used; the valid bits are | 
|  | * left-justified in this part.  At most 16 bits can be passed to emit_bits | 
|  | * in one call, and we never retain more than 7 bits in put_buffer | 
|  | * between calls, so 24 bits are sufficient. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) | 
|  | /* Emit some bits, unless we are in gather mode */ | 
|  | { | 
|  | /* This routine is heavily used, so it's worth coding tightly. */ | 
|  | register INT32 put_buffer = (INT32) code; | 
|  | register int put_bits = entropy->put_bits; | 
|  |  | 
|  | /* if size is 0, caller used an invalid Huffman table entry */ | 
|  | if (size == 0) | 
|  | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); | 
|  |  | 
|  | if (entropy->gather_statistics) | 
|  | return;			/* do nothing if we're only getting stats */ | 
|  |  | 
|  | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ | 
|  |  | 
|  | put_bits += size;		/* new number of bits in buffer */ | 
|  |  | 
|  | put_buffer <<= 24 - put_bits; /* align incoming bits */ | 
|  |  | 
|  | put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ | 
|  |  | 
|  | while (put_bits >= 8) { | 
|  | int c = (int) ((put_buffer >> 16) & 0xFF); | 
|  |  | 
|  | emit_byte(entropy, c); | 
|  | if (c == 0xFF) {		/* need to stuff a zero byte? */ | 
|  | emit_byte(entropy, 0); | 
|  | } | 
|  | put_buffer <<= 8; | 
|  | put_bits -= 8; | 
|  | } | 
|  |  | 
|  | entropy->put_buffer = put_buffer; /* update variables */ | 
|  | entropy->put_bits = put_bits; | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | flush_bits (phuff_entropy_ptr entropy) | 
|  | { | 
|  | emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ | 
|  | entropy->put_buffer = 0;     /* and reset bit-buffer to empty */ | 
|  | entropy->put_bits = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Emit (or just count) a Huffman symbol. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) | 
|  | { | 
|  | if (entropy->gather_statistics) | 
|  | entropy->count_ptrs[tbl_no][symbol]++; | 
|  | else { | 
|  | c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; | 
|  | emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Emit bits from a correction bit buffer. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, | 
|  | unsigned int nbits) | 
|  | { | 
|  | if (entropy->gather_statistics) | 
|  | return;			/* no real work */ | 
|  |  | 
|  | while (nbits > 0) { | 
|  | emit_bits(entropy, (unsigned int) (*bufstart), 1); | 
|  | bufstart++; | 
|  | nbits--; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Emit any pending EOBRUN symbol. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | emit_eobrun (phuff_entropy_ptr entropy) | 
|  | { | 
|  | register int temp, nbits; | 
|  |  | 
|  | if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */ | 
|  | temp = entropy->EOBRUN; | 
|  | nbits = 0; | 
|  | while ((temp >>= 1)) | 
|  | nbits++; | 
|  | /* safety check: shouldn't happen given limited correction-bit buffer */ | 
|  | if (nbits > 14) | 
|  | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); | 
|  |  | 
|  | emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); | 
|  | if (nbits) | 
|  | emit_bits(entropy, entropy->EOBRUN, nbits); | 
|  |  | 
|  | entropy->EOBRUN = 0; | 
|  |  | 
|  | /* Emit any buffered correction bits */ | 
|  | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); | 
|  | entropy->BE = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Emit a restart marker & resynchronize predictions. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | emit_restart (phuff_entropy_ptr entropy, int restart_num) | 
|  | { | 
|  | int ci; | 
|  |  | 
|  | emit_eobrun(entropy); | 
|  |  | 
|  | if (! entropy->gather_statistics) { | 
|  | flush_bits(entropy); | 
|  | emit_byte(entropy, 0xFF); | 
|  | emit_byte(entropy, JPEG_RST0 + restart_num); | 
|  | } | 
|  |  | 
|  | if (entropy->cinfo->Ss == 0) { | 
|  | /* Re-initialize DC predictions to 0 */ | 
|  | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) | 
|  | entropy->last_dc_val[ci] = 0; | 
|  | } else { | 
|  | /* Re-initialize all AC-related fields to 0 */ | 
|  | entropy->EOBRUN = 0; | 
|  | entropy->BE = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU encoding for DC initial scan (either spectral selection, | 
|  | * or first pass of successive approximation). | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | register int temp, temp2; | 
|  | register int nbits; | 
|  | int blkn, ci; | 
|  | int Al = cinfo->Al; | 
|  | JBLOCKROW block; | 
|  | jpeg_component_info * compptr; | 
|  | ISHIFT_TEMPS | 
|  |  | 
|  | entropy->next_output_byte = cinfo->dest->next_output_byte; | 
|  | entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) | 
|  | if (entropy->restarts_to_go == 0) | 
|  | emit_restart(entropy, entropy->next_restart_num); | 
|  |  | 
|  | /* Encode the MCU data blocks */ | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | block = MCU_data[blkn]; | 
|  | ci = cinfo->MCU_membership[blkn]; | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  |  | 
|  | /* Compute the DC value after the required point transform by Al. | 
|  | * This is simply an arithmetic right shift. | 
|  | */ | 
|  | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); | 
|  |  | 
|  | /* DC differences are figured on the point-transformed values. */ | 
|  | temp = temp2 - entropy->last_dc_val[ci]; | 
|  | entropy->last_dc_val[ci] = temp2; | 
|  |  | 
|  | /* Encode the DC coefficient difference per section G.1.2.1 */ | 
|  | temp2 = temp; | 
|  | if (temp < 0) { | 
|  | temp = -temp;		/* temp is abs value of input */ | 
|  | /* For a negative input, want temp2 = bitwise complement of abs(input) */ | 
|  | /* This code assumes we are on a two's complement machine */ | 
|  | temp2--; | 
|  | } | 
|  |  | 
|  | /* Find the number of bits needed for the magnitude of the coefficient */ | 
|  | nbits = 0; | 
|  | while (temp) { | 
|  | nbits++; | 
|  | temp >>= 1; | 
|  | } | 
|  | /* Check for out-of-range coefficient values. | 
|  | * Since we're encoding a difference, the range limit is twice as much. | 
|  | */ | 
|  | if (nbits > MAX_COEF_BITS+1) | 
|  | ERREXIT(cinfo, JERR_BAD_DCT_COEF); | 
|  |  | 
|  | /* Count/emit the Huffman-coded symbol for the number of bits */ | 
|  | emit_symbol(entropy, compptr->dc_tbl_no, nbits); | 
|  |  | 
|  | /* Emit that number of bits of the value, if positive, */ | 
|  | /* or the complement of its magnitude, if negative. */ | 
|  | if (nbits)			/* emit_bits rejects calls with size 0 */ | 
|  | emit_bits(entropy, (unsigned int) temp2, nbits); | 
|  | } | 
|  |  | 
|  | cinfo->dest->next_output_byte = entropy->next_output_byte; | 
|  | cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
|  |  | 
|  | /* Update restart-interval state too */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU encoding for AC initial scan (either spectral selection, | 
|  | * or first pass of successive approximation). | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | register int temp, temp2; | 
|  | register int nbits; | 
|  | register int r, k; | 
|  | int Se = cinfo->Se; | 
|  | int Al = cinfo->Al; | 
|  | JBLOCKROW block; | 
|  |  | 
|  | entropy->next_output_byte = cinfo->dest->next_output_byte; | 
|  | entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) | 
|  | if (entropy->restarts_to_go == 0) | 
|  | emit_restart(entropy, entropy->next_restart_num); | 
|  |  | 
|  | /* Encode the MCU data block */ | 
|  | block = MCU_data[0]; | 
|  |  | 
|  | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ | 
|  |  | 
|  | r = 0;			/* r = run length of zeros */ | 
|  |  | 
|  | for (k = cinfo->Ss; k <= Se; k++) { | 
|  | if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { | 
|  | r++; | 
|  | continue; | 
|  | } | 
|  | /* We must apply the point transform by Al.  For AC coefficients this | 
|  | * is an integer division with rounding towards 0.  To do this portably | 
|  | * in C, we shift after obtaining the absolute value; so the code is | 
|  | * interwoven with finding the abs value (temp) and output bits (temp2). | 
|  | */ | 
|  | if (temp < 0) { | 
|  | temp = -temp;		/* temp is abs value of input */ | 
|  | temp >>= Al;		/* apply the point transform */ | 
|  | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ | 
|  | temp2 = ~temp; | 
|  | } else { | 
|  | temp >>= Al;		/* apply the point transform */ | 
|  | temp2 = temp; | 
|  | } | 
|  | /* Watch out for case that nonzero coef is zero after point transform */ | 
|  | if (temp == 0) { | 
|  | r++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Emit any pending EOBRUN */ | 
|  | if (entropy->EOBRUN > 0) | 
|  | emit_eobrun(entropy); | 
|  | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | 
|  | while (r > 15) { | 
|  | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); | 
|  | r -= 16; | 
|  | } | 
|  |  | 
|  | /* Find the number of bits needed for the magnitude of the coefficient */ | 
|  | nbits = 1;			/* there must be at least one 1 bit */ | 
|  | while ((temp >>= 1)) | 
|  | nbits++; | 
|  | /* Check for out-of-range coefficient values */ | 
|  | if (nbits > MAX_COEF_BITS) | 
|  | ERREXIT(cinfo, JERR_BAD_DCT_COEF); | 
|  |  | 
|  | /* Count/emit Huffman symbol for run length / number of bits */ | 
|  | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); | 
|  |  | 
|  | /* Emit that number of bits of the value, if positive, */ | 
|  | /* or the complement of its magnitude, if negative. */ | 
|  | emit_bits(entropy, (unsigned int) temp2, nbits); | 
|  |  | 
|  | r = 0;			/* reset zero run length */ | 
|  | } | 
|  |  | 
|  | if (r > 0) {			/* If there are trailing zeroes, */ | 
|  | entropy->EOBRUN++;		/* count an EOB */ | 
|  | if (entropy->EOBRUN == 0x7FFF) | 
|  | emit_eobrun(entropy);	/* force it out to avoid overflow */ | 
|  | } | 
|  |  | 
|  | cinfo->dest->next_output_byte = entropy->next_output_byte; | 
|  | cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
|  |  | 
|  | /* Update restart-interval state too */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU encoding for DC successive approximation refinement scan. | 
|  | * Note: we assume such scans can be multi-component, although the spec | 
|  | * is not very clear on the point. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | register int temp; | 
|  | int blkn; | 
|  | int Al = cinfo->Al; | 
|  | JBLOCKROW block; | 
|  |  | 
|  | entropy->next_output_byte = cinfo->dest->next_output_byte; | 
|  | entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) | 
|  | if (entropy->restarts_to_go == 0) | 
|  | emit_restart(entropy, entropy->next_restart_num); | 
|  |  | 
|  | /* Encode the MCU data blocks */ | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | block = MCU_data[blkn]; | 
|  |  | 
|  | /* We simply emit the Al'th bit of the DC coefficient value. */ | 
|  | temp = (*block)[0]; | 
|  | emit_bits(entropy, (unsigned int) (temp >> Al), 1); | 
|  | } | 
|  |  | 
|  | cinfo->dest->next_output_byte = entropy->next_output_byte; | 
|  | cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
|  |  | 
|  | /* Update restart-interval state too */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU encoding for AC successive approximation refinement scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | register int temp; | 
|  | register int r, k; | 
|  | int EOB; | 
|  | char *BR_buffer; | 
|  | unsigned int BR; | 
|  | int Se = cinfo->Se; | 
|  | int Al = cinfo->Al; | 
|  | JBLOCKROW block; | 
|  | int absvalues[DCTSIZE2]; | 
|  |  | 
|  | entropy->next_output_byte = cinfo->dest->next_output_byte; | 
|  | entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) | 
|  | if (entropy->restarts_to_go == 0) | 
|  | emit_restart(entropy, entropy->next_restart_num); | 
|  |  | 
|  | /* Encode the MCU data block */ | 
|  | block = MCU_data[0]; | 
|  |  | 
|  | /* It is convenient to make a pre-pass to determine the transformed | 
|  | * coefficients' absolute values and the EOB position. | 
|  | */ | 
|  | EOB = 0; | 
|  | for (k = cinfo->Ss; k <= Se; k++) { | 
|  | temp = (*block)[jpeg_natural_order[k]]; | 
|  | /* We must apply the point transform by Al.  For AC coefficients this | 
|  | * is an integer division with rounding towards 0.  To do this portably | 
|  | * in C, we shift after obtaining the absolute value. | 
|  | */ | 
|  | if (temp < 0) | 
|  | temp = -temp;		/* temp is abs value of input */ | 
|  | temp >>= Al;		/* apply the point transform */ | 
|  | absvalues[k] = temp;	/* save abs value for main pass */ | 
|  | if (temp == 1) | 
|  | EOB = k;			/* EOB = index of last newly-nonzero coef */ | 
|  | } | 
|  |  | 
|  | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ | 
|  |  | 
|  | r = 0;			/* r = run length of zeros */ | 
|  | BR = 0;			/* BR = count of buffered bits added now */ | 
|  | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ | 
|  |  | 
|  | for (k = cinfo->Ss; k <= Se; k++) { | 
|  | if ((temp = absvalues[k]) == 0) { | 
|  | r++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Emit any required ZRLs, but not if they can be folded into EOB */ | 
|  | while (r > 15 && k <= EOB) { | 
|  | /* emit any pending EOBRUN and the BE correction bits */ | 
|  | emit_eobrun(entropy); | 
|  | /* Emit ZRL */ | 
|  | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); | 
|  | r -= 16; | 
|  | /* Emit buffered correction bits that must be associated with ZRL */ | 
|  | emit_buffered_bits(entropy, BR_buffer, BR); | 
|  | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ | 
|  | BR = 0; | 
|  | } | 
|  |  | 
|  | /* If the coef was previously nonzero, it only needs a correction bit. | 
|  | * NOTE: a straight translation of the spec's figure G.7 would suggest | 
|  | * that we also need to test r > 15.  But if r > 15, we can only get here | 
|  | * if k > EOB, which implies that this coefficient is not 1. | 
|  | */ | 
|  | if (temp > 1) { | 
|  | /* The correction bit is the next bit of the absolute value. */ | 
|  | BR_buffer[BR++] = (char) (temp & 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Emit any pending EOBRUN and the BE correction bits */ | 
|  | emit_eobrun(entropy); | 
|  |  | 
|  | /* Count/emit Huffman symbol for run length / number of bits */ | 
|  | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); | 
|  |  | 
|  | /* Emit output bit for newly-nonzero coef */ | 
|  | temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; | 
|  | emit_bits(entropy, (unsigned int) temp, 1); | 
|  |  | 
|  | /* Emit buffered correction bits that must be associated with this code */ | 
|  | emit_buffered_bits(entropy, BR_buffer, BR); | 
|  | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ | 
|  | BR = 0; | 
|  | r = 0;			/* reset zero run length */ | 
|  | } | 
|  |  | 
|  | if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */ | 
|  | entropy->EOBRUN++;		/* count an EOB */ | 
|  | entropy->BE += BR;		/* concat my correction bits to older ones */ | 
|  | /* We force out the EOB if we risk either: | 
|  | * 1. overflow of the EOB counter; | 
|  | * 2. overflow of the correction bit buffer during the next MCU. | 
|  | */ | 
|  | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) | 
|  | emit_eobrun(entropy); | 
|  | } | 
|  |  | 
|  | cinfo->dest->next_output_byte = entropy->next_output_byte; | 
|  | cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
|  |  | 
|  | /* Update restart-interval state too */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Finish up at the end of a Huffman-compressed progressive scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | finish_pass_phuff (j_compress_ptr cinfo) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  |  | 
|  | entropy->next_output_byte = cinfo->dest->next_output_byte; | 
|  | entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
|  |  | 
|  | /* Flush out any buffered data */ | 
|  | emit_eobrun(entropy); | 
|  | flush_bits(entropy); | 
|  |  | 
|  | cinfo->dest->next_output_byte = entropy->next_output_byte; | 
|  | cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Finish up a statistics-gathering pass and create the new Huffman tables. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | finish_pass_gather_phuff (j_compress_ptr cinfo) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | boolean is_DC_band; | 
|  | int ci, tbl; | 
|  | jpeg_component_info * compptr; | 
|  | JHUFF_TBL **htblptr; | 
|  | boolean did[NUM_HUFF_TBLS]; | 
|  |  | 
|  | /* Flush out buffered data (all we care about is counting the EOB symbol) */ | 
|  | emit_eobrun(entropy); | 
|  |  | 
|  | is_DC_band = (cinfo->Ss == 0); | 
|  |  | 
|  | /* It's important not to apply jpeg_gen_optimal_table more than once | 
|  | * per table, because it clobbers the input frequency counts! | 
|  | */ | 
|  | MEMZERO(did, SIZEOF(did)); | 
|  |  | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | if (is_DC_band) { | 
|  | if (cinfo->Ah != 0)	/* DC refinement needs no table */ | 
|  | continue; | 
|  | tbl = compptr->dc_tbl_no; | 
|  | } else { | 
|  | tbl = compptr->ac_tbl_no; | 
|  | } | 
|  | if (! did[tbl]) { | 
|  | if (is_DC_band) | 
|  | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; | 
|  | else | 
|  | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; | 
|  | if (*htblptr == NULL) | 
|  | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | 
|  | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); | 
|  | did[tbl] = TRUE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Module initialization routine for progressive Huffman entropy encoding. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_phuff_encoder (j_compress_ptr cinfo) | 
|  | { | 
|  | phuff_entropy_ptr entropy; | 
|  | int i; | 
|  |  | 
|  | entropy = (phuff_entropy_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(phuff_entropy_encoder)); | 
|  | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; | 
|  | entropy->pub.start_pass = start_pass_phuff; | 
|  |  | 
|  | /* Mark tables unallocated */ | 
|  | for (i = 0; i < NUM_HUFF_TBLS; i++) { | 
|  | entropy->derived_tbls[i] = NULL; | 
|  | entropy->count_ptrs[i] = NULL; | 
|  | } | 
|  | entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */ | 
|  | } | 
|  |  | 
|  | #endif /* C_PROGRESSIVE_SUPPORTED */ |