| ; |
| ; jchuff-sse2.asm - Huffman entropy encoding (SSE2) |
| ; |
| ; Copyright 2009-2011, 2014-2016 D. R. Commander. |
| ; Copyright 2015 Matthieu Darbois |
| ; |
| ; Based on |
| ; x86 SIMD extension for IJG JPEG library |
| ; Copyright (C) 1999-2006, MIYASAKA Masaru. |
| ; For conditions of distribution and use, see copyright notice in jsimdext.inc |
| ; |
| ; This file should be assembled with NASM (Netwide Assembler), |
| ; can *not* be assembled with Microsoft's MASM or any compatible |
| ; assembler (including Borland's Turbo Assembler). |
| ; NASM is available from http://nasm.sourceforge.net/ or |
| ; http://sourceforge.net/project/showfiles.php?group_id=6208 |
| ; |
| ; This file contains an SSE2 implementation for Huffman coding of one block. |
| ; The following code is based directly on jchuff.c; see jchuff.c for more |
| ; details. |
| ; |
| ; [TAB8] |
| |
| %include "jsimdext.inc" |
| |
| ; -------------------------------------------------------------------------- |
| SECTION SEG_CONST |
| |
| alignz 16 |
| global EXTN(jconst_huff_encode_one_block) |
| |
| EXTN(jconst_huff_encode_one_block): |
| |
| %include "jpeg_nbits_table.inc" |
| |
| alignz 16 |
| |
| ; -------------------------------------------------------------------------- |
| SECTION SEG_TEXT |
| BITS 32 |
| |
| ; These macros perform the same task as the emit_bits() function in the |
| ; original libjpeg code. In addition to reducing overhead by explicitly |
| ; inlining the code, additional performance is achieved by taking into |
| ; account the size of the bit buffer and waiting until it is almost full |
| ; before emptying it. This mostly benefits 64-bit platforms, since 6 |
| ; bytes can be stored in a 64-bit bit buffer before it has to be emptied. |
| |
| %macro EMIT_BYTE 0 |
| sub put_bits, 8 ; put_bits -= 8; |
| mov edx, put_buffer |
| mov ecx, put_bits |
| shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits); |
| mov byte [eax], dl ; *buffer++ = c; |
| add eax, 1 |
| cmp dl, 0xFF ; need to stuff a zero byte? |
| jne %%.EMIT_BYTE_END |
| mov byte [eax], 0 ; *buffer++ = 0; |
| add eax, 1 |
| %%.EMIT_BYTE_END: |
| %endmacro |
| |
| %macro PUT_BITS 1 |
| add put_bits, ecx ; put_bits += size; |
| shl put_buffer, cl ; put_buffer = (put_buffer << size); |
| or put_buffer, %1 |
| %endmacro |
| |
| %macro CHECKBUF15 0 |
| cmp put_bits, 16 ; if (put_bits > 31) { |
| jl %%.CHECKBUF15_END |
| mov eax, POINTER [esp+buffer] |
| EMIT_BYTE |
| EMIT_BYTE |
| mov POINTER [esp+buffer], eax |
| %%.CHECKBUF15_END: |
| %endmacro |
| |
| %macro EMIT_BITS 1 |
| PUT_BITS %1 |
| CHECKBUF15 |
| %endmacro |
| |
| %macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3) |
| pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128(); |
| pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128(); |
| pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128(); |
| pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128(); |
| pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0]; |
| pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8]; |
| pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16]; |
| pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24]; |
| pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1]; |
| pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9]; |
| pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17]; |
| pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25]; |
| pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2]; |
| pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10]; |
| pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18]; |
| pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26]; |
| pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3]; |
| pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11]; |
| pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19]; |
| pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27]; |
| pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4]; |
| pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12]; |
| pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20]; |
| pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28]; |
| pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5]; |
| pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13]; |
| pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21]; |
| pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29]; |
| pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6]; |
| pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14]; |
| pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22]; |
| pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30]; |
| pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7]; |
| pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15]; |
| pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23]; |
| %if %1 != 32 |
| pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31]; |
| %else |
| pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31]; |
| %endif |
| pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1); |
| pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1); |
| pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1); |
| pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1); |
| paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg); |
| paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg); |
| paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg); |
| paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg); |
| pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg); |
| pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg); |
| pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg); |
| pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg); |
| pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1); |
| pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1); |
| pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1); |
| pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1); |
| movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1); |
| movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1); |
| movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1); |
| movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1); |
| movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg); |
| movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg); |
| movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg); |
| movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg); |
| %endmacro |
| |
| ; |
| ; Encode a single block's worth of coefficients. |
| ; |
| ; GLOBAL(JOCTET*) |
| ; jsimd_huff_encode_one_block_sse2 (working_state * state, JOCTET *buffer, |
| ; JCOEFPTR block, int last_dc_val, |
| ; c_derived_tbl *dctbl, c_derived_tbl *actbl) |
| ; |
| |
| ; eax + 8 = working_state *state |
| ; eax + 12 = JOCTET *buffer |
| ; eax + 16 = JCOEFPTR block |
| ; eax + 20 = int last_dc_val |
| ; eax + 24 = c_derived_tbl *dctbl |
| ; eax + 28 = c_derived_tbl *actbl |
| |
| %define pad 6*SIZEOF_DWORD ; Align to 16 bytes |
| %define t1 pad |
| %define t2 t1+(DCTSIZE2*SIZEOF_WORD) |
| %define block t2+(DCTSIZE2*SIZEOF_WORD) |
| %define actbl block+SIZEOF_DWORD |
| %define buffer actbl+SIZEOF_DWORD |
| %define temp buffer+SIZEOF_DWORD |
| %define temp2 temp+SIZEOF_DWORD |
| %define temp3 temp2+SIZEOF_DWORD |
| %define temp4 temp3+SIZEOF_DWORD |
| %define temp5 temp4+SIZEOF_DWORD |
| %define gotptr temp5+SIZEOF_DWORD ; void * gotptr |
| %define put_buffer ebx |
| %define put_bits edi |
| |
| align 16 |
| global EXTN(jsimd_huff_encode_one_block_sse2) |
| |
| EXTN(jsimd_huff_encode_one_block_sse2): |
| push ebp |
| mov eax,esp ; eax = original ebp |
| sub esp, byte 4 |
| and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits |
| mov [esp],eax |
| mov ebp,esp ; ebp = aligned ebp |
| sub esp, temp5+9*SIZEOF_DWORD-pad |
| push ebx |
| push ecx |
| ; push edx ; need not be preserved |
| push esi |
| push edi |
| push ebp |
| |
| mov esi, POINTER [eax+8] ; (working_state *state) |
| mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer; |
| mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits; |
| push esi ; esi is now scratch |
| |
| get_GOT edx ; get GOT address |
| movpic POINTER [esp+gotptr], edx ; save GOT address |
| |
| mov ecx, POINTER [eax+28] |
| mov edx, POINTER [eax+16] |
| mov esi, POINTER [eax+12] |
| mov POINTER [esp+actbl], ecx |
| mov POINTER [esp+block], edx |
| mov POINTER [esp+buffer], esi |
| |
| ; Encode the DC coefficient difference per section F.1.2.1 |
| mov esi, POINTER [esp+block] ; block |
| movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val; |
| sub ecx, DWORD [eax+20] |
| mov esi, ecx |
| |
| ; This is a well-known technique for obtaining the absolute value |
| ; without a branch. It is derived from an assembly language technique |
| ; presented in "How to Optimize for the Pentium Processors", |
| ; Copyright (c) 1996, 1997 by Agner Fog. |
| mov edx, ecx |
| sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); |
| xor ecx, edx ; temp ^= temp3; |
| sub ecx, edx ; temp -= temp3; |
| |
| ; For a negative input, want temp2 = bitwise complement of abs(input) |
| ; This code assumes we are on a two's complement machine |
| add esi, edx ; temp2 += temp3; |
| mov DWORD [esp+temp], esi ; backup temp2 in temp |
| |
| ; Find the number of bits needed for the magnitude of the coefficient |
| movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp) |
| movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp); |
| mov DWORD [esp+temp2], edx ; backup nbits in temp2 |
| |
| ; Emit the Huffman-coded symbol for the number of bits |
| mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore |
| mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits]; |
| movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits]; |
| EMIT_BITS eax ; EMIT_BITS(code, size) |
| |
| mov ecx, DWORD [esp+temp2] ; restore nbits |
| |
| ; Mask off any extra bits in code |
| mov eax, 1 |
| shl eax, cl |
| dec eax |
| and eax, DWORD [esp+temp] ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
| |
| ; Emit that number of bits of the value, if positive, |
| ; or the complement of its magnitude, if negative. |
| EMIT_BITS eax ; EMIT_BITS(temp2, nbits) |
| |
| ; Prepare data |
| xor ecx, ecx |
| mov esi, POINTER [esp+block] |
| kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \ |
| 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \ |
| 27, 20, 13, 6, 7, 14, 21, 28, 35, \ |
| xmm0, xmm1, xmm2, xmm3 |
| kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \ |
| 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \ |
| 53, 60, 61, 54, 47, 55, 62, 63, 63, \ |
| xmm0, xmm1, xmm2, xmm3 |
| |
| pxor xmm7, xmm7 |
| movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0)); |
| movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8)); |
| movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16)); |
| movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24)); |
| pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
| pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
| pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
| pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
| packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
| packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
| pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; |
| pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16; |
| shl ecx, 16 |
| or edx, ecx |
| not edx ; index = ~index; |
| |
| lea esi, [esp+t1] |
| mov ebp, POINTER [esp+actbl] ; ebp = actbl |
| |
| .BLOOP: |
| bsf ecx, edx ; r = __builtin_ctzl(index); |
| jz .ELOOP |
| lea esi, [esi+ecx*2] ; k += r; |
| shr edx, cl ; index >>= r; |
| mov DWORD [esp+temp3], edx |
| .BRLOOP: |
| cmp ecx, 16 ; while (r > 15) { |
| jl .ERLOOP |
| sub ecx, 16 ; r -= 16; |
| mov DWORD [esp+temp], ecx |
| mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
| movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
| EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0) |
| mov ecx, DWORD [esp+temp] |
| jmp .BRLOOP |
| .ERLOOP: |
| movsx eax, word [esi] ; temp = t1[k]; |
| movpic edx, POINTER [esp+gotptr] ; load GOT address (edx) |
| movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp); |
| mov DWORD [esp+temp2], eax |
| ; Emit Huffman symbol for run length / number of bits |
| shl ecx, 4 ; temp3 = (r << 4) + nbits; |
| add ecx, eax |
| mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3]; |
| movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3]; |
| EMIT_BITS eax |
| |
| movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k]; |
| ; Mask off any extra bits in code |
| mov ecx, DWORD [esp+temp2] |
| mov eax, 1 |
| shl eax, cl |
| dec eax |
| and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
| EMIT_BITS eax ; PUT_BITS(temp2, nbits) |
| mov edx, DWORD [esp+temp3] |
| add esi, 2 ; ++k; |
| shr edx, 1 ; index >>= 1; |
| |
| jmp .BLOOP |
| .ELOOP: |
| movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0)); |
| movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8)); |
| movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16)); |
| movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24)); |
| pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
| pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
| pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
| pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
| packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
| packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
| pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; |
| pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16; |
| shl ecx, 16 |
| or edx, ecx |
| not edx ; index = ~index; |
| |
| lea eax, [esp + t1 + (DCTSIZE2/2) * 2] |
| sub eax, esi |
| shr eax, 1 |
| bsf ecx, edx ; r = __builtin_ctzl(index); |
| jz .ELOOP2 |
| shr edx, cl ; index >>= r; |
| add ecx, eax |
| lea esi, [esi+ecx*2] ; k += r; |
| mov DWORD [esp+temp3], edx |
| jmp .BRLOOP2 |
| .BLOOP2: |
| bsf ecx, edx ; r = __builtin_ctzl(index); |
| jz .ELOOP2 |
| lea esi, [esi+ecx*2] ; k += r; |
| shr edx, cl ; index >>= r; |
| mov DWORD [esp+temp3], edx |
| .BRLOOP2: |
| cmp ecx, 16 ; while (r > 15) { |
| jl .ERLOOP2 |
| sub ecx, 16 ; r -= 16; |
| mov DWORD [esp+temp], ecx |
| mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
| movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
| EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0) |
| mov ecx, DWORD [esp+temp] |
| jmp .BRLOOP2 |
| .ERLOOP2: |
| movsx eax, word [esi] ; temp = t1[k]; |
| bsr eax, eax ; nbits = 32 - __builtin_clz(temp); |
| inc eax |
| mov DWORD [esp+temp2], eax |
| ; Emit Huffman symbol for run length / number of bits |
| shl ecx, 4 ; temp3 = (r << 4) + nbits; |
| add ecx, eax |
| mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3]; |
| movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3]; |
| EMIT_BITS eax |
| |
| movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k]; |
| ; Mask off any extra bits in code |
| mov ecx, DWORD [esp+temp2] |
| mov eax, 1 |
| shl eax, cl |
| dec eax |
| and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
| EMIT_BITS eax ; PUT_BITS(temp2, nbits) |
| mov edx, DWORD [esp+temp3] |
| add esi, 2 ; ++k; |
| shr edx, 1 ; index >>= 1; |
| |
| jmp .BLOOP2 |
| .ELOOP2: |
| ; If the last coef(s) were zero, emit an end-of-block code |
| lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k; |
| cmp edx, esi ; if (r > 0) { |
| je .EFN |
| mov eax, INT [ebp] ; code = actbl->ehufco[0]; |
| movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0]; |
| EMIT_BITS eax |
| .EFN: |
| mov eax, [esp+buffer] |
| pop esi |
| ; Save put_buffer & put_bits |
| mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer; |
| mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits; |
| |
| pop ebp |
| pop edi |
| pop esi |
| ; pop edx ; need not be preserved |
| pop ecx |
| pop ebx |
| mov esp,ebp ; esp <- aligned ebp |
| pop esp ; esp <- original ebp |
| pop ebp |
| ret |
| |
| ; For some reason, the OS X linker does not honor the request to align the |
| ; segment unless we do this. |
| align 16 |