|  | /* | 
|  | * jdarith.c | 
|  | * | 
|  | * Developed 1997-2009 by Guido Vollbeding. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains portable arithmetic entropy decoding routines for JPEG | 
|  | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). | 
|  | * | 
|  | * Both sequential and progressive modes are supported in this single module. | 
|  | * | 
|  | * Suspension is not currently supported in this module. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  |  | 
|  |  | 
|  | /* Expanded entropy decoder object for arithmetic decoding. */ | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_entropy_decoder pub; /* public fields */ | 
|  |  | 
|  | INT32 c;       /* C register, base of coding interval + input bit buffer */ | 
|  | INT32 a;               /* A register, normalized size of coding interval */ | 
|  | int ct;     /* bit shift counter, # of bits left in bit buffer part of C */ | 
|  | /* init: ct = -16 */ | 
|  | /* run: ct = 0..7 */ | 
|  | /* error: ct = -1 */ | 
|  | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | 
|  | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ | 
|  |  | 
|  | unsigned int restarts_to_go;	/* MCUs left in this restart interval */ | 
|  |  | 
|  | /* Pointers to statistics areas (these workspaces have image lifespan) */ | 
|  | unsigned char * dc_stats[NUM_ARITH_TBLS]; | 
|  | unsigned char * ac_stats[NUM_ARITH_TBLS]; | 
|  |  | 
|  | /* Statistics bin for coding with fixed probability 0.5 */ | 
|  | unsigned char fixed_bin[4]; | 
|  | } arith_entropy_decoder; | 
|  |  | 
|  | typedef arith_entropy_decoder * arith_entropy_ptr; | 
|  |  | 
|  | /* The following two definitions specify the allocation chunk size | 
|  | * for the statistics area. | 
|  | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least | 
|  | * 49 statistics bins for DC, and 245 statistics bins for AC coding. | 
|  | * | 
|  | * We use a compact representation with 1 byte per statistics bin, | 
|  | * thus the numbers directly represent byte sizes. | 
|  | * This 1 byte per statistics bin contains the meaning of the MPS | 
|  | * (more probable symbol) in the highest bit (mask 0x80), and the | 
|  | * index into the probability estimation state machine table | 
|  | * in the lower bits (mask 0x7F). | 
|  | */ | 
|  |  | 
|  | #define DC_STAT_BINS 64 | 
|  | #define AC_STAT_BINS 256 | 
|  |  | 
|  |  | 
|  | LOCAL(int) | 
|  | get_byte (j_decompress_ptr cinfo) | 
|  | /* Read next input byte; we do not support suspension in this module. */ | 
|  | { | 
|  | struct jpeg_source_mgr * src = cinfo->src; | 
|  |  | 
|  | if (src->bytes_in_buffer == 0) | 
|  | if (! (*src->fill_input_buffer) (cinfo)) | 
|  | ERREXIT(cinfo, JERR_CANT_SUSPEND); | 
|  | src->bytes_in_buffer--; | 
|  | return GETJOCTET(*src->next_input_byte++); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The core arithmetic decoding routine (common in JPEG and JBIG). | 
|  | * This needs to go as fast as possible. | 
|  | * Machine-dependent optimization facilities | 
|  | * are not utilized in this portable implementation. | 
|  | * However, this code should be fairly efficient and | 
|  | * may be a good base for further optimizations anyway. | 
|  | * | 
|  | * Return value is 0 or 1 (binary decision). | 
|  | * | 
|  | * Note: I've changed the handling of the code base & bit | 
|  | * buffer register C compared to other implementations | 
|  | * based on the standards layout & procedures. | 
|  | * While it also contains both the actual base of the | 
|  | * coding interval (16 bits) and the next-bits buffer, | 
|  | * the cut-point between these two parts is floating | 
|  | * (instead of fixed) with the bit shift counter CT. | 
|  | * Thus, we also need only one (variable instead of | 
|  | * fixed size) shift for the LPS/MPS decision, and | 
|  | * we can get away with any renormalization update | 
|  | * of C (except for new data insertion, of course). | 
|  | * | 
|  | * I've also introduced a new scheme for accessing | 
|  | * the probability estimation state machine table, | 
|  | * derived from Markus Kuhn's JBIG implementation. | 
|  | */ | 
|  |  | 
|  | LOCAL(int) | 
|  | arith_decode (j_decompress_ptr cinfo, unsigned char *st) | 
|  | { | 
|  | register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; | 
|  | register unsigned char nl, nm; | 
|  | register INT32 qe, temp; | 
|  | register int sv, data; | 
|  |  | 
|  | /* Renormalization & data input per section D.2.6 */ | 
|  | while (e->a < 0x8000L) { | 
|  | if (--e->ct < 0) { | 
|  | /* Need to fetch next data byte */ | 
|  | if (cinfo->unread_marker) | 
|  | data = 0;		/* stuff zero data */ | 
|  | else { | 
|  | data = get_byte(cinfo);	/* read next input byte */ | 
|  | if (data == 0xFF) {	/* zero stuff or marker code */ | 
|  | do data = get_byte(cinfo); | 
|  | while (data == 0xFF);	/* swallow extra 0xFF bytes */ | 
|  | if (data == 0) | 
|  | data = 0xFF;	/* discard stuffed zero byte */ | 
|  | else { | 
|  | /* Note: Different from the Huffman decoder, hitting | 
|  | * a marker while processing the compressed data | 
|  | * segment is legal in arithmetic coding. | 
|  | * The convention is to supply zero data | 
|  | * then until decoding is complete. | 
|  | */ | 
|  | cinfo->unread_marker = data; | 
|  | data = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | e->c = (e->c << 8) | data; /* insert data into C register */ | 
|  | if ((e->ct += 8) < 0)	 /* update bit shift counter */ | 
|  | /* Need more initial bytes */ | 
|  | if (++e->ct == 0) | 
|  | /* Got 2 initial bytes -> re-init A and exit loop */ | 
|  | e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ | 
|  | } | 
|  | e->a <<= 1; | 
|  | } | 
|  |  | 
|  | /* Fetch values from our compact representation of Table D.2: | 
|  | * Qe values and probability estimation state machine | 
|  | */ | 
|  | sv = *st; | 
|  | qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */ | 
|  | nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */ | 
|  | nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */ | 
|  |  | 
|  | /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ | 
|  | temp = e->a - qe; | 
|  | e->a = temp; | 
|  | temp <<= e->ct; | 
|  | if (e->c >= temp) { | 
|  | e->c -= temp; | 
|  | /* Conditional LPS (less probable symbol) exchange */ | 
|  | if (e->a < qe) { | 
|  | e->a = qe; | 
|  | *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */ | 
|  | } else { | 
|  | e->a = qe; | 
|  | *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */ | 
|  | sv ^= 0x80;		/* Exchange LPS/MPS */ | 
|  | } | 
|  | } else if (e->a < 0x8000L) { | 
|  | /* Conditional MPS (more probable symbol) exchange */ | 
|  | if (e->a < qe) { | 
|  | *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */ | 
|  | sv ^= 0x80;		/* Exchange LPS/MPS */ | 
|  | } else { | 
|  | *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */ | 
|  | } | 
|  | } | 
|  |  | 
|  | return sv >> 7; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Check for a restart marker & resynchronize decoder. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | process_restart (j_decompress_ptr cinfo) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | 
|  | int ci; | 
|  | jpeg_component_info * compptr; | 
|  |  | 
|  | /* Advance past the RSTn marker */ | 
|  | if (! (*cinfo->marker->read_restart_marker) (cinfo)) | 
|  | ERREXIT(cinfo, JERR_CANT_SUSPEND); | 
|  |  | 
|  | /* Re-initialize statistics areas */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
|  | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); | 
|  | /* Reset DC predictions to 0 */ | 
|  | entropy->last_dc_val[ci] = 0; | 
|  | entropy->dc_context[ci] = 0; | 
|  | } | 
|  | if (! cinfo->progressive_mode || cinfo->Ss) { | 
|  | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset arithmetic decoding variables */ | 
|  | entropy->c = 0; | 
|  | entropy->a = 0; | 
|  | entropy->ct = -16;	/* force reading 2 initial bytes to fill C */ | 
|  |  | 
|  | /* Reset restart counter */ | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Arithmetic MCU decoding. | 
|  | * Each of these routines decodes and returns one MCU's worth of | 
|  | * arithmetic-compressed coefficients. | 
|  | * The coefficients are reordered from zigzag order into natural array order, | 
|  | * but are not dequantized. | 
|  | * | 
|  | * The i'th block of the MCU is stored into the block pointed to by | 
|  | * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * MCU decoding for DC initial scan (either spectral selection, | 
|  | * or first pass of successive approximation). | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | 
|  | JBLOCKROW block; | 
|  | unsigned char *st; | 
|  | int blkn, ci, tbl, sign; | 
|  | int v, m; | 
|  |  | 
|  | /* Process restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | process_restart(cinfo); | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | if (entropy->ct == -1) return TRUE;	/* if error do nothing */ | 
|  |  | 
|  | /* Outer loop handles each block in the MCU */ | 
|  |  | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | block = MCU_data[blkn]; | 
|  | ci = cinfo->MCU_membership[blkn]; | 
|  | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | 
|  |  | 
|  | /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ | 
|  |  | 
|  | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | 
|  | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | 
|  |  | 
|  | /* Figure F.19: Decode_DC_DIFF */ | 
|  | if (arith_decode(cinfo, st) == 0) | 
|  | entropy->dc_context[ci] = 0; | 
|  | else { | 
|  | /* Figure F.21: Decoding nonzero value v */ | 
|  | /* Figure F.22: Decoding the sign of v */ | 
|  | sign = arith_decode(cinfo, st + 1); | 
|  | st += 2; st += sign; | 
|  | /* Figure F.23: Decoding the magnitude category of v */ | 
|  | if ((m = arith_decode(cinfo, st)) != 0) { | 
|  | st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */ | 
|  | while (arith_decode(cinfo, st)) { | 
|  | if ((m <<= 1) == 0x8000) { | 
|  | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | 
|  | entropy->ct = -1;			/* magnitude overflow */ | 
|  | return TRUE; | 
|  | } | 
|  | st += 1; | 
|  | } | 
|  | } | 
|  | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | 
|  | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | 
|  | entropy->dc_context[ci] = 0;		   /* zero diff category */ | 
|  | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | 
|  | entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ | 
|  | else | 
|  | entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */ | 
|  | v = m; | 
|  | /* Figure F.24: Decoding the magnitude bit pattern of v */ | 
|  | st += 14; | 
|  | while (m >>= 1) | 
|  | if (arith_decode(cinfo, st)) v |= m; | 
|  | v += 1; if (sign) v = -v; | 
|  | entropy->last_dc_val[ci] += v; | 
|  | } | 
|  |  | 
|  | /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ | 
|  | (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU decoding for AC initial scan (either spectral selection, | 
|  | * or first pass of successive approximation). | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | 
|  | JBLOCKROW block; | 
|  | unsigned char *st; | 
|  | int tbl, sign, k; | 
|  | int v, m; | 
|  |  | 
|  | /* Process restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | process_restart(cinfo); | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | if (entropy->ct == -1) return TRUE;	/* if error do nothing */ | 
|  |  | 
|  | /* There is always only one block per MCU */ | 
|  | block = MCU_data[0]; | 
|  | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | 
|  |  | 
|  | /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ | 
|  |  | 
|  | /* Figure F.20: Decode_AC_coefficients */ | 
|  | for (k = cinfo->Ss; k <= cinfo->Se; k++) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | if (arith_decode(cinfo, st)) break;		/* EOB flag */ | 
|  | while (arith_decode(cinfo, st + 1) == 0) { | 
|  | st += 3; k++; | 
|  | if (k > cinfo->Se) { | 
|  | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | 
|  | entropy->ct = -1;			/* spectral overflow */ | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  | /* Figure F.21: Decoding nonzero value v */ | 
|  | /* Figure F.22: Decoding the sign of v */ | 
|  | sign = arith_decode(cinfo, entropy->fixed_bin); | 
|  | st += 2; | 
|  | /* Figure F.23: Decoding the magnitude category of v */ | 
|  | if ((m = arith_decode(cinfo, st)) != 0) { | 
|  | if (arith_decode(cinfo, st)) { | 
|  | m <<= 1; | 
|  | st = entropy->ac_stats[tbl] + | 
|  | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | 
|  | while (arith_decode(cinfo, st)) { | 
|  | if ((m <<= 1) == 0x8000) { | 
|  | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | 
|  | entropy->ct = -1;			/* magnitude overflow */ | 
|  | return TRUE; | 
|  | } | 
|  | st += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | v = m; | 
|  | /* Figure F.24: Decoding the magnitude bit pattern of v */ | 
|  | st += 14; | 
|  | while (m >>= 1) | 
|  | if (arith_decode(cinfo, st)) v |= m; | 
|  | v += 1; if (sign) v = -v; | 
|  | /* Scale and output coefficient in natural (dezigzagged) order */ | 
|  | (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al); | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU decoding for DC successive approximation refinement scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | 
|  | unsigned char *st; | 
|  | int p1, blkn; | 
|  |  | 
|  | /* Process restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | process_restart(cinfo); | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | st = entropy->fixed_bin;	/* use fixed probability estimation */ | 
|  | p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */ | 
|  |  | 
|  | /* Outer loop handles each block in the MCU */ | 
|  |  | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | /* Encoded data is simply the next bit of the two's-complement DC value */ | 
|  | if (arith_decode(cinfo, st)) | 
|  | MCU_data[blkn][0][0] |= p1; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU decoding for AC successive approximation refinement scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | 
|  | JBLOCKROW block; | 
|  | JCOEFPTR thiscoef; | 
|  | unsigned char *st; | 
|  | int tbl, k, kex; | 
|  | int p1, m1; | 
|  |  | 
|  | /* Process restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | process_restart(cinfo); | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | if (entropy->ct == -1) return TRUE;	/* if error do nothing */ | 
|  |  | 
|  | /* There is always only one block per MCU */ | 
|  | block = MCU_data[0]; | 
|  | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | 
|  |  | 
|  | p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */ | 
|  | m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */ | 
|  |  | 
|  | /* Establish EOBx (previous stage end-of-block) index */ | 
|  | for (kex = cinfo->Se; kex > 0; kex--) | 
|  | if ((*block)[jpeg_natural_order[kex]]) break; | 
|  |  | 
|  | for (k = cinfo->Ss; k <= cinfo->Se; k++) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | if (k > kex) | 
|  | if (arith_decode(cinfo, st)) break;	/* EOB flag */ | 
|  | for (;;) { | 
|  | thiscoef = *block + jpeg_natural_order[k]; | 
|  | if (*thiscoef) {				/* previously nonzero coef */ | 
|  | if (arith_decode(cinfo, st + 2)) { | 
|  | if (*thiscoef < 0) | 
|  | *thiscoef += m1; | 
|  | else | 
|  | *thiscoef += p1; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */ | 
|  | if (arith_decode(cinfo, entropy->fixed_bin)) | 
|  | *thiscoef = m1; | 
|  | else | 
|  | *thiscoef = p1; | 
|  | break; | 
|  | } | 
|  | st += 3; k++; | 
|  | if (k > cinfo->Se) { | 
|  | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | 
|  | entropy->ct = -1;			/* spectral overflow */ | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Decode one MCU's worth of arithmetic-compressed coefficients. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | 
|  | jpeg_component_info * compptr; | 
|  | JBLOCKROW block; | 
|  | unsigned char *st; | 
|  | int blkn, ci, tbl, sign, k; | 
|  | int v, m; | 
|  |  | 
|  | /* Process restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | process_restart(cinfo); | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | if (entropy->ct == -1) return TRUE;	/* if error do nothing */ | 
|  |  | 
|  | /* Outer loop handles each block in the MCU */ | 
|  |  | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | block = MCU_data[blkn]; | 
|  | ci = cinfo->MCU_membership[blkn]; | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  |  | 
|  | /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ | 
|  |  | 
|  | tbl = compptr->dc_tbl_no; | 
|  |  | 
|  | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | 
|  | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | 
|  |  | 
|  | /* Figure F.19: Decode_DC_DIFF */ | 
|  | if (arith_decode(cinfo, st) == 0) | 
|  | entropy->dc_context[ci] = 0; | 
|  | else { | 
|  | /* Figure F.21: Decoding nonzero value v */ | 
|  | /* Figure F.22: Decoding the sign of v */ | 
|  | sign = arith_decode(cinfo, st + 1); | 
|  | st += 2; st += sign; | 
|  | /* Figure F.23: Decoding the magnitude category of v */ | 
|  | if ((m = arith_decode(cinfo, st)) != 0) { | 
|  | st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */ | 
|  | while (arith_decode(cinfo, st)) { | 
|  | if ((m <<= 1) == 0x8000) { | 
|  | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | 
|  | entropy->ct = -1;			/* magnitude overflow */ | 
|  | return TRUE; | 
|  | } | 
|  | st += 1; | 
|  | } | 
|  | } | 
|  | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | 
|  | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | 
|  | entropy->dc_context[ci] = 0;		   /* zero diff category */ | 
|  | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | 
|  | entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ | 
|  | else | 
|  | entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */ | 
|  | v = m; | 
|  | /* Figure F.24: Decoding the magnitude bit pattern of v */ | 
|  | st += 14; | 
|  | while (m >>= 1) | 
|  | if (arith_decode(cinfo, st)) v |= m; | 
|  | v += 1; if (sign) v = -v; | 
|  | entropy->last_dc_val[ci] += v; | 
|  | } | 
|  |  | 
|  | (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; | 
|  |  | 
|  | /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ | 
|  |  | 
|  | tbl = compptr->ac_tbl_no; | 
|  |  | 
|  | /* Figure F.20: Decode_AC_coefficients */ | 
|  | for (k = 1; k <= DCTSIZE2 - 1; k++) { | 
|  | st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
|  | if (arith_decode(cinfo, st)) break;	/* EOB flag */ | 
|  | while (arith_decode(cinfo, st + 1) == 0) { | 
|  | st += 3; k++; | 
|  | if (k > DCTSIZE2 - 1) { | 
|  | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | 
|  | entropy->ct = -1;			/* spectral overflow */ | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  | /* Figure F.21: Decoding nonzero value v */ | 
|  | /* Figure F.22: Decoding the sign of v */ | 
|  | sign = arith_decode(cinfo, entropy->fixed_bin); | 
|  | st += 2; | 
|  | /* Figure F.23: Decoding the magnitude category of v */ | 
|  | if ((m = arith_decode(cinfo, st)) != 0) { | 
|  | if (arith_decode(cinfo, st)) { | 
|  | m <<= 1; | 
|  | st = entropy->ac_stats[tbl] + | 
|  | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | 
|  | while (arith_decode(cinfo, st)) { | 
|  | if ((m <<= 1) == 0x8000) { | 
|  | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | 
|  | entropy->ct = -1;			/* magnitude overflow */ | 
|  | return TRUE; | 
|  | } | 
|  | st += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | v = m; | 
|  | /* Figure F.24: Decoding the magnitude bit pattern of v */ | 
|  | st += 14; | 
|  | while (m >>= 1) | 
|  | if (arith_decode(cinfo, st)) v |= m; | 
|  | v += 1; if (sign) v = -v; | 
|  | (*block)[jpeg_natural_order[k]] = (JCOEF) v; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for an arithmetic-compressed scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass (j_decompress_ptr cinfo) | 
|  | { | 
|  | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | 
|  | int ci, tbl; | 
|  | jpeg_component_info * compptr; | 
|  |  | 
|  | if (cinfo->progressive_mode) { | 
|  | /* Validate progressive scan parameters */ | 
|  | if (cinfo->Ss == 0) { | 
|  | if (cinfo->Se != 0) | 
|  | goto bad; | 
|  | } else { | 
|  | /* need not check Ss/Se < 0 since they came from unsigned bytes */ | 
|  | if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1) | 
|  | goto bad; | 
|  | /* AC scans may have only one component */ | 
|  | if (cinfo->comps_in_scan != 1) | 
|  | goto bad; | 
|  | } | 
|  | if (cinfo->Ah != 0) { | 
|  | /* Successive approximation refinement scan: must have Al = Ah-1. */ | 
|  | if (cinfo->Ah-1 != cinfo->Al) | 
|  | goto bad; | 
|  | } | 
|  | if (cinfo->Al > 13) {	/* need not check for < 0 */ | 
|  | bad: | 
|  | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | 
|  | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | 
|  | } | 
|  | /* Update progression status, and verify that scan order is legal. | 
|  | * Note that inter-scan inconsistencies are treated as warnings | 
|  | * not fatal errors ... not clear if this is right way to behave. | 
|  | */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; | 
|  | int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | 
|  | if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | 
|  | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | 
|  | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | 
|  | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | 
|  | if (cinfo->Ah != expected) | 
|  | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | 
|  | coef_bit_ptr[coefi] = cinfo->Al; | 
|  | } | 
|  | } | 
|  | /* Select MCU decoding routine */ | 
|  | if (cinfo->Ah == 0) { | 
|  | if (cinfo->Ss == 0) | 
|  | entropy->pub.decode_mcu = decode_mcu_DC_first; | 
|  | else | 
|  | entropy->pub.decode_mcu = decode_mcu_AC_first; | 
|  | } else { | 
|  | if (cinfo->Ss == 0) | 
|  | entropy->pub.decode_mcu = decode_mcu_DC_refine; | 
|  | else | 
|  | entropy->pub.decode_mcu = decode_mcu_AC_refine; | 
|  | } | 
|  | } else { | 
|  | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. | 
|  | * This ought to be an error condition, but we make it a warning. | 
|  | */ | 
|  | if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || | 
|  | (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1)) | 
|  | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); | 
|  | /* Select MCU decoding routine */ | 
|  | entropy->pub.decode_mcu = decode_mcu; | 
|  | } | 
|  |  | 
|  | /* Allocate & initialize requested statistics areas */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
|  | tbl = compptr->dc_tbl_no; | 
|  | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | 
|  | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | 
|  | if (entropy->dc_stats[tbl] == NULL) | 
|  | entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | 
|  | ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); | 
|  | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); | 
|  | /* Initialize DC predictions to 0 */ | 
|  | entropy->last_dc_val[ci] = 0; | 
|  | entropy->dc_context[ci] = 0; | 
|  | } | 
|  | if (! cinfo->progressive_mode || cinfo->Ss) { | 
|  | tbl = compptr->ac_tbl_no; | 
|  | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | 
|  | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | 
|  | if (entropy->ac_stats[tbl] == NULL) | 
|  | entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | 
|  | ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); | 
|  | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize arithmetic decoding variables */ | 
|  | entropy->c = 0; | 
|  | entropy->a = 0; | 
|  | entropy->ct = -16;	/* force reading 2 initial bytes to fill C */ | 
|  |  | 
|  | /* Initialize restart counter */ | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Module initialization routine for arithmetic entropy decoding. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_arith_decoder (j_decompress_ptr cinfo) | 
|  | { | 
|  | arith_entropy_ptr entropy; | 
|  | int i; | 
|  |  | 
|  | entropy = (arith_entropy_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(arith_entropy_decoder)); | 
|  | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; | 
|  | entropy->pub.start_pass = start_pass; | 
|  |  | 
|  | /* Mark tables unallocated */ | 
|  | for (i = 0; i < NUM_ARITH_TBLS; i++) { | 
|  | entropy->dc_stats[i] = NULL; | 
|  | entropy->ac_stats[i] = NULL; | 
|  | } | 
|  |  | 
|  | /* Initialize index for fixed probability estimation */ | 
|  | entropy->fixed_bin[0] = 113; | 
|  |  | 
|  | if (cinfo->progressive_mode) { | 
|  | /* Create progression status table */ | 
|  | int *coef_bit_ptr, ci; | 
|  | cinfo->coef_bits = (int (*)[DCTSIZE2]) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | cinfo->num_components*DCTSIZE2*SIZEOF(int)); | 
|  | coef_bit_ptr = & cinfo->coef_bits[0][0]; | 
|  | for (ci = 0; ci < cinfo->num_components; ci++) | 
|  | for (i = 0; i < DCTSIZE2; i++) | 
|  | *coef_bit_ptr++ = -1; | 
|  | } | 
|  | } |