|  | /* | 
|  | * transupp.c | 
|  | * | 
|  | * Copyright (C) 1997-2009, Thomas G. Lane, Guido Vollbeding. | 
|  | * Copyright (C) 2010, D. R. Commander. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains image transformation routines and other utility code | 
|  | * used by the jpegtran sample application.  These are NOT part of the core | 
|  | * JPEG library.  But we keep these routines separate from jpegtran.c to | 
|  | * ease the task of maintaining jpegtran-like programs that have other user | 
|  | * interfaces. | 
|  | */ | 
|  |  | 
|  | /* Although this file really shouldn't have access to the library internals, | 
|  | * it's helpful to let it call jround_up() and jcopy_block_row(). | 
|  | */ | 
|  | #define JPEG_INTERNALS | 
|  |  | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  | #include "transupp.h"		/* My own external interface */ | 
|  | #include "jpegcomp.h" | 
|  | #include <ctype.h>		/* to declare isdigit() */ | 
|  |  | 
|  |  | 
|  | #if JPEG_LIB_VERSION >= 70 | 
|  | #define dstinfo_min_DCT_h_scaled_size dstinfo->min_DCT_h_scaled_size | 
|  | #define dstinfo_min_DCT_v_scaled_size dstinfo->min_DCT_v_scaled_size | 
|  | #else | 
|  | #define dstinfo_min_DCT_h_scaled_size DCTSIZE | 
|  | #define dstinfo_min_DCT_v_scaled_size DCTSIZE | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #if TRANSFORMS_SUPPORTED | 
|  |  | 
|  | /* | 
|  | * Lossless image transformation routines.  These routines work on DCT | 
|  | * coefficient arrays and thus do not require any lossy decompression | 
|  | * or recompression of the image. | 
|  | * Thanks to Guido Vollbeding for the initial design and code of this feature, | 
|  | * and to Ben Jackson for introducing the cropping feature. | 
|  | * | 
|  | * Horizontal flipping is done in-place, using a single top-to-bottom | 
|  | * pass through the virtual source array.  It will thus be much the | 
|  | * fastest option for images larger than main memory. | 
|  | * | 
|  | * The other routines require a set of destination virtual arrays, so they | 
|  | * need twice as much memory as jpegtran normally does.  The destination | 
|  | * arrays are always written in normal scan order (top to bottom) because | 
|  | * the virtual array manager expects this.  The source arrays will be scanned | 
|  | * in the corresponding order, which means multiple passes through the source | 
|  | * arrays for most of the transforms.  That could result in much thrashing | 
|  | * if the image is larger than main memory. | 
|  | * | 
|  | * If cropping or trimming is involved, the destination arrays may be smaller | 
|  | * than the source arrays.  Note it is not possible to do horizontal flip | 
|  | * in-place when a nonzero Y crop offset is specified, since we'd have to move | 
|  | * data from one block row to another but the virtual array manager doesn't | 
|  | * guarantee we can touch more than one row at a time.  So in that case, | 
|  | * we have to use a separate destination array. | 
|  | * | 
|  | * Some notes about the operating environment of the individual transform | 
|  | * routines: | 
|  | * 1. Both the source and destination virtual arrays are allocated from the | 
|  | *    source JPEG object, and therefore should be manipulated by calling the | 
|  | *    source's memory manager. | 
|  | * 2. The destination's component count should be used.  It may be smaller | 
|  | *    than the source's when forcing to grayscale. | 
|  | * 3. Likewise the destination's sampling factors should be used.  When | 
|  | *    forcing to grayscale the destination's sampling factors will be all 1, | 
|  | *    and we may as well take that as the effective iMCU size. | 
|  | * 4. When "trim" is in effect, the destination's dimensions will be the | 
|  | *    trimmed values but the source's will be untrimmed. | 
|  | * 5. When "crop" is in effect, the destination's dimensions will be the | 
|  | *    cropped values but the source's will be uncropped.  Each transform | 
|  | *    routine is responsible for picking up source data starting at the | 
|  | *    correct X and Y offset for the crop region.  (The X and Y offsets | 
|  | *    passed to the transform routines are measured in iMCU blocks of the | 
|  | *    destination.) | 
|  | * 6. All the routines assume that the source and destination buffers are | 
|  | *    padded out to a full iMCU boundary.  This is true, although for the | 
|  | *    source buffer it is an undocumented property of jdcoefct.c. | 
|  | */ | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jvirt_barray_ptr *dst_coef_arrays) | 
|  | /* Crop.  This is only used when no rotate/flip is requested with the crop. */ | 
|  | { | 
|  | JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; | 
|  | int ci, offset_y; | 
|  | JBLOCKARRAY src_buffer, dst_buffer; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | /* We simply have to copy the right amount of data (the destination's | 
|  | * image size) starting at the given X and Y offsets in the source. | 
|  | */ | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
|  | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
|  | dst_blk_y += compptr->v_samp_factor) { | 
|  | dst_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | dst_blk_y + y_crop_blocks, | 
|  | (JDIMENSION) compptr->v_samp_factor, FALSE); | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, | 
|  | dst_buffer[offset_y], | 
|  | compptr->width_in_blocks); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays) | 
|  | /* Horizontal flip; done in-place, so no separate dest array is required. | 
|  | * NB: this only works when y_crop_offset is zero. | 
|  | */ | 
|  | { | 
|  | JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; | 
|  | int ci, k, offset_y; | 
|  | JBLOCKARRAY buffer; | 
|  | JCOEFPTR ptr1, ptr2; | 
|  | JCOEF temp1, temp2; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | /* Horizontal mirroring of DCT blocks is accomplished by swapping | 
|  | * pairs of blocks in-place.  Within a DCT block, we perform horizontal | 
|  | * mirroring by changing the signs of odd-numbered columns. | 
|  | * Partial iMCUs at the right edge are left untouched. | 
|  | */ | 
|  | MCU_cols = srcinfo->output_width / | 
|  | (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
|  |  | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | comp_width = MCU_cols * compptr->h_samp_factor; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | for (blk_y = 0; blk_y < compptr->height_in_blocks; | 
|  | blk_y += compptr->v_samp_factor) { | 
|  | buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | /* Do the mirroring */ | 
|  | for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { | 
|  | ptr1 = buffer[offset_y][blk_x]; | 
|  | ptr2 = buffer[offset_y][comp_width - blk_x - 1]; | 
|  | /* this unrolled loop doesn't need to know which row it's on... */ | 
|  | for (k = 0; k < DCTSIZE2; k += 2) { | 
|  | temp1 = *ptr1;	/* swap even column */ | 
|  | temp2 = *ptr2; | 
|  | *ptr1++ = temp2; | 
|  | *ptr2++ = temp1; | 
|  | temp1 = *ptr1;	/* swap odd column with sign change */ | 
|  | temp2 = *ptr2; | 
|  | *ptr1++ = -temp2; | 
|  | *ptr2++ = -temp1; | 
|  | } | 
|  | } | 
|  | if (x_crop_blocks > 0) { | 
|  | /* Now left-justify the portion of the data to be kept. | 
|  | * We can't use a single jcopy_block_row() call because that routine | 
|  | * depends on memcpy(), whose behavior is unspecified for overlapping | 
|  | * source and destination areas.  Sigh. | 
|  | */ | 
|  | for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { | 
|  | jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, | 
|  | buffer[offset_y] + blk_x, | 
|  | (JDIMENSION) 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jvirt_barray_ptr *dst_coef_arrays) | 
|  | /* Horizontal flip in general cropping case */ | 
|  | { | 
|  | JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; | 
|  | JDIMENSION x_crop_blocks, y_crop_blocks; | 
|  | int ci, k, offset_y; | 
|  | JBLOCKARRAY src_buffer, dst_buffer; | 
|  | JBLOCKROW src_row_ptr, dst_row_ptr; | 
|  | JCOEFPTR src_ptr, dst_ptr; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | /* Here we must output into a separate array because we can't touch | 
|  | * different rows of a single virtual array simultaneously.  Otherwise, | 
|  | * this is essentially the same as the routine above. | 
|  | */ | 
|  | MCU_cols = srcinfo->output_width / | 
|  | (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
|  |  | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | comp_width = MCU_cols * compptr->h_samp_factor; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
|  | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
|  | dst_blk_y += compptr->v_samp_factor) { | 
|  | dst_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | dst_blk_y + y_crop_blocks, | 
|  | (JDIMENSION) compptr->v_samp_factor, FALSE); | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | dst_row_ptr = dst_buffer[offset_y]; | 
|  | src_row_ptr = src_buffer[offset_y]; | 
|  | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { | 
|  | if (x_crop_blocks + dst_blk_x < comp_width) { | 
|  | /* Do the mirrorable blocks */ | 
|  | dst_ptr = dst_row_ptr[dst_blk_x]; | 
|  | src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; | 
|  | /* this unrolled loop doesn't need to know which row it's on... */ | 
|  | for (k = 0; k < DCTSIZE2; k += 2) { | 
|  | *dst_ptr++ = *src_ptr++;	 /* copy even column */ | 
|  | *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */ | 
|  | } | 
|  | } else { | 
|  | /* Copy last partial block(s) verbatim */ | 
|  | jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, | 
|  | dst_row_ptr + dst_blk_x, | 
|  | (JDIMENSION) 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jvirt_barray_ptr *dst_coef_arrays) | 
|  | /* Vertical flip */ | 
|  | { | 
|  | JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; | 
|  | JDIMENSION x_crop_blocks, y_crop_blocks; | 
|  | int ci, i, j, offset_y; | 
|  | JBLOCKARRAY src_buffer, dst_buffer; | 
|  | JBLOCKROW src_row_ptr, dst_row_ptr; | 
|  | JCOEFPTR src_ptr, dst_ptr; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | /* We output into a separate array because we can't touch different | 
|  | * rows of the source virtual array simultaneously.  Otherwise, this | 
|  | * is a pretty straightforward analog of horizontal flip. | 
|  | * Within a DCT block, vertical mirroring is done by changing the signs | 
|  | * of odd-numbered rows. | 
|  | * Partial iMCUs at the bottom edge are copied verbatim. | 
|  | */ | 
|  | MCU_rows = srcinfo->output_height / | 
|  | (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); | 
|  |  | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | comp_height = MCU_rows * compptr->v_samp_factor; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
|  | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
|  | dst_blk_y += compptr->v_samp_factor) { | 
|  | dst_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | if (y_crop_blocks + dst_blk_y < comp_height) { | 
|  | /* Row is within the mirrorable area. */ | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | comp_height - y_crop_blocks - dst_blk_y - | 
|  | (JDIMENSION) compptr->v_samp_factor, | 
|  | (JDIMENSION) compptr->v_samp_factor, FALSE); | 
|  | } else { | 
|  | /* Bottom-edge blocks will be copied verbatim. */ | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | dst_blk_y + y_crop_blocks, | 
|  | (JDIMENSION) compptr->v_samp_factor, FALSE); | 
|  | } | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | if (y_crop_blocks + dst_blk_y < comp_height) { | 
|  | /* Row is within the mirrorable area. */ | 
|  | dst_row_ptr = dst_buffer[offset_y]; | 
|  | src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; | 
|  | src_row_ptr += x_crop_blocks; | 
|  | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
|  | dst_blk_x++) { | 
|  | dst_ptr = dst_row_ptr[dst_blk_x]; | 
|  | src_ptr = src_row_ptr[dst_blk_x]; | 
|  | for (i = 0; i < DCTSIZE; i += 2) { | 
|  | /* copy even row */ | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | *dst_ptr++ = *src_ptr++; | 
|  | /* copy odd row with sign change */ | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | *dst_ptr++ = - *src_ptr++; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Just copy row verbatim. */ | 
|  | jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, | 
|  | dst_buffer[offset_y], | 
|  | compptr->width_in_blocks); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jvirt_barray_ptr *dst_coef_arrays) | 
|  | /* Transpose source into destination */ | 
|  | { | 
|  | JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; | 
|  | int ci, i, j, offset_x, offset_y; | 
|  | JBLOCKARRAY src_buffer, dst_buffer; | 
|  | JCOEFPTR src_ptr, dst_ptr; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | /* Transposing pixels within a block just requires transposing the | 
|  | * DCT coefficients. | 
|  | * Partial iMCUs at the edges require no special treatment; we simply | 
|  | * process all the available DCT blocks for every component. | 
|  | */ | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
|  | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
|  | dst_blk_y += compptr->v_samp_factor) { | 
|  | dst_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
|  | dst_blk_x += compptr->h_samp_factor) { | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | dst_blk_x + x_crop_blocks, | 
|  | (JDIMENSION) compptr->h_samp_factor, FALSE); | 
|  | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { | 
|  | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; | 
|  | src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; | 
|  | for (i = 0; i < DCTSIZE; i++) | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jvirt_barray_ptr *dst_coef_arrays) | 
|  | /* 90 degree rotation is equivalent to | 
|  | *   1. Transposing the image; | 
|  | *   2. Horizontal mirroring. | 
|  | * These two steps are merged into a single processing routine. | 
|  | */ | 
|  | { | 
|  | JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; | 
|  | JDIMENSION x_crop_blocks, y_crop_blocks; | 
|  | int ci, i, j, offset_x, offset_y; | 
|  | JBLOCKARRAY src_buffer, dst_buffer; | 
|  | JCOEFPTR src_ptr, dst_ptr; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | /* Because of the horizontal mirror step, we can't process partial iMCUs | 
|  | * at the (output) right edge properly.  They just get transposed and | 
|  | * not mirrored. | 
|  | */ | 
|  | MCU_cols = srcinfo->output_height / | 
|  | (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
|  |  | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | comp_width = MCU_cols * compptr->h_samp_factor; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
|  | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
|  | dst_blk_y += compptr->v_samp_factor) { | 
|  | dst_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
|  | dst_blk_x += compptr->h_samp_factor) { | 
|  | if (x_crop_blocks + dst_blk_x < comp_width) { | 
|  | /* Block is within the mirrorable area. */ | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | comp_width - x_crop_blocks - dst_blk_x - | 
|  | (JDIMENSION) compptr->h_samp_factor, | 
|  | (JDIMENSION) compptr->h_samp_factor, FALSE); | 
|  | } else { | 
|  | /* Edge blocks are transposed but not mirrored. */ | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | dst_blk_x + x_crop_blocks, | 
|  | (JDIMENSION) compptr->h_samp_factor, FALSE); | 
|  | } | 
|  | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { | 
|  | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; | 
|  | if (x_crop_blocks + dst_blk_x < comp_width) { | 
|  | /* Block is within the mirrorable area. */ | 
|  | src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] | 
|  | [dst_blk_y + offset_y + y_crop_blocks]; | 
|  | for (i = 0; i < DCTSIZE; i++) { | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | i++; | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } else { | 
|  | /* Edge blocks are transposed but not mirrored. */ | 
|  | src_ptr = src_buffer[offset_x] | 
|  | [dst_blk_y + offset_y + y_crop_blocks]; | 
|  | for (i = 0; i < DCTSIZE; i++) | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jvirt_barray_ptr *dst_coef_arrays) | 
|  | /* 270 degree rotation is equivalent to | 
|  | *   1. Horizontal mirroring; | 
|  | *   2. Transposing the image. | 
|  | * These two steps are merged into a single processing routine. | 
|  | */ | 
|  | { | 
|  | JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; | 
|  | JDIMENSION x_crop_blocks, y_crop_blocks; | 
|  | int ci, i, j, offset_x, offset_y; | 
|  | JBLOCKARRAY src_buffer, dst_buffer; | 
|  | JCOEFPTR src_ptr, dst_ptr; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | /* Because of the horizontal mirror step, we can't process partial iMCUs | 
|  | * at the (output) bottom edge properly.  They just get transposed and | 
|  | * not mirrored. | 
|  | */ | 
|  | MCU_rows = srcinfo->output_width / | 
|  | (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); | 
|  |  | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | comp_height = MCU_rows * compptr->v_samp_factor; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
|  | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
|  | dst_blk_y += compptr->v_samp_factor) { | 
|  | dst_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
|  | dst_blk_x += compptr->h_samp_factor) { | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | dst_blk_x + x_crop_blocks, | 
|  | (JDIMENSION) compptr->h_samp_factor, FALSE); | 
|  | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { | 
|  | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; | 
|  | if (y_crop_blocks + dst_blk_y < comp_height) { | 
|  | /* Block is within the mirrorable area. */ | 
|  | src_ptr = src_buffer[offset_x] | 
|  | [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; | 
|  | for (i = 0; i < DCTSIZE; i++) { | 
|  | for (j = 0; j < DCTSIZE; j++) { | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | j++; | 
|  | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Edge blocks are transposed but not mirrored. */ | 
|  | src_ptr = src_buffer[offset_x] | 
|  | [dst_blk_y + offset_y + y_crop_blocks]; | 
|  | for (i = 0; i < DCTSIZE; i++) | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jvirt_barray_ptr *dst_coef_arrays) | 
|  | /* 180 degree rotation is equivalent to | 
|  | *   1. Vertical mirroring; | 
|  | *   2. Horizontal mirroring. | 
|  | * These two steps are merged into a single processing routine. | 
|  | */ | 
|  | { | 
|  | JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; | 
|  | JDIMENSION x_crop_blocks, y_crop_blocks; | 
|  | int ci, i, j, offset_y; | 
|  | JBLOCKARRAY src_buffer, dst_buffer; | 
|  | JBLOCKROW src_row_ptr, dst_row_ptr; | 
|  | JCOEFPTR src_ptr, dst_ptr; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | MCU_cols = srcinfo->output_width / | 
|  | (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
|  | MCU_rows = srcinfo->output_height / | 
|  | (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); | 
|  |  | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | comp_width = MCU_cols * compptr->h_samp_factor; | 
|  | comp_height = MCU_rows * compptr->v_samp_factor; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
|  | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
|  | dst_blk_y += compptr->v_samp_factor) { | 
|  | dst_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | if (y_crop_blocks + dst_blk_y < comp_height) { | 
|  | /* Row is within the vertically mirrorable area. */ | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | comp_height - y_crop_blocks - dst_blk_y - | 
|  | (JDIMENSION) compptr->v_samp_factor, | 
|  | (JDIMENSION) compptr->v_samp_factor, FALSE); | 
|  | } else { | 
|  | /* Bottom-edge rows are only mirrored horizontally. */ | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | dst_blk_y + y_crop_blocks, | 
|  | (JDIMENSION) compptr->v_samp_factor, FALSE); | 
|  | } | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | dst_row_ptr = dst_buffer[offset_y]; | 
|  | if (y_crop_blocks + dst_blk_y < comp_height) { | 
|  | /* Row is within the mirrorable area. */ | 
|  | src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; | 
|  | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { | 
|  | dst_ptr = dst_row_ptr[dst_blk_x]; | 
|  | if (x_crop_blocks + dst_blk_x < comp_width) { | 
|  | /* Process the blocks that can be mirrored both ways. */ | 
|  | src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; | 
|  | for (i = 0; i < DCTSIZE; i += 2) { | 
|  | /* For even row, negate every odd column. */ | 
|  | for (j = 0; j < DCTSIZE; j += 2) { | 
|  | *dst_ptr++ = *src_ptr++; | 
|  | *dst_ptr++ = - *src_ptr++; | 
|  | } | 
|  | /* For odd row, negate every even column. */ | 
|  | for (j = 0; j < DCTSIZE; j += 2) { | 
|  | *dst_ptr++ = - *src_ptr++; | 
|  | *dst_ptr++ = *src_ptr++; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Any remaining right-edge blocks are only mirrored vertically. */ | 
|  | src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; | 
|  | for (i = 0; i < DCTSIZE; i += 2) { | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | *dst_ptr++ = *src_ptr++; | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | *dst_ptr++ = - *src_ptr++; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Remaining rows are just mirrored horizontally. */ | 
|  | src_row_ptr = src_buffer[offset_y]; | 
|  | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { | 
|  | if (x_crop_blocks + dst_blk_x < comp_width) { | 
|  | /* Process the blocks that can be mirrored. */ | 
|  | dst_ptr = dst_row_ptr[dst_blk_x]; | 
|  | src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; | 
|  | for (i = 0; i < DCTSIZE2; i += 2) { | 
|  | *dst_ptr++ = *src_ptr++; | 
|  | *dst_ptr++ = - *src_ptr++; | 
|  | } | 
|  | } else { | 
|  | /* Any remaining right-edge blocks are only copied. */ | 
|  | jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, | 
|  | dst_row_ptr + dst_blk_x, | 
|  | (JDIMENSION) 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jvirt_barray_ptr *dst_coef_arrays) | 
|  | /* Transverse transpose is equivalent to | 
|  | *   1. 180 degree rotation; | 
|  | *   2. Transposition; | 
|  | * or | 
|  | *   1. Horizontal mirroring; | 
|  | *   2. Transposition; | 
|  | *   3. Horizontal mirroring. | 
|  | * These steps are merged into a single processing routine. | 
|  | */ | 
|  | { | 
|  | JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; | 
|  | JDIMENSION x_crop_blocks, y_crop_blocks; | 
|  | int ci, i, j, offset_x, offset_y; | 
|  | JBLOCKARRAY src_buffer, dst_buffer; | 
|  | JCOEFPTR src_ptr, dst_ptr; | 
|  | jpeg_component_info *compptr; | 
|  |  | 
|  | MCU_cols = srcinfo->output_height / | 
|  | (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
|  | MCU_rows = srcinfo->output_width / | 
|  | (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); | 
|  |  | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | comp_width = MCU_cols * compptr->h_samp_factor; | 
|  | comp_height = MCU_rows * compptr->v_samp_factor; | 
|  | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
|  | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
|  | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
|  | dst_blk_y += compptr->v_samp_factor) { | 
|  | dst_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
|  | (JDIMENSION) compptr->v_samp_factor, TRUE); | 
|  | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
|  | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
|  | dst_blk_x += compptr->h_samp_factor) { | 
|  | if (x_crop_blocks + dst_blk_x < comp_width) { | 
|  | /* Block is within the mirrorable area. */ | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | comp_width - x_crop_blocks - dst_blk_x - | 
|  | (JDIMENSION) compptr->h_samp_factor, | 
|  | (JDIMENSION) compptr->h_samp_factor, FALSE); | 
|  | } else { | 
|  | src_buffer = (*srcinfo->mem->access_virt_barray) | 
|  | ((j_common_ptr) srcinfo, src_coef_arrays[ci], | 
|  | dst_blk_x + x_crop_blocks, | 
|  | (JDIMENSION) compptr->h_samp_factor, FALSE); | 
|  | } | 
|  | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { | 
|  | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; | 
|  | if (y_crop_blocks + dst_blk_y < comp_height) { | 
|  | if (x_crop_blocks + dst_blk_x < comp_width) { | 
|  | /* Block is within the mirrorable area. */ | 
|  | src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] | 
|  | [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; | 
|  | for (i = 0; i < DCTSIZE; i++) { | 
|  | for (j = 0; j < DCTSIZE; j++) { | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | j++; | 
|  | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | i++; | 
|  | for (j = 0; j < DCTSIZE; j++) { | 
|  | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; | 
|  | j++; | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Right-edge blocks are mirrored in y only */ | 
|  | src_ptr = src_buffer[offset_x] | 
|  | [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; | 
|  | for (i = 0; i < DCTSIZE; i++) { | 
|  | for (j = 0; j < DCTSIZE; j++) { | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | j++; | 
|  | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (x_crop_blocks + dst_blk_x < comp_width) { | 
|  | /* Bottom-edge blocks are mirrored in x only */ | 
|  | src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] | 
|  | [dst_blk_y + offset_y + y_crop_blocks]; | 
|  | for (i = 0; i < DCTSIZE; i++) { | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | i++; | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } else { | 
|  | /* At lower right corner, just transpose, no mirroring */ | 
|  | src_ptr = src_buffer[offset_x] | 
|  | [dst_blk_y + offset_y + y_crop_blocks]; | 
|  | for (i = 0; i < DCTSIZE; i++) | 
|  | for (j = 0; j < DCTSIZE; j++) | 
|  | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. | 
|  | * Returns TRUE if valid integer found, FALSE if not. | 
|  | * *strptr is advanced over the digit string, and *result is set to its value. | 
|  | */ | 
|  |  | 
|  | LOCAL(boolean) | 
|  | jt_read_integer (const char ** strptr, JDIMENSION * result) | 
|  | { | 
|  | const char * ptr = *strptr; | 
|  | JDIMENSION val = 0; | 
|  |  | 
|  | for (; isdigit(*ptr); ptr++) { | 
|  | val = val * 10 + (JDIMENSION) (*ptr - '0'); | 
|  | } | 
|  | *result = val; | 
|  | if (ptr == *strptr) | 
|  | return FALSE;		/* oops, no digits */ | 
|  | *strptr = ptr; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Parse a crop specification (written in X11 geometry style). | 
|  | * The routine returns TRUE if the spec string is valid, FALSE if not. | 
|  | * | 
|  | * The crop spec string should have the format | 
|  | *	<width>x<height>{+-}<xoffset>{+-}<yoffset> | 
|  | * where width, height, xoffset, and yoffset are unsigned integers. | 
|  | * Each of the elements can be omitted to indicate a default value. | 
|  | * (A weakness of this style is that it is not possible to omit xoffset | 
|  | * while specifying yoffset, since they look alike.) | 
|  | * | 
|  | * This code is loosely based on XParseGeometry from the X11 distribution. | 
|  | */ | 
|  |  | 
|  | GLOBAL(boolean) | 
|  | jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec) | 
|  | { | 
|  | info->crop = FALSE; | 
|  | info->crop_width_set = JCROP_UNSET; | 
|  | info->crop_height_set = JCROP_UNSET; | 
|  | info->crop_xoffset_set = JCROP_UNSET; | 
|  | info->crop_yoffset_set = JCROP_UNSET; | 
|  |  | 
|  | if (isdigit(*spec)) { | 
|  | /* fetch width */ | 
|  | if (! jt_read_integer(&spec, &info->crop_width)) | 
|  | return FALSE; | 
|  | info->crop_width_set = JCROP_POS; | 
|  | } | 
|  | if (*spec == 'x' || *spec == 'X') { | 
|  | /* fetch height */ | 
|  | spec++; | 
|  | if (! jt_read_integer(&spec, &info->crop_height)) | 
|  | return FALSE; | 
|  | info->crop_height_set = JCROP_POS; | 
|  | } | 
|  | if (*spec == '+' || *spec == '-') { | 
|  | /* fetch xoffset */ | 
|  | info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; | 
|  | spec++; | 
|  | if (! jt_read_integer(&spec, &info->crop_xoffset)) | 
|  | return FALSE; | 
|  | } | 
|  | if (*spec == '+' || *spec == '-') { | 
|  | /* fetch yoffset */ | 
|  | info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; | 
|  | spec++; | 
|  | if (! jt_read_integer(&spec, &info->crop_yoffset)) | 
|  | return FALSE; | 
|  | } | 
|  | /* We had better have gotten to the end of the string. */ | 
|  | if (*spec != '\0') | 
|  | return FALSE; | 
|  | info->crop = TRUE; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Trim off any partial iMCUs on the indicated destination edge */ | 
|  |  | 
|  | LOCAL(void) | 
|  | trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width) | 
|  | { | 
|  | JDIMENSION MCU_cols; | 
|  |  | 
|  | MCU_cols = info->output_width / info->iMCU_sample_width; | 
|  | if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == | 
|  | full_width / info->iMCU_sample_width) | 
|  | info->output_width = MCU_cols * info->iMCU_sample_width; | 
|  | } | 
|  |  | 
|  | LOCAL(void) | 
|  | trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height) | 
|  | { | 
|  | JDIMENSION MCU_rows; | 
|  |  | 
|  | MCU_rows = info->output_height / info->iMCU_sample_height; | 
|  | if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == | 
|  | full_height / info->iMCU_sample_height) | 
|  | info->output_height = MCU_rows * info->iMCU_sample_height; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Request any required workspace. | 
|  | * | 
|  | * This routine figures out the size that the output image will be | 
|  | * (which implies that all the transform parameters must be set before | 
|  | * it is called). | 
|  | * | 
|  | * We allocate the workspace virtual arrays from the source decompression | 
|  | * object, so that all the arrays (both the original data and the workspace) | 
|  | * will be taken into account while making memory management decisions. | 
|  | * Hence, this routine must be called after jpeg_read_header (which reads | 
|  | * the image dimensions) and before jpeg_read_coefficients (which realizes | 
|  | * the source's virtual arrays). | 
|  | * | 
|  | * This function returns FALSE right away if -perfect is given | 
|  | * and transformation is not perfect.  Otherwise returns TRUE. | 
|  | */ | 
|  |  | 
|  | GLOBAL(boolean) | 
|  | jtransform_request_workspace (j_decompress_ptr srcinfo, | 
|  | jpeg_transform_info *info) | 
|  | { | 
|  | jvirt_barray_ptr *coef_arrays; | 
|  | boolean need_workspace, transpose_it; | 
|  | jpeg_component_info *compptr; | 
|  | JDIMENSION xoffset, yoffset; | 
|  | JDIMENSION width_in_iMCUs, height_in_iMCUs; | 
|  | JDIMENSION width_in_blocks, height_in_blocks; | 
|  | int ci, h_samp_factor, v_samp_factor; | 
|  |  | 
|  | /* Determine number of components in output image */ | 
|  | if (info->force_grayscale && | 
|  | srcinfo->jpeg_color_space == JCS_YCbCr && | 
|  | srcinfo->num_components == 3) | 
|  | /* We'll only process the first component */ | 
|  | info->num_components = 1; | 
|  | else | 
|  | /* Process all the components */ | 
|  | info->num_components = srcinfo->num_components; | 
|  |  | 
|  | /* Compute output image dimensions and related values. */ | 
|  | #if JPEG_LIB_VERSION >= 80 | 
|  | jpeg_core_output_dimensions(srcinfo); | 
|  | #else | 
|  | srcinfo->output_width = srcinfo->image_width; | 
|  | srcinfo->output_height = srcinfo->image_height; | 
|  | #endif | 
|  |  | 
|  | /* Return right away if -perfect is given and transformation is not perfect. | 
|  | */ | 
|  | if (info->perfect) { | 
|  | if (info->num_components == 1) { | 
|  | if (!jtransform_perfect_transform(srcinfo->output_width, | 
|  | srcinfo->output_height, | 
|  | srcinfo->_min_DCT_h_scaled_size, | 
|  | srcinfo->_min_DCT_v_scaled_size, | 
|  | info->transform)) | 
|  | return FALSE; | 
|  | } else { | 
|  | if (!jtransform_perfect_transform(srcinfo->output_width, | 
|  | srcinfo->output_height, | 
|  | srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size, | 
|  | srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size, | 
|  | info->transform)) | 
|  | return FALSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there is only one output component, force the iMCU size to be 1; | 
|  | * else use the source iMCU size.  (This allows us to do the right thing | 
|  | * when reducing color to grayscale, and also provides a handy way of | 
|  | * cleaning up "funny" grayscale images whose sampling factors are not 1x1.) | 
|  | */ | 
|  | switch (info->transform) { | 
|  | case JXFORM_TRANSPOSE: | 
|  | case JXFORM_TRANSVERSE: | 
|  | case JXFORM_ROT_90: | 
|  | case JXFORM_ROT_270: | 
|  | info->output_width = srcinfo->output_height; | 
|  | info->output_height = srcinfo->output_width; | 
|  | if (info->num_components == 1) { | 
|  | info->iMCU_sample_width = srcinfo->_min_DCT_v_scaled_size; | 
|  | info->iMCU_sample_height = srcinfo->_min_DCT_h_scaled_size; | 
|  | } else { | 
|  | info->iMCU_sample_width = | 
|  | srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size; | 
|  | info->iMCU_sample_height = | 
|  | srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | info->output_width = srcinfo->output_width; | 
|  | info->output_height = srcinfo->output_height; | 
|  | if (info->num_components == 1) { | 
|  | info->iMCU_sample_width = srcinfo->_min_DCT_h_scaled_size; | 
|  | info->iMCU_sample_height = srcinfo->_min_DCT_v_scaled_size; | 
|  | } else { | 
|  | info->iMCU_sample_width = | 
|  | srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size; | 
|  | info->iMCU_sample_height = | 
|  | srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If cropping has been requested, compute the crop area's position and | 
|  | * dimensions, ensuring that its upper left corner falls at an iMCU boundary. | 
|  | */ | 
|  | if (info->crop) { | 
|  | /* Insert default values for unset crop parameters */ | 
|  | if (info->crop_xoffset_set == JCROP_UNSET) | 
|  | info->crop_xoffset = 0;	/* default to +0 */ | 
|  | if (info->crop_yoffset_set == JCROP_UNSET) | 
|  | info->crop_yoffset = 0;	/* default to +0 */ | 
|  | if (info->crop_xoffset >= info->output_width || | 
|  | info->crop_yoffset >= info->output_height) | 
|  | ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); | 
|  | if (info->crop_width_set == JCROP_UNSET) | 
|  | info->crop_width = info->output_width - info->crop_xoffset; | 
|  | if (info->crop_height_set == JCROP_UNSET) | 
|  | info->crop_height = info->output_height - info->crop_yoffset; | 
|  | /* Ensure parameters are valid */ | 
|  | if (info->crop_width <= 0 || info->crop_width > info->output_width || | 
|  | info->crop_height <= 0 || info->crop_height > info->output_height || | 
|  | info->crop_xoffset > info->output_width - info->crop_width || | 
|  | info->crop_yoffset > info->output_height - info->crop_height) | 
|  | ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); | 
|  | /* Convert negative crop offsets into regular offsets */ | 
|  | if (info->crop_xoffset_set == JCROP_NEG) | 
|  | xoffset = info->output_width - info->crop_width - info->crop_xoffset; | 
|  | else | 
|  | xoffset = info->crop_xoffset; | 
|  | if (info->crop_yoffset_set == JCROP_NEG) | 
|  | yoffset = info->output_height - info->crop_height - info->crop_yoffset; | 
|  | else | 
|  | yoffset = info->crop_yoffset; | 
|  | /* Now adjust so that upper left corner falls at an iMCU boundary */ | 
|  | info->output_width = | 
|  | info->crop_width + (xoffset % info->iMCU_sample_width); | 
|  | info->output_height = | 
|  | info->crop_height + (yoffset % info->iMCU_sample_height); | 
|  | /* Save x/y offsets measured in iMCUs */ | 
|  | info->x_crop_offset = xoffset / info->iMCU_sample_width; | 
|  | info->y_crop_offset = yoffset / info->iMCU_sample_height; | 
|  | } else { | 
|  | info->x_crop_offset = 0; | 
|  | info->y_crop_offset = 0; | 
|  | } | 
|  |  | 
|  | /* Figure out whether we need workspace arrays, | 
|  | * and if so whether they are transposed relative to the source. | 
|  | */ | 
|  | need_workspace = FALSE; | 
|  | transpose_it = FALSE; | 
|  | switch (info->transform) { | 
|  | case JXFORM_NONE: | 
|  | if (info->x_crop_offset != 0 || info->y_crop_offset != 0) | 
|  | need_workspace = TRUE; | 
|  | /* No workspace needed if neither cropping nor transforming */ | 
|  | break; | 
|  | case JXFORM_FLIP_H: | 
|  | if (info->trim) | 
|  | trim_right_edge(info, srcinfo->output_width); | 
|  | if (info->y_crop_offset != 0 || info->slow_hflip) | 
|  | need_workspace = TRUE; | 
|  | /* do_flip_h_no_crop doesn't need a workspace array */ | 
|  | break; | 
|  | case JXFORM_FLIP_V: | 
|  | if (info->trim) | 
|  | trim_bottom_edge(info, srcinfo->output_height); | 
|  | /* Need workspace arrays having same dimensions as source image. */ | 
|  | need_workspace = TRUE; | 
|  | break; | 
|  | case JXFORM_TRANSPOSE: | 
|  | /* transpose does NOT have to trim anything */ | 
|  | /* Need workspace arrays having transposed dimensions. */ | 
|  | need_workspace = TRUE; | 
|  | transpose_it = TRUE; | 
|  | break; | 
|  | case JXFORM_TRANSVERSE: | 
|  | if (info->trim) { | 
|  | trim_right_edge(info, srcinfo->output_height); | 
|  | trim_bottom_edge(info, srcinfo->output_width); | 
|  | } | 
|  | /* Need workspace arrays having transposed dimensions. */ | 
|  | need_workspace = TRUE; | 
|  | transpose_it = TRUE; | 
|  | break; | 
|  | case JXFORM_ROT_90: | 
|  | if (info->trim) | 
|  | trim_right_edge(info, srcinfo->output_height); | 
|  | /* Need workspace arrays having transposed dimensions. */ | 
|  | need_workspace = TRUE; | 
|  | transpose_it = TRUE; | 
|  | break; | 
|  | case JXFORM_ROT_180: | 
|  | if (info->trim) { | 
|  | trim_right_edge(info, srcinfo->output_width); | 
|  | trim_bottom_edge(info, srcinfo->output_height); | 
|  | } | 
|  | /* Need workspace arrays having same dimensions as source image. */ | 
|  | need_workspace = TRUE; | 
|  | break; | 
|  | case JXFORM_ROT_270: | 
|  | if (info->trim) | 
|  | trim_bottom_edge(info, srcinfo->output_width); | 
|  | /* Need workspace arrays having transposed dimensions. */ | 
|  | need_workspace = TRUE; | 
|  | transpose_it = TRUE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Allocate workspace if needed. | 
|  | * Note that we allocate arrays padded out to the next iMCU boundary, | 
|  | * so that transform routines need not worry about missing edge blocks. | 
|  | */ | 
|  | if (need_workspace) { | 
|  | coef_arrays = (jvirt_barray_ptr *) | 
|  | (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, | 
|  | SIZEOF(jvirt_barray_ptr) * info->num_components); | 
|  | width_in_iMCUs = (JDIMENSION) | 
|  | jdiv_round_up((long) info->output_width, | 
|  | (long) info->iMCU_sample_width); | 
|  | height_in_iMCUs = (JDIMENSION) | 
|  | jdiv_round_up((long) info->output_height, | 
|  | (long) info->iMCU_sample_height); | 
|  | for (ci = 0; ci < info->num_components; ci++) { | 
|  | compptr = srcinfo->comp_info + ci; | 
|  | if (info->num_components == 1) { | 
|  | /* we're going to force samp factors to 1x1 in this case */ | 
|  | h_samp_factor = v_samp_factor = 1; | 
|  | } else if (transpose_it) { | 
|  | h_samp_factor = compptr->v_samp_factor; | 
|  | v_samp_factor = compptr->h_samp_factor; | 
|  | } else { | 
|  | h_samp_factor = compptr->h_samp_factor; | 
|  | v_samp_factor = compptr->v_samp_factor; | 
|  | } | 
|  | width_in_blocks = width_in_iMCUs * h_samp_factor; | 
|  | height_in_blocks = height_in_iMCUs * v_samp_factor; | 
|  | coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) | 
|  | ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, | 
|  | width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor); | 
|  | } | 
|  | info->workspace_coef_arrays = coef_arrays; | 
|  | } else | 
|  | info->workspace_coef_arrays = NULL; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Transpose destination image parameters */ | 
|  |  | 
|  | LOCAL(void) | 
|  | transpose_critical_parameters (j_compress_ptr dstinfo) | 
|  | { | 
|  | int tblno, i, j, ci, itemp; | 
|  | jpeg_component_info *compptr; | 
|  | JQUANT_TBL *qtblptr; | 
|  | JDIMENSION jtemp; | 
|  | UINT16 qtemp; | 
|  |  | 
|  | /* Transpose image dimensions */ | 
|  | jtemp = dstinfo->image_width; | 
|  | dstinfo->image_width = dstinfo->image_height; | 
|  | dstinfo->image_height = jtemp; | 
|  | #if JPEG_LIB_VERSION >= 70 | 
|  | itemp = dstinfo->min_DCT_h_scaled_size; | 
|  | dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size; | 
|  | dstinfo->min_DCT_v_scaled_size = itemp; | 
|  | #endif | 
|  |  | 
|  | /* Transpose sampling factors */ | 
|  | for (ci = 0; ci < dstinfo->num_components; ci++) { | 
|  | compptr = dstinfo->comp_info + ci; | 
|  | itemp = compptr->h_samp_factor; | 
|  | compptr->h_samp_factor = compptr->v_samp_factor; | 
|  | compptr->v_samp_factor = itemp; | 
|  | } | 
|  |  | 
|  | /* Transpose quantization tables */ | 
|  | for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { | 
|  | qtblptr = dstinfo->quant_tbl_ptrs[tblno]; | 
|  | if (qtblptr != NULL) { | 
|  | for (i = 0; i < DCTSIZE; i++) { | 
|  | for (j = 0; j < i; j++) { | 
|  | qtemp = qtblptr->quantval[i*DCTSIZE+j]; | 
|  | qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; | 
|  | qtblptr->quantval[j*DCTSIZE+i] = qtemp; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Adjust Exif image parameters. | 
|  | * | 
|  | * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | adjust_exif_parameters (JOCTET FAR * data, unsigned int length, | 
|  | JDIMENSION new_width, JDIMENSION new_height) | 
|  | { | 
|  | boolean is_motorola; /* Flag for byte order */ | 
|  | unsigned int number_of_tags, tagnum; | 
|  | unsigned int firstoffset, offset; | 
|  | JDIMENSION new_value; | 
|  |  | 
|  | if (length < 12) return; /* Length of an IFD entry */ | 
|  |  | 
|  | /* Discover byte order */ | 
|  | if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49) | 
|  | is_motorola = FALSE; | 
|  | else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D) | 
|  | is_motorola = TRUE; | 
|  | else | 
|  | return; | 
|  |  | 
|  | /* Check Tag Mark */ | 
|  | if (is_motorola) { | 
|  | if (GETJOCTET(data[2]) != 0) return; | 
|  | if (GETJOCTET(data[3]) != 0x2A) return; | 
|  | } else { | 
|  | if (GETJOCTET(data[3]) != 0) return; | 
|  | if (GETJOCTET(data[2]) != 0x2A) return; | 
|  | } | 
|  |  | 
|  | /* Get first IFD offset (offset to IFD0) */ | 
|  | if (is_motorola) { | 
|  | if (GETJOCTET(data[4]) != 0) return; | 
|  | if (GETJOCTET(data[5]) != 0) return; | 
|  | firstoffset = GETJOCTET(data[6]); | 
|  | firstoffset <<= 8; | 
|  | firstoffset += GETJOCTET(data[7]); | 
|  | } else { | 
|  | if (GETJOCTET(data[7]) != 0) return; | 
|  | if (GETJOCTET(data[6]) != 0) return; | 
|  | firstoffset = GETJOCTET(data[5]); | 
|  | firstoffset <<= 8; | 
|  | firstoffset += GETJOCTET(data[4]); | 
|  | } | 
|  | if (firstoffset > length - 2) return; /* check end of data segment */ | 
|  |  | 
|  | /* Get the number of directory entries contained in this IFD */ | 
|  | if (is_motorola) { | 
|  | number_of_tags = GETJOCTET(data[firstoffset]); | 
|  | number_of_tags <<= 8; | 
|  | number_of_tags += GETJOCTET(data[firstoffset+1]); | 
|  | } else { | 
|  | number_of_tags = GETJOCTET(data[firstoffset+1]); | 
|  | number_of_tags <<= 8; | 
|  | number_of_tags += GETJOCTET(data[firstoffset]); | 
|  | } | 
|  | if (number_of_tags == 0) return; | 
|  | firstoffset += 2; | 
|  |  | 
|  | /* Search for ExifSubIFD offset Tag in IFD0 */ | 
|  | for (;;) { | 
|  | if (firstoffset > length - 12) return; /* check end of data segment */ | 
|  | /* Get Tag number */ | 
|  | if (is_motorola) { | 
|  | tagnum = GETJOCTET(data[firstoffset]); | 
|  | tagnum <<= 8; | 
|  | tagnum += GETJOCTET(data[firstoffset+1]); | 
|  | } else { | 
|  | tagnum = GETJOCTET(data[firstoffset+1]); | 
|  | tagnum <<= 8; | 
|  | tagnum += GETJOCTET(data[firstoffset]); | 
|  | } | 
|  | if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ | 
|  | if (--number_of_tags == 0) return; | 
|  | firstoffset += 12; | 
|  | } | 
|  |  | 
|  | /* Get the ExifSubIFD offset */ | 
|  | if (is_motorola) { | 
|  | if (GETJOCTET(data[firstoffset+8]) != 0) return; | 
|  | if (GETJOCTET(data[firstoffset+9]) != 0) return; | 
|  | offset = GETJOCTET(data[firstoffset+10]); | 
|  | offset <<= 8; | 
|  | offset += GETJOCTET(data[firstoffset+11]); | 
|  | } else { | 
|  | if (GETJOCTET(data[firstoffset+11]) != 0) return; | 
|  | if (GETJOCTET(data[firstoffset+10]) != 0) return; | 
|  | offset = GETJOCTET(data[firstoffset+9]); | 
|  | offset <<= 8; | 
|  | offset += GETJOCTET(data[firstoffset+8]); | 
|  | } | 
|  | if (offset > length - 2) return; /* check end of data segment */ | 
|  |  | 
|  | /* Get the number of directory entries contained in this SubIFD */ | 
|  | if (is_motorola) { | 
|  | number_of_tags = GETJOCTET(data[offset]); | 
|  | number_of_tags <<= 8; | 
|  | number_of_tags += GETJOCTET(data[offset+1]); | 
|  | } else { | 
|  | number_of_tags = GETJOCTET(data[offset+1]); | 
|  | number_of_tags <<= 8; | 
|  | number_of_tags += GETJOCTET(data[offset]); | 
|  | } | 
|  | if (number_of_tags < 2) return; | 
|  | offset += 2; | 
|  |  | 
|  | /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ | 
|  | do { | 
|  | if (offset > length - 12) return; /* check end of data segment */ | 
|  | /* Get Tag number */ | 
|  | if (is_motorola) { | 
|  | tagnum = GETJOCTET(data[offset]); | 
|  | tagnum <<= 8; | 
|  | tagnum += GETJOCTET(data[offset+1]); | 
|  | } else { | 
|  | tagnum = GETJOCTET(data[offset+1]); | 
|  | tagnum <<= 8; | 
|  | tagnum += GETJOCTET(data[offset]); | 
|  | } | 
|  | if (tagnum == 0xA002 || tagnum == 0xA003) { | 
|  | if (tagnum == 0xA002) | 
|  | new_value = new_width; /* ExifImageWidth Tag */ | 
|  | else | 
|  | new_value = new_height; /* ExifImageHeight Tag */ | 
|  | if (is_motorola) { | 
|  | data[offset+2] = 0; /* Format = unsigned long (4 octets) */ | 
|  | data[offset+3] = 4; | 
|  | data[offset+4] = 0; /* Number Of Components = 1 */ | 
|  | data[offset+5] = 0; | 
|  | data[offset+6] = 0; | 
|  | data[offset+7] = 1; | 
|  | data[offset+8] = 0; | 
|  | data[offset+9] = 0; | 
|  | data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF); | 
|  | data[offset+11] = (JOCTET)(new_value & 0xFF); | 
|  | } else { | 
|  | data[offset+2] = 4; /* Format = unsigned long (4 octets) */ | 
|  | data[offset+3] = 0; | 
|  | data[offset+4] = 1; /* Number Of Components = 1 */ | 
|  | data[offset+5] = 0; | 
|  | data[offset+6] = 0; | 
|  | data[offset+7] = 0; | 
|  | data[offset+8] = (JOCTET)(new_value & 0xFF); | 
|  | data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF); | 
|  | data[offset+10] = 0; | 
|  | data[offset+11] = 0; | 
|  | } | 
|  | } | 
|  | offset += 12; | 
|  | } while (--number_of_tags); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Adjust output image parameters as needed. | 
|  | * | 
|  | * This must be called after jpeg_copy_critical_parameters() | 
|  | * and before jpeg_write_coefficients(). | 
|  | * | 
|  | * The return value is the set of virtual coefficient arrays to be written | 
|  | * (either the ones allocated by jtransform_request_workspace, or the | 
|  | * original source data arrays).  The caller will need to pass this value | 
|  | * to jpeg_write_coefficients(). | 
|  | */ | 
|  |  | 
|  | GLOBAL(jvirt_barray_ptr *) | 
|  | jtransform_adjust_parameters (j_decompress_ptr srcinfo, | 
|  | j_compress_ptr dstinfo, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jpeg_transform_info *info) | 
|  | { | 
|  | /* If force-to-grayscale is requested, adjust destination parameters */ | 
|  | if (info->force_grayscale) { | 
|  | /* First, ensure we have YCbCr or grayscale data, and that the source's | 
|  | * Y channel is full resolution.  (No reasonable person would make Y | 
|  | * be less than full resolution, so actually coping with that case | 
|  | * isn't worth extra code space.  But we check it to avoid crashing.) | 
|  | */ | 
|  | if (((dstinfo->jpeg_color_space == JCS_YCbCr && | 
|  | dstinfo->num_components == 3) || | 
|  | (dstinfo->jpeg_color_space == JCS_GRAYSCALE && | 
|  | dstinfo->num_components == 1)) && | 
|  | srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && | 
|  | srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { | 
|  | /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed | 
|  | * properly.  Among other things, it sets the target h_samp_factor & | 
|  | * v_samp_factor to 1, which typically won't match the source. | 
|  | * We have to preserve the source's quantization table number, however. | 
|  | */ | 
|  | int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; | 
|  | jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); | 
|  | dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; | 
|  | } else { | 
|  | /* Sorry, can't do it */ | 
|  | ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); | 
|  | } | 
|  | } else if (info->num_components == 1) { | 
|  | /* For a single-component source, we force the destination sampling factors | 
|  | * to 1x1, with or without force_grayscale.  This is useful because some | 
|  | * decoders choke on grayscale images with other sampling factors. | 
|  | */ | 
|  | dstinfo->comp_info[0].h_samp_factor = 1; | 
|  | dstinfo->comp_info[0].v_samp_factor = 1; | 
|  | } | 
|  |  | 
|  | /* Correct the destination's image dimensions as necessary | 
|  | * for rotate/flip, resize, and crop operations. | 
|  | */ | 
|  | #if JPEG_LIB_VERSION >= 70 | 
|  | dstinfo->jpeg_width = info->output_width; | 
|  | dstinfo->jpeg_height = info->output_height; | 
|  | #endif | 
|  |  | 
|  | /* Transpose destination image parameters */ | 
|  | switch (info->transform) { | 
|  | case JXFORM_TRANSPOSE: | 
|  | case JXFORM_TRANSVERSE: | 
|  | case JXFORM_ROT_90: | 
|  | case JXFORM_ROT_270: | 
|  | #if JPEG_LIB_VERSION < 70 | 
|  | dstinfo->image_width = info->output_height; | 
|  | dstinfo->image_height = info->output_width; | 
|  | #endif | 
|  | transpose_critical_parameters(dstinfo); | 
|  | break; | 
|  | default: | 
|  | #if JPEG_LIB_VERSION < 70 | 
|  | dstinfo->image_width = info->output_width; | 
|  | dstinfo->image_height = info->output_height; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Adjust Exif properties */ | 
|  | if (srcinfo->marker_list != NULL && | 
|  | srcinfo->marker_list->marker == JPEG_APP0+1 && | 
|  | srcinfo->marker_list->data_length >= 6 && | 
|  | GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 && | 
|  | GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 && | 
|  | GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 && | 
|  | GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 && | 
|  | GETJOCTET(srcinfo->marker_list->data[4]) == 0 && | 
|  | GETJOCTET(srcinfo->marker_list->data[5]) == 0) { | 
|  | /* Suppress output of JFIF marker */ | 
|  | dstinfo->write_JFIF_header = FALSE; | 
|  | #if JPEG_LIB_VERSION >= 70 | 
|  | /* Adjust Exif image parameters */ | 
|  | if (dstinfo->jpeg_width != srcinfo->image_width || | 
|  | dstinfo->jpeg_height != srcinfo->image_height) | 
|  | /* Align data segment to start of TIFF structure for parsing */ | 
|  | adjust_exif_parameters(srcinfo->marker_list->data + 6, | 
|  | srcinfo->marker_list->data_length - 6, | 
|  | dstinfo->jpeg_width, dstinfo->jpeg_height); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Return the appropriate output data set */ | 
|  | if (info->workspace_coef_arrays != NULL) | 
|  | return info->workspace_coef_arrays; | 
|  | return src_coef_arrays; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Execute the actual transformation, if any. | 
|  | * | 
|  | * This must be called *after* jpeg_write_coefficients, because it depends | 
|  | * on jpeg_write_coefficients to have computed subsidiary values such as | 
|  | * the per-component width and height fields in the destination object. | 
|  | * | 
|  | * Note that some transformations will modify the source data arrays! | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jtransform_execute_transform (j_decompress_ptr srcinfo, | 
|  | j_compress_ptr dstinfo, | 
|  | jvirt_barray_ptr *src_coef_arrays, | 
|  | jpeg_transform_info *info) | 
|  | { | 
|  | jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; | 
|  |  | 
|  | /* Note: conditions tested here should match those in switch statement | 
|  | * in jtransform_request_workspace() | 
|  | */ | 
|  | switch (info->transform) { | 
|  | case JXFORM_NONE: | 
|  | if (info->x_crop_offset != 0 || info->y_crop_offset != 0) | 
|  | do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
|  | src_coef_arrays, dst_coef_arrays); | 
|  | break; | 
|  | case JXFORM_FLIP_H: | 
|  | if (info->y_crop_offset != 0 || info->slow_hflip) | 
|  | do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
|  | src_coef_arrays, dst_coef_arrays); | 
|  | else | 
|  | do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, | 
|  | src_coef_arrays); | 
|  | break; | 
|  | case JXFORM_FLIP_V: | 
|  | do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
|  | src_coef_arrays, dst_coef_arrays); | 
|  | break; | 
|  | case JXFORM_TRANSPOSE: | 
|  | do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
|  | src_coef_arrays, dst_coef_arrays); | 
|  | break; | 
|  | case JXFORM_TRANSVERSE: | 
|  | do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
|  | src_coef_arrays, dst_coef_arrays); | 
|  | break; | 
|  | case JXFORM_ROT_90: | 
|  | do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
|  | src_coef_arrays, dst_coef_arrays); | 
|  | break; | 
|  | case JXFORM_ROT_180: | 
|  | do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
|  | src_coef_arrays, dst_coef_arrays); | 
|  | break; | 
|  | case JXFORM_ROT_270: | 
|  | do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
|  | src_coef_arrays, dst_coef_arrays); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* jtransform_perfect_transform | 
|  | * | 
|  | * Determine whether lossless transformation is perfectly | 
|  | * possible for a specified image and transformation. | 
|  | * | 
|  | * Inputs: | 
|  | *   image_width, image_height: source image dimensions. | 
|  | *   MCU_width, MCU_height: pixel dimensions of MCU. | 
|  | *   transform: transformation identifier. | 
|  | * Parameter sources from initialized jpeg_struct | 
|  | * (after reading source header): | 
|  | *   image_width = cinfo.image_width | 
|  | *   image_height = cinfo.image_height | 
|  | *   MCU_width = cinfo.max_h_samp_factor * cinfo.block_size | 
|  | *   MCU_height = cinfo.max_v_samp_factor * cinfo.block_size | 
|  | * Result: | 
|  | *   TRUE = perfect transformation possible | 
|  | *   FALSE = perfect transformation not possible | 
|  | *           (may use custom action then) | 
|  | */ | 
|  |  | 
|  | GLOBAL(boolean) | 
|  | jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, | 
|  | int MCU_width, int MCU_height, | 
|  | JXFORM_CODE transform) | 
|  | { | 
|  | boolean result = TRUE; /* initialize TRUE */ | 
|  |  | 
|  | switch (transform) { | 
|  | case JXFORM_FLIP_H: | 
|  | case JXFORM_ROT_270: | 
|  | if (image_width % (JDIMENSION) MCU_width) | 
|  | result = FALSE; | 
|  | break; | 
|  | case JXFORM_FLIP_V: | 
|  | case JXFORM_ROT_90: | 
|  | if (image_height % (JDIMENSION) MCU_height) | 
|  | result = FALSE; | 
|  | break; | 
|  | case JXFORM_TRANSVERSE: | 
|  | case JXFORM_ROT_180: | 
|  | if (image_width % (JDIMENSION) MCU_width) | 
|  | result = FALSE; | 
|  | if (image_height % (JDIMENSION) MCU_height) | 
|  | result = FALSE; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #endif /* TRANSFORMS_SUPPORTED */ | 
|  |  | 
|  |  | 
|  | /* Setup decompression object to save desired markers in memory. | 
|  | * This must be called before jpeg_read_header() to have the desired effect. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) | 
|  | { | 
|  | #ifdef SAVE_MARKERS_SUPPORTED | 
|  | int m; | 
|  |  | 
|  | /* Save comments except under NONE option */ | 
|  | if (option != JCOPYOPT_NONE) { | 
|  | jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); | 
|  | } | 
|  | /* Save all types of APPn markers iff ALL option */ | 
|  | if (option == JCOPYOPT_ALL) { | 
|  | for (m = 0; m < 16; m++) | 
|  | jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); | 
|  | } | 
|  | #endif /* SAVE_MARKERS_SUPPORTED */ | 
|  | } | 
|  |  | 
|  | /* Copy markers saved in the given source object to the destination object. | 
|  | * This should be called just after jpeg_start_compress() or | 
|  | * jpeg_write_coefficients(). | 
|  | * Note that those routines will have written the SOI, and also the | 
|  | * JFIF APP0 or Adobe APP14 markers if selected. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
|  | JCOPY_OPTION option) | 
|  | { | 
|  | jpeg_saved_marker_ptr marker; | 
|  |  | 
|  | /* In the current implementation, we don't actually need to examine the | 
|  | * option flag here; we just copy everything that got saved. | 
|  | * But to avoid confusion, we do not output JFIF and Adobe APP14 markers | 
|  | * if the encoder library already wrote one. | 
|  | */ | 
|  | for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { | 
|  | if (dstinfo->write_JFIF_header && | 
|  | marker->marker == JPEG_APP0 && | 
|  | marker->data_length >= 5 && | 
|  | GETJOCTET(marker->data[0]) == 0x4A && | 
|  | GETJOCTET(marker->data[1]) == 0x46 && | 
|  | GETJOCTET(marker->data[2]) == 0x49 && | 
|  | GETJOCTET(marker->data[3]) == 0x46 && | 
|  | GETJOCTET(marker->data[4]) == 0) | 
|  | continue;			/* reject duplicate JFIF */ | 
|  | if (dstinfo->write_Adobe_marker && | 
|  | marker->marker == JPEG_APP0+14 && | 
|  | marker->data_length >= 5 && | 
|  | GETJOCTET(marker->data[0]) == 0x41 && | 
|  | GETJOCTET(marker->data[1]) == 0x64 && | 
|  | GETJOCTET(marker->data[2]) == 0x6F && | 
|  | GETJOCTET(marker->data[3]) == 0x62 && | 
|  | GETJOCTET(marker->data[4]) == 0x65) | 
|  | continue;			/* reject duplicate Adobe */ | 
|  | #ifdef NEED_FAR_POINTERS | 
|  | /* We could use jpeg_write_marker if the data weren't FAR... */ | 
|  | { | 
|  | unsigned int i; | 
|  | jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); | 
|  | for (i = 0; i < marker->data_length; i++) | 
|  | jpeg_write_m_byte(dstinfo, marker->data[i]); | 
|  | } | 
|  | #else | 
|  | jpeg_write_marker(dstinfo, marker->marker, | 
|  | marker->data, marker->data_length); | 
|  | #endif | 
|  | } | 
|  | } |