|  | /* | 
|  | * jidctred.c | 
|  | * | 
|  | * Copyright (C) 1994-1998, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains inverse-DCT routines that produce reduced-size output: | 
|  | * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. | 
|  | * | 
|  | * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) | 
|  | * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step | 
|  | * with an 8-to-4 step that produces the four averages of two adjacent outputs | 
|  | * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). | 
|  | * These steps were derived by computing the corresponding values at the end | 
|  | * of the normal LL&M code, then simplifying as much as possible. | 
|  | * | 
|  | * 1x1 is trivial: just take the DC coefficient divided by 8. | 
|  | * | 
|  | * See jidctint.c for additional comments. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  | #include "jdct.h"		/* Private declarations for DCT subsystem */ | 
|  |  | 
|  | #ifdef IDCT_SCALING_SUPPORTED | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This module is specialized to the case DCTSIZE = 8. | 
|  | */ | 
|  |  | 
|  | #if DCTSIZE != 8 | 
|  | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Scaling is the same as in jidctint.c. */ | 
|  |  | 
|  | #if BITS_IN_JSAMPLE == 8 | 
|  | #define CONST_BITS  13 | 
|  | #define PASS1_BITS  2 | 
|  | #else | 
|  | #define CONST_BITS  13 | 
|  | #define PASS1_BITS  1		/* lose a little precision to avoid overflow */ | 
|  | #endif | 
|  |  | 
|  | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | 
|  | * causing a lot of useless floating-point operations at run time. | 
|  | * To get around this we use the following pre-calculated constants. | 
|  | * If you change CONST_BITS you may want to add appropriate values. | 
|  | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | 
|  | */ | 
|  |  | 
|  | #if CONST_BITS == 13 | 
|  | #define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */ | 
|  | #define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */ | 
|  | #define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */ | 
|  | #define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */ | 
|  | #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */ | 
|  | #define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */ | 
|  | #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */ | 
|  | #define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */ | 
|  | #define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */ | 
|  | #define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */ | 
|  | #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */ | 
|  | #define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */ | 
|  | #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */ | 
|  | #define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */ | 
|  | #else | 
|  | #define FIX_0_211164243  FIX(0.211164243) | 
|  | #define FIX_0_509795579  FIX(0.509795579) | 
|  | #define FIX_0_601344887  FIX(0.601344887) | 
|  | #define FIX_0_720959822  FIX(0.720959822) | 
|  | #define FIX_0_765366865  FIX(0.765366865) | 
|  | #define FIX_0_850430095  FIX(0.850430095) | 
|  | #define FIX_0_899976223  FIX(0.899976223) | 
|  | #define FIX_1_061594337  FIX(1.061594337) | 
|  | #define FIX_1_272758580  FIX(1.272758580) | 
|  | #define FIX_1_451774981  FIX(1.451774981) | 
|  | #define FIX_1_847759065  FIX(1.847759065) | 
|  | #define FIX_2_172734803  FIX(2.172734803) | 
|  | #define FIX_2_562915447  FIX(2.562915447) | 
|  | #define FIX_3_624509785  FIX(3.624509785) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | 
|  | * For 8-bit samples with the recommended scaling, all the variable | 
|  | * and constant values involved are no more than 16 bits wide, so a | 
|  | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | 
|  | * For 12-bit samples, a full 32-bit multiplication will be needed. | 
|  | */ | 
|  |  | 
|  | #if BITS_IN_JSAMPLE == 8 | 
|  | #define MULTIPLY(var,const)  MULTIPLY16C16(var,const) | 
|  | #else | 
|  | #define MULTIPLY(var,const)  ((var) * (const)) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Dequantize a coefficient by multiplying it by the multiplier-table | 
|  | * entry; produce an int result.  In this module, both inputs and result | 
|  | * are 16 bits or less, so either int or short multiply will work. | 
|  | */ | 
|  |  | 
|  | #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval)) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Perform dequantization and inverse DCT on one block of coefficients, | 
|  | * producing a reduced-size 4x4 output block. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JCOEFPTR coef_block, | 
|  | JSAMPARRAY output_buf, JDIMENSION output_col) | 
|  | { | 
|  | INT32 tmp0, tmp2, tmp10, tmp12; | 
|  | INT32 z1, z2, z3, z4; | 
|  | JCOEFPTR inptr; | 
|  | ISLOW_MULT_TYPE * quantptr; | 
|  | int * wsptr; | 
|  | JSAMPROW outptr; | 
|  | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 
|  | int ctr; | 
|  | int workspace[DCTSIZE*4];	/* buffers data between passes */ | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | /* Pass 1: process columns from input, store into work array. */ | 
|  |  | 
|  | inptr = coef_block; | 
|  | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | 
|  | wsptr = workspace; | 
|  | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 
|  | /* Don't bother to process column 4, because second pass won't use it */ | 
|  | if (ctr == DCTSIZE-4) | 
|  | continue; | 
|  | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | 
|  | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && | 
|  | inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { | 
|  | /* AC terms all zero; we need not examine term 4 for 4x4 output */ | 
|  | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; | 
|  |  | 
|  | wsptr[DCTSIZE*0] = dcval; | 
|  | wsptr[DCTSIZE*1] = dcval; | 
|  | wsptr[DCTSIZE*2] = dcval; | 
|  | wsptr[DCTSIZE*3] = dcval; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Even part */ | 
|  |  | 
|  | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | 
|  | tmp0 <<= (CONST_BITS+1); | 
|  |  | 
|  | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | 
|  | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | 
|  |  | 
|  | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); | 
|  |  | 
|  | tmp10 = tmp0 + tmp2; | 
|  | tmp12 = tmp0 - tmp2; | 
|  |  | 
|  | /* Odd part */ | 
|  |  | 
|  | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | 
|  | z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | 
|  | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | 
|  | z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | 
|  |  | 
|  | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ | 
|  | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ | 
|  | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ | 
|  | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ | 
|  |  | 
|  | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ | 
|  | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ | 
|  | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ | 
|  | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ | 
|  |  | 
|  | /* Final output stage */ | 
|  |  | 
|  | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); | 
|  | wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); | 
|  | wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); | 
|  | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); | 
|  | } | 
|  |  | 
|  | /* Pass 2: process 4 rows from work array, store into output array. */ | 
|  |  | 
|  | wsptr = workspace; | 
|  | for (ctr = 0; ctr < 4; ctr++) { | 
|  | outptr = output_buf[ctr] + output_col; | 
|  | /* It's not clear whether a zero row test is worthwhile here ... */ | 
|  |  | 
|  | #ifndef NO_ZERO_ROW_TEST | 
|  | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && | 
|  | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 
|  | /* AC terms all zero */ | 
|  | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) | 
|  | & RANGE_MASK]; | 
|  |  | 
|  | outptr[0] = dcval; | 
|  | outptr[1] = dcval; | 
|  | outptr[2] = dcval; | 
|  | outptr[3] = dcval; | 
|  |  | 
|  | wsptr += DCTSIZE;		/* advance pointer to next row */ | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Even part */ | 
|  |  | 
|  | tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1); | 
|  |  | 
|  | tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) | 
|  | + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); | 
|  |  | 
|  | tmp10 = tmp0 + tmp2; | 
|  | tmp12 = tmp0 - tmp2; | 
|  |  | 
|  | /* Odd part */ | 
|  |  | 
|  | z1 = (INT32) wsptr[7]; | 
|  | z2 = (INT32) wsptr[5]; | 
|  | z3 = (INT32) wsptr[3]; | 
|  | z4 = (INT32) wsptr[1]; | 
|  |  | 
|  | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ | 
|  | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ | 
|  | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ | 
|  | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ | 
|  |  | 
|  | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ | 
|  | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ | 
|  | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ | 
|  | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ | 
|  |  | 
|  | /* Final output stage */ | 
|  |  | 
|  | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, | 
|  | CONST_BITS+PASS1_BITS+3+1) | 
|  | & RANGE_MASK]; | 
|  | outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, | 
|  | CONST_BITS+PASS1_BITS+3+1) | 
|  | & RANGE_MASK]; | 
|  | outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, | 
|  | CONST_BITS+PASS1_BITS+3+1) | 
|  | & RANGE_MASK]; | 
|  | outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, | 
|  | CONST_BITS+PASS1_BITS+3+1) | 
|  | & RANGE_MASK]; | 
|  |  | 
|  | wsptr += DCTSIZE;		/* advance pointer to next row */ | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Perform dequantization and inverse DCT on one block of coefficients, | 
|  | * producing a reduced-size 2x2 output block. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JCOEFPTR coef_block, | 
|  | JSAMPARRAY output_buf, JDIMENSION output_col) | 
|  | { | 
|  | INT32 tmp0, tmp10, z1; | 
|  | JCOEFPTR inptr; | 
|  | ISLOW_MULT_TYPE * quantptr; | 
|  | int * wsptr; | 
|  | JSAMPROW outptr; | 
|  | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 
|  | int ctr; | 
|  | int workspace[DCTSIZE*2];	/* buffers data between passes */ | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | /* Pass 1: process columns from input, store into work array. */ | 
|  |  | 
|  | inptr = coef_block; | 
|  | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | 
|  | wsptr = workspace; | 
|  | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 
|  | /* Don't bother to process columns 2,4,6 */ | 
|  | if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) | 
|  | continue; | 
|  | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && | 
|  | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { | 
|  | /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ | 
|  | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; | 
|  |  | 
|  | wsptr[DCTSIZE*0] = dcval; | 
|  | wsptr[DCTSIZE*1] = dcval; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Even part */ | 
|  |  | 
|  | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | 
|  | tmp10 = z1 << (CONST_BITS+2); | 
|  |  | 
|  | /* Odd part */ | 
|  |  | 
|  | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | 
|  | tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ | 
|  | z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | 
|  | tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ | 
|  | z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | 
|  | tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ | 
|  | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | 
|  | tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ | 
|  |  | 
|  | /* Final output stage */ | 
|  |  | 
|  | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); | 
|  | wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); | 
|  | } | 
|  |  | 
|  | /* Pass 2: process 2 rows from work array, store into output array. */ | 
|  |  | 
|  | wsptr = workspace; | 
|  | for (ctr = 0; ctr < 2; ctr++) { | 
|  | outptr = output_buf[ctr] + output_col; | 
|  | /* It's not clear whether a zero row test is worthwhile here ... */ | 
|  |  | 
|  | #ifndef NO_ZERO_ROW_TEST | 
|  | if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { | 
|  | /* AC terms all zero */ | 
|  | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) | 
|  | & RANGE_MASK]; | 
|  |  | 
|  | outptr[0] = dcval; | 
|  | outptr[1] = dcval; | 
|  |  | 
|  | wsptr += DCTSIZE;		/* advance pointer to next row */ | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Even part */ | 
|  |  | 
|  | tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2); | 
|  |  | 
|  | /* Odd part */ | 
|  |  | 
|  | tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ | 
|  | + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ | 
|  | + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ | 
|  | + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ | 
|  |  | 
|  | /* Final output stage */ | 
|  |  | 
|  | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, | 
|  | CONST_BITS+PASS1_BITS+3+2) | 
|  | & RANGE_MASK]; | 
|  | outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, | 
|  | CONST_BITS+PASS1_BITS+3+2) | 
|  | & RANGE_MASK]; | 
|  |  | 
|  | wsptr += DCTSIZE;		/* advance pointer to next row */ | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Perform dequantization and inverse DCT on one block of coefficients, | 
|  | * producing a reduced-size 1x1 output block. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JCOEFPTR coef_block, | 
|  | JSAMPARRAY output_buf, JDIMENSION output_col) | 
|  | { | 
|  | int dcval; | 
|  | ISLOW_MULT_TYPE * quantptr; | 
|  | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | /* We hardly need an inverse DCT routine for this: just take the | 
|  | * average pixel value, which is one-eighth of the DC coefficient. | 
|  | */ | 
|  | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | 
|  | dcval = DEQUANTIZE(coef_block[0], quantptr[0]); | 
|  | dcval = (int) DESCALE((INT32) dcval, 3); | 
|  |  | 
|  | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; | 
|  | } | 
|  |  | 
|  | #endif /* IDCT_SCALING_SUPPORTED */ |