blob: 6c6a95da7f4e6ce2a5bdd8e4b24fa72ed8d88ec1 [file] [log] [blame]
/*
* Copyright (C)2011-2013 D. R. Commander. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the libjpeg-turbo Project nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
package org.libjpegturbo.turbojpeg;
/**
* TurboJPEG utility class (cannot be instantiated)
*/
public final class TJ {
/**
* The number of chrominance subsampling options
*/
public static final int NUMSAMP = 5;
/**
* 4:4:4 chrominance subsampling (no chrominance subsampling). The JPEG
* or YUV image will contain one chrominance component for every pixel in the
* source image.
*/
public static final int SAMP_444 = 0;
/**
* 4:2:2 chrominance subsampling. The JPEG or YUV image will contain one
* chrominance component for every 2x1 block of pixels in the source image.
*/
public static final int SAMP_422 = 1;
/**
* 4:2:0 chrominance subsampling. The JPEG or YUV image will contain one
* chrominance component for every 2x2 block of pixels in the source image.
*/
public static final int SAMP_420 = 2;
/**
* Grayscale. The JPEG or YUV image will contain no chrominance components.
*/
public static final int SAMP_GRAY = 3;
/**
* 4:4:0 chrominance subsampling. The JPEG or YUV image will contain one
* chrominance component for every 1x2 block of pixels in the source image.
* Note that 4:4:0 subsampling is not fully accelerated in libjpeg-turbo.
*/
public static final int SAMP_440 = 4;
/**
* Returns the MCU block width for the given level of chrominance
* subsampling.
*
* @param subsamp the level of chrominance subsampling (one of
* <code>SAMP_*</code>)
*
* @return the MCU block width for the given level of chrominance subsampling
*/
public static int getMCUWidth(int subsamp) throws Exception {
if (subsamp < 0 || subsamp >= NUMSAMP)
throw new Exception("Invalid subsampling type");
return mcuWidth[subsamp];
}
private static final int[] mcuWidth = {
8, 16, 16, 8, 8
};
/**
* Returns the MCU block height for the given level of chrominance
* subsampling.
*
* @param subsamp the level of chrominance subsampling (one of
* <code>SAMP_*</code>)
*
* @return the MCU block height for the given level of chrominance
* subsampling
*/
public static int getMCUHeight(int subsamp) throws Exception {
if (subsamp < 0 || subsamp >= NUMSAMP)
throw new Exception("Invalid subsampling type");
return mcuHeight[subsamp];
}
private static final int[] mcuHeight = {
8, 8, 16, 8, 16
};
/**
* The number of pixel formats
*/
public static final int NUMPF = 11;
/**
* RGB pixel format. The red, green, and blue components in the image are
* stored in 3-byte pixels in the order R, G, B from lowest to highest byte
* address within each pixel.
*/
public static final int PF_RGB = 0;
/**
* BGR pixel format. The red, green, and blue components in the image are
* stored in 3-byte pixels in the order B, G, R from lowest to highest byte
* address within each pixel.
*/
public static final int PF_BGR = 1;
/**
* RGBX pixel format. The red, green, and blue components in the image are
* stored in 4-byte pixels in the order R, G, B from lowest to highest byte
* address within each pixel. The X component is ignored when compressing
* and undefined when decompressing.
*/
public static final int PF_RGBX = 2;
/**
* BGRX pixel format. The red, green, and blue components in the image are
* stored in 4-byte pixels in the order B, G, R from lowest to highest byte
* address within each pixel. The X component is ignored when compressing
* and undefined when decompressing.
*/
public static final int PF_BGRX = 3;
/**
* XBGR pixel format. The red, green, and blue components in the image are
* stored in 4-byte pixels in the order R, G, B from highest to lowest byte
* address within each pixel. The X component is ignored when compressing
* and undefined when decompressing.
*/
public static final int PF_XBGR = 4;
/**
* XRGB pixel format. The red, green, and blue components in the image are
* stored in 4-byte pixels in the order B, G, R from highest to lowest byte
* address within each pixel. The X component is ignored when compressing
* and undefined when decompressing.
*/
public static final int PF_XRGB = 5;
/**
* Grayscale pixel format. Each 1-byte pixel represents a luminance
* (brightness) level from 0 to 255.
*/
public static final int PF_GRAY = 6;
/**
* RGBA pixel format. This is the same as {@link #PF_RGBX}, except that when
* decompressing, the X byte is guaranteed to be 0xFF, which can be
* interpreted as an opaque alpha channel.
*/
public static final int PF_RGBA = 7;
/**
* BGRA pixel format. This is the same as {@link #PF_BGRX}, except that when
* decompressing, the X byte is guaranteed to be 0xFF, which can be
* interpreted as an opaque alpha channel.
*/
public static final int PF_BGRA = 8;
/**
* ABGR pixel format. This is the same as {@link #PF_XBGR}, except that when
* decompressing, the X byte is guaranteed to be 0xFF, which can be
* interpreted as an opaque alpha channel.
*/
public static final int PF_ABGR = 9;
/**
* ARGB pixel format. This is the same as {@link #PF_XRGB}, except that when
* decompressing, the X byte is guaranteed to be 0xFF, which can be
* interpreted as an opaque alpha channel.
*/
public static final int PF_ARGB = 10;
/**
* Returns the pixel size (in bytes) for the given pixel format.
*
* @param pixelFormat the pixel format (one of <code>PF_*</code>)
*
* @return the pixel size (in bytes) for the given pixel format
*/
public static int getPixelSize(int pixelFormat) throws Exception {
if (pixelFormat < 0 || pixelFormat >= NUMPF)
throw new Exception("Invalid pixel format");
return pixelSize[pixelFormat];
}
private static final int[] pixelSize = {
3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4
};
/**
* For the given pixel format, returns the number of bytes that the red
* component is offset from the start of the pixel. For instance, if a pixel
* of format <code>TJ.PF_BGRX</code> is stored in <code>char pixel[]</code>,
* then the red component will be
* <code>pixel[TJ.getRedOffset(TJ.PF_BGRX)]</code>.
*
* @param pixelFormat the pixel format (one of <code>PF_*</code>)
*
* @return the red offset for the given pixel format
*/
public static int getRedOffset(int pixelFormat) throws Exception {
if (pixelFormat < 0 || pixelFormat >= NUMPF)
throw new Exception("Invalid pixel format");
return redOffset[pixelFormat];
}
private static final int[] redOffset = {
0, 2, 0, 2, 3, 1, 0, 0, 2, 3, 1
};
/**
* For the given pixel format, returns the number of bytes that the green
* component is offset from the start of the pixel. For instance, if a pixel
* of format <code>TJ.PF_BGRX</code> is stored in <code>char pixel[]</code>,
* then the green component will be
* <code>pixel[TJ.getGreenOffset(TJ.PF_BGRX)]</code>.
*
* @param pixelFormat the pixel format (one of <code>PF_*</code>)
*
* @return the green offset for the given pixel format
*/
public static int getGreenOffset(int pixelFormat) throws Exception {
if (pixelFormat < 0 || pixelFormat >= NUMPF)
throw new Exception("Invalid pixel format");
return greenOffset[pixelFormat];
}
private static final int[] greenOffset = {
1, 1, 1, 1, 2, 2, 0, 1, 1, 2, 2
};
/**
* For the given pixel format, returns the number of bytes that the blue
* component is offset from the start of the pixel. For instance, if a pixel
* of format <code>TJ.PF_BGRX</code> is stored in <code>char pixel[]</code>,
* then the blue component will be
* <code>pixel[TJ.getBlueOffset(TJ.PF_BGRX)]</code>.
*
* @param pixelFormat the pixel format (one of <code>PF_*</code>)
*
* @return the blue offset for the given pixel format
*/
public static int getBlueOffset(int pixelFormat) throws Exception {
if (pixelFormat < 0 || pixelFormat >= NUMPF)
throw new Exception("Invalid pixel format");
return blueOffset[pixelFormat];
}
private static final int[] blueOffset = {
2, 0, 2, 0, 1, 3, 0, 2, 0, 1, 3
};
/**
* The uncompressed source/destination image is stored in bottom-up (Windows,
* OpenGL) order, not top-down (X11) order.
*/
public static final int FLAG_BOTTOMUP = 2;
/**
* Turn off CPU auto-detection and force TurboJPEG to use MMX code
* (if the underlying codec supports it.)
*/
public static final int FLAG_FORCEMMX = 8;
/**
* Turn off CPU auto-detection and force TurboJPEG to use SSE code
* (if the underlying codec supports it.)
*/
public static final int FLAG_FORCESSE = 16;
/**
* Turn off CPU auto-detection and force TurboJPEG to use SSE2 code
* (if the underlying codec supports it.)
*/
public static final int FLAG_FORCESSE2 = 32;
/**
* Turn off CPU auto-detection and force TurboJPEG to use SSE3 code
* (if the underlying codec supports it.)
*/
public static final int FLAG_FORCESSE3 = 128;
/**
* When decompressing an image that was compressed using chrominance
* subsampling, use the fastest chrominance upsampling algorithm available in
* the underlying codec. The default is to use smooth upsampling, which
* creates a smooth transition between neighboring chrominance components in
* order to reduce upsampling artifacts in the decompressed image.
*/
public static final int FLAG_FASTUPSAMPLE = 256;
/**
* Use the fastest DCT/IDCT algorithm available in the underlying codec. The
* default if this flag is not specified is implementation-specific. For
* example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast
* algorithm by default when compressing, because this has been shown to have
* only a very slight effect on accuracy, but it uses the accurate algorithm
* when decompressing, because this has been shown to have a larger effect.
*/
public static final int FLAG_FASTDCT = 2048;
/**
* Use the most accurate DCT/IDCT algorithm available in the underlying
* codec. The default if this flag is not specified is
* implementation-specific. For example, the implementation of TurboJPEG for
* libjpeg[-turbo] uses the fast algorithm by default when compressing,
* because this has been shown to have only a very slight effect on accuracy,
* but it uses the accurate algorithm when decompressing, because this has
* been shown to have a larger effect.
*/
public static final int FLAG_ACCURATEDCT = 4096;
/**
* Returns the maximum size of the buffer (in bytes) required to hold a JPEG
* image with the given width, height, and level of chrominance subsampling.
*
* @param width the width (in pixels) of the JPEG image
*
* @param height the height (in pixels) of the JPEG image
*
* @param jpegSubsamp the level of chrominance subsampling to be used when
* generating the JPEG image (one of {@link TJ TJ.SAMP_*})
*
* @return the maximum size of the buffer (in bytes) required to hold a JPEG
* image with the given width, height, and level of chrominance subsampling
*/
public static native int bufSize(int width, int height, int jpegSubsamp)
throws Exception;
/**
* Returns the size of the buffer (in bytes) required to hold a YUV planar
* image with the given width, height, and level of chrominance subsampling.
*
* @param width the width (in pixels) of the YUV image
*
* @param height the height (in pixels) of the YUV image
*
* @param subsamp the level of chrominance subsampling used in the YUV
* image (one of {@link TJ TJ.SAMP_*})
*
* @return the size of the buffer (in bytes) required to hold a YUV planar
* image with the given width, height, and level of chrominance subsampling
*/
public static native int bufSizeYUV(int width, int height, int subsamp)
throws Exception;
/**
* Returns a list of fractional scaling factors that the JPEG decompressor in
* this implementation of TurboJPEG supports.
*
* @return a list of fractional scaling factors that the JPEG decompressor in
* this implementation of TurboJPEG supports
*/
public static native TJScalingFactor[] getScalingFactors()
throws Exception;
static {
TJLoader.load();
}
};