| /* |
| * jcsample.c |
| * |
| * This file was part of the Independent JPEG Group's software: |
| * Copyright (C) 1991-1996, Thomas G. Lane. |
| * libjpeg-turbo Modifications: |
| * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
| * For conditions of distribution and use, see the accompanying README file. |
| * |
| * This file contains downsampling routines. |
| * |
| * Downsampling input data is counted in "row groups". A row group |
| * is defined to be max_v_samp_factor pixel rows of each component, |
| * from which the downsampler produces v_samp_factor sample rows. |
| * A single row group is processed in each call to the downsampler module. |
| * |
| * The downsampler is responsible for edge-expansion of its output data |
| * to fill an integral number of DCT blocks horizontally. The source buffer |
| * may be modified if it is helpful for this purpose (the source buffer is |
| * allocated wide enough to correspond to the desired output width). |
| * The caller (the prep controller) is responsible for vertical padding. |
| * |
| * The downsampler may request "context rows" by setting need_context_rows |
| * during startup. In this case, the input arrays will contain at least |
| * one row group's worth of pixels above and below the passed-in data; |
| * the caller will create dummy rows at image top and bottom by replicating |
| * the first or last real pixel row. |
| * |
| * An excellent reference for image resampling is |
| * Digital Image Warping, George Wolberg, 1990. |
| * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
| * |
| * The downsampling algorithm used here is a simple average of the source |
| * pixels covered by the output pixel. The hi-falutin sampling literature |
| * refers to this as a "box filter". In general the characteristics of a box |
| * filter are not very good, but for the specific cases we normally use (1:1 |
| * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
| * nearly so bad. If you intend to use other sampling ratios, you'd be well |
| * advised to improve this code. |
| * |
| * A simple input-smoothing capability is provided. This is mainly intended |
| * for cleaning up color-dithered GIF input files (if you find it inadequate, |
| * we suggest using an external filtering program such as pnmconvol). When |
| * enabled, each input pixel P is replaced by a weighted sum of itself and its |
| * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
| * where SF = (smoothing_factor / 1024). |
| * Currently, smoothing is only supported for 2h2v sampling factors. |
| */ |
| |
| #define JPEG_INTERNALS |
| #include "jinclude.h" |
| #include "jpeglib.h" |
| #include "jsimd.h" |
| |
| |
| /* Pointer to routine to downsample a single component */ |
| typedef JMETHOD(void, downsample1_ptr, |
| (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| JSAMPARRAY input_data, JSAMPARRAY output_data)); |
| |
| /* Private subobject */ |
| |
| typedef struct { |
| struct jpeg_downsampler pub; /* public fields */ |
| |
| /* Downsampling method pointers, one per component */ |
| downsample1_ptr methods[MAX_COMPONENTS]; |
| } my_downsampler; |
| |
| typedef my_downsampler * my_downsample_ptr; |
| |
| |
| /* |
| * Initialize for a downsampling pass. |
| */ |
| |
| METHODDEF(void) |
| start_pass_downsample (j_compress_ptr cinfo) |
| { |
| /* no work for now */ |
| } |
| |
| |
| /* |
| * Expand a component horizontally from width input_cols to width output_cols, |
| * by duplicating the rightmost samples. |
| */ |
| |
| LOCAL(void) |
| expand_right_edge (JSAMPARRAY image_data, int num_rows, |
| JDIMENSION input_cols, JDIMENSION output_cols) |
| { |
| register JSAMPROW ptr; |
| register JSAMPLE pixval; |
| register int count; |
| int row; |
| int numcols = (int) (output_cols - input_cols); |
| |
| if (numcols > 0) { |
| for (row = 0; row < num_rows; row++) { |
| ptr = image_data[row] + input_cols; |
| pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
| for (count = numcols; count > 0; count--) |
| *ptr++ = pixval; |
| } |
| } |
| } |
| |
| |
| /* |
| * Do downsampling for a whole row group (all components). |
| * |
| * In this version we simply downsample each component independently. |
| */ |
| |
| METHODDEF(void) |
| sep_downsample (j_compress_ptr cinfo, |
| JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
| JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
| { |
| my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
| int ci; |
| jpeg_component_info * compptr; |
| JSAMPARRAY in_ptr, out_ptr; |
| |
| for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| ci++, compptr++) { |
| in_ptr = input_buf[ci] + in_row_index; |
| out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); |
| (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
| } |
| } |
| |
| |
| /* |
| * Downsample pixel values of a single component. |
| * One row group is processed per call. |
| * This version handles arbitrary integral sampling ratios, without smoothing. |
| * Note that this version is not actually used for customary sampling ratios. |
| */ |
| |
| METHODDEF(void) |
| int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| JSAMPARRAY input_data, JSAMPARRAY output_data) |
| { |
| int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
| JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
| JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| JSAMPROW inptr, outptr; |
| INT32 outvalue; |
| |
| h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; |
| v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; |
| numpix = h_expand * v_expand; |
| numpix2 = numpix/2; |
| |
| /* Expand input data enough to let all the output samples be generated |
| * by the standard loop. Special-casing padded output would be more |
| * efficient. |
| */ |
| expand_right_edge(input_data, cinfo->max_v_samp_factor, |
| cinfo->image_width, output_cols * h_expand); |
| |
| inrow = 0; |
| for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| outptr = output_data[outrow]; |
| for (outcol = 0, outcol_h = 0; outcol < output_cols; |
| outcol++, outcol_h += h_expand) { |
| outvalue = 0; |
| for (v = 0; v < v_expand; v++) { |
| inptr = input_data[inrow+v] + outcol_h; |
| for (h = 0; h < h_expand; h++) { |
| outvalue += (INT32) GETJSAMPLE(*inptr++); |
| } |
| } |
| *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
| } |
| inrow += v_expand; |
| } |
| } |
| |
| |
| /* |
| * Downsample pixel values of a single component. |
| * This version handles the special case of a full-size component, |
| * without smoothing. |
| */ |
| |
| METHODDEF(void) |
| fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| JSAMPARRAY input_data, JSAMPARRAY output_data) |
| { |
| /* Copy the data */ |
| jcopy_sample_rows(input_data, 0, output_data, 0, |
| cinfo->max_v_samp_factor, cinfo->image_width); |
| /* Edge-expand */ |
| expand_right_edge(output_data, cinfo->max_v_samp_factor, |
| cinfo->image_width, compptr->width_in_blocks * DCTSIZE); |
| } |
| |
| |
| /* |
| * Downsample pixel values of a single component. |
| * This version handles the common case of 2:1 horizontal and 1:1 vertical, |
| * without smoothing. |
| * |
| * A note about the "bias" calculations: when rounding fractional values to |
| * integer, we do not want to always round 0.5 up to the next integer. |
| * If we did that, we'd introduce a noticeable bias towards larger values. |
| * Instead, this code is arranged so that 0.5 will be rounded up or down at |
| * alternate pixel locations (a simple ordered dither pattern). |
| */ |
| |
| METHODDEF(void) |
| h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| JSAMPARRAY input_data, JSAMPARRAY output_data) |
| { |
| int outrow; |
| JDIMENSION outcol; |
| JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| register JSAMPROW inptr, outptr; |
| register int bias; |
| |
| /* Expand input data enough to let all the output samples be generated |
| * by the standard loop. Special-casing padded output would be more |
| * efficient. |
| */ |
| expand_right_edge(input_data, cinfo->max_v_samp_factor, |
| cinfo->image_width, output_cols * 2); |
| |
| for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| outptr = output_data[outrow]; |
| inptr = input_data[outrow]; |
| bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
| for (outcol = 0; outcol < output_cols; outcol++) { |
| *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
| + bias) >> 1); |
| bias ^= 1; /* 0=>1, 1=>0 */ |
| inptr += 2; |
| } |
| } |
| } |
| |
| |
| /* |
| * Downsample pixel values of a single component. |
| * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
| * without smoothing. |
| */ |
| |
| METHODDEF(void) |
| h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| JSAMPARRAY input_data, JSAMPARRAY output_data) |
| { |
| int inrow, outrow; |
| JDIMENSION outcol; |
| JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| register JSAMPROW inptr0, inptr1, outptr; |
| register int bias; |
| |
| /* Expand input data enough to let all the output samples be generated |
| * by the standard loop. Special-casing padded output would be more |
| * efficient. |
| */ |
| expand_right_edge(input_data, cinfo->max_v_samp_factor, |
| cinfo->image_width, output_cols * 2); |
| |
| inrow = 0; |
| for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| outptr = output_data[outrow]; |
| inptr0 = input_data[inrow]; |
| inptr1 = input_data[inrow+1]; |
| bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
| for (outcol = 0; outcol < output_cols; outcol++) { |
| *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
| GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
| + bias) >> 2); |
| bias ^= 3; /* 1=>2, 2=>1 */ |
| inptr0 += 2; inptr1 += 2; |
| } |
| inrow += 2; |
| } |
| } |
| |
| |
| #ifdef INPUT_SMOOTHING_SUPPORTED |
| |
| /* |
| * Downsample pixel values of a single component. |
| * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
| * with smoothing. One row of context is required. |
| */ |
| |
| METHODDEF(void) |
| h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| JSAMPARRAY input_data, JSAMPARRAY output_data) |
| { |
| int inrow, outrow; |
| JDIMENSION colctr; |
| JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
| INT32 membersum, neighsum, memberscale, neighscale; |
| |
| /* Expand input data enough to let all the output samples be generated |
| * by the standard loop. Special-casing padded output would be more |
| * efficient. |
| */ |
| expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
| cinfo->image_width, output_cols * 2); |
| |
| /* We don't bother to form the individual "smoothed" input pixel values; |
| * we can directly compute the output which is the average of the four |
| * smoothed values. Each of the four member pixels contributes a fraction |
| * (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
| * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
| * output. The four corner-adjacent neighbor pixels contribute a fraction |
| * SF to just one smoothed pixel, or SF/4 to the final output; while the |
| * eight edge-adjacent neighbors contribute SF to each of two smoothed |
| * pixels, or SF/2 overall. In order to use integer arithmetic, these |
| * factors are scaled by 2^16 = 65536. |
| * Also recall that SF = smoothing_factor / 1024. |
| */ |
| |
| memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
| neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
| |
| inrow = 0; |
| for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| outptr = output_data[outrow]; |
| inptr0 = input_data[inrow]; |
| inptr1 = input_data[inrow+1]; |
| above_ptr = input_data[inrow-1]; |
| below_ptr = input_data[inrow+2]; |
| |
| /* Special case for first column: pretend column -1 is same as column 0 */ |
| membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
| GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
| neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
| GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
| GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
| GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
| neighsum += neighsum; |
| neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
| GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
| membersum = membersum * memberscale + neighsum * neighscale; |
| *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
| inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
| |
| for (colctr = output_cols - 2; colctr > 0; colctr--) { |
| /* sum of pixels directly mapped to this output element */ |
| membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
| GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
| /* sum of edge-neighbor pixels */ |
| neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
| GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
| GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
| GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
| /* The edge-neighbors count twice as much as corner-neighbors */ |
| neighsum += neighsum; |
| /* Add in the corner-neighbors */ |
| neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
| GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
| /* form final output scaled up by 2^16 */ |
| membersum = membersum * memberscale + neighsum * neighscale; |
| /* round, descale and output it */ |
| *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
| inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
| } |
| |
| /* Special case for last column */ |
| membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
| GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
| neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
| GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
| GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
| GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
| neighsum += neighsum; |
| neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
| GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
| membersum = membersum * memberscale + neighsum * neighscale; |
| *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
| |
| inrow += 2; |
| } |
| } |
| |
| |
| /* |
| * Downsample pixel values of a single component. |
| * This version handles the special case of a full-size component, |
| * with smoothing. One row of context is required. |
| */ |
| |
| METHODDEF(void) |
| fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
| JSAMPARRAY input_data, JSAMPARRAY output_data) |
| { |
| int outrow; |
| JDIMENSION colctr; |
| JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
| INT32 membersum, neighsum, memberscale, neighscale; |
| int colsum, lastcolsum, nextcolsum; |
| |
| /* Expand input data enough to let all the output samples be generated |
| * by the standard loop. Special-casing padded output would be more |
| * efficient. |
| */ |
| expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
| cinfo->image_width, output_cols); |
| |
| /* Each of the eight neighbor pixels contributes a fraction SF to the |
| * smoothed pixel, while the main pixel contributes (1-8*SF). In order |
| * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
| * Also recall that SF = smoothing_factor / 1024. |
| */ |
| |
| memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
| neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
| |
| for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| outptr = output_data[outrow]; |
| inptr = input_data[outrow]; |
| above_ptr = input_data[outrow-1]; |
| below_ptr = input_data[outrow+1]; |
| |
| /* Special case for first column */ |
| colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
| GETJSAMPLE(*inptr); |
| membersum = GETJSAMPLE(*inptr++); |
| nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
| GETJSAMPLE(*inptr); |
| neighsum = colsum + (colsum - membersum) + nextcolsum; |
| membersum = membersum * memberscale + neighsum * neighscale; |
| *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
| lastcolsum = colsum; colsum = nextcolsum; |
| |
| for (colctr = output_cols - 2; colctr > 0; colctr--) { |
| membersum = GETJSAMPLE(*inptr++); |
| above_ptr++; below_ptr++; |
| nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
| GETJSAMPLE(*inptr); |
| neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
| membersum = membersum * memberscale + neighsum * neighscale; |
| *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
| lastcolsum = colsum; colsum = nextcolsum; |
| } |
| |
| /* Special case for last column */ |
| membersum = GETJSAMPLE(*inptr); |
| neighsum = lastcolsum + (colsum - membersum) + colsum; |
| membersum = membersum * memberscale + neighsum * neighscale; |
| *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
| |
| } |
| } |
| |
| #endif /* INPUT_SMOOTHING_SUPPORTED */ |
| |
| |
| /* |
| * Module initialization routine for downsampling. |
| * Note that we must select a routine for each component. |
| */ |
| |
| GLOBAL(void) |
| jinit_downsampler (j_compress_ptr cinfo) |
| { |
| my_downsample_ptr downsample; |
| int ci; |
| jpeg_component_info * compptr; |
| boolean smoothok = TRUE; |
| |
| downsample = (my_downsample_ptr) |
| (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| SIZEOF(my_downsampler)); |
| cinfo->downsample = (struct jpeg_downsampler *) downsample; |
| downsample->pub.start_pass = start_pass_downsample; |
| downsample->pub.downsample = sep_downsample; |
| downsample->pub.need_context_rows = FALSE; |
| |
| if (cinfo->CCIR601_sampling) |
| ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
| |
| /* Verify we can handle the sampling factors, and set up method pointers */ |
| for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| ci++, compptr++) { |
| if (compptr->h_samp_factor == cinfo->max_h_samp_factor && |
| compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
| #ifdef INPUT_SMOOTHING_SUPPORTED |
| if (cinfo->smoothing_factor) { |
| downsample->methods[ci] = fullsize_smooth_downsample; |
| downsample->pub.need_context_rows = TRUE; |
| } else |
| #endif |
| downsample->methods[ci] = fullsize_downsample; |
| } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
| compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
| smoothok = FALSE; |
| if (jsimd_can_h2v1_downsample()) |
| downsample->methods[ci] = jsimd_h2v1_downsample; |
| else |
| downsample->methods[ci] = h2v1_downsample; |
| } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
| compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { |
| #ifdef INPUT_SMOOTHING_SUPPORTED |
| if (cinfo->smoothing_factor) { |
| downsample->methods[ci] = h2v2_smooth_downsample; |
| downsample->pub.need_context_rows = TRUE; |
| } else { |
| #endif |
| if (jsimd_can_h2v2_downsample()) |
| downsample->methods[ci] = jsimd_h2v2_downsample; |
| else |
| downsample->methods[ci] = h2v2_downsample; |
| } |
| } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && |
| (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { |
| smoothok = FALSE; |
| downsample->methods[ci] = int_downsample; |
| } else |
| ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
| } |
| |
| #ifdef INPUT_SMOOTHING_SUPPORTED |
| if (cinfo->smoothing_factor && !smoothok) |
| TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
| #endif |
| } |