|  | /* | 
|  | * jfdctint.c | 
|  | * | 
|  | * Copyright (C) 1991-1996, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains a slow-but-accurate integer implementation of the | 
|  | * forward DCT (Discrete Cosine Transform). | 
|  | * | 
|  | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | 
|  | * on each column.  Direct algorithms are also available, but they are | 
|  | * much more complex and seem not to be any faster when reduced to code. | 
|  | * | 
|  | * This implementation is based on an algorithm described in | 
|  | *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | 
|  | *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | 
|  | *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | 
|  | * The primary algorithm described there uses 11 multiplies and 29 adds. | 
|  | * We use their alternate method with 12 multiplies and 32 adds. | 
|  | * The advantage of this method is that no data path contains more than one | 
|  | * multiplication; this allows a very simple and accurate implementation in | 
|  | * scaled fixed-point arithmetic, with a minimal number of shifts. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  | #include "jdct.h"               /* Private declarations for DCT subsystem */ | 
|  |  | 
|  | #ifdef DCT_ISLOW_SUPPORTED | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This module is specialized to the case DCTSIZE = 8. | 
|  | */ | 
|  |  | 
|  | #if DCTSIZE != 8 | 
|  | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The poop on this scaling stuff is as follows: | 
|  | * | 
|  | * Each 1-D DCT step produces outputs which are a factor of sqrt(N) | 
|  | * larger than the true DCT outputs.  The final outputs are therefore | 
|  | * a factor of N larger than desired; since N=8 this can be cured by | 
|  | * a simple right shift at the end of the algorithm.  The advantage of | 
|  | * this arrangement is that we save two multiplications per 1-D DCT, | 
|  | * because the y0 and y4 outputs need not be divided by sqrt(N). | 
|  | * In the IJG code, this factor of 8 is removed by the quantization step | 
|  | * (in jcdctmgr.c), NOT in this module. | 
|  | * | 
|  | * We have to do addition and subtraction of the integer inputs, which | 
|  | * is no problem, and multiplication by fractional constants, which is | 
|  | * a problem to do in integer arithmetic.  We multiply all the constants | 
|  | * by CONST_SCALE and convert them to integer constants (thus retaining | 
|  | * CONST_BITS bits of precision in the constants).  After doing a | 
|  | * multiplication we have to divide the product by CONST_SCALE, with proper | 
|  | * rounding, to produce the correct output.  This division can be done | 
|  | * cheaply as a right shift of CONST_BITS bits.  We postpone shifting | 
|  | * as long as possible so that partial sums can be added together with | 
|  | * full fractional precision. | 
|  | * | 
|  | * The outputs of the first pass are scaled up by PASS1_BITS bits so that | 
|  | * they are represented to better-than-integral precision.  These outputs | 
|  | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | 
|  | * with the recommended scaling.  (For 12-bit sample data, the intermediate | 
|  | * array is INT32 anyway.) | 
|  | * | 
|  | * To avoid overflow of the 32-bit intermediate results in pass 2, we must | 
|  | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis | 
|  | * shows that the values given below are the most effective. | 
|  | */ | 
|  |  | 
|  | #if BITS_IN_JSAMPLE == 8 | 
|  | #define CONST_BITS  13 | 
|  | #define PASS1_BITS  2 | 
|  | #else | 
|  | #define CONST_BITS  13 | 
|  | #define PASS1_BITS  1           /* lose a little precision to avoid overflow */ | 
|  | #endif | 
|  |  | 
|  | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | 
|  | * causing a lot of useless floating-point operations at run time. | 
|  | * To get around this we use the following pre-calculated constants. | 
|  | * If you change CONST_BITS you may want to add appropriate values. | 
|  | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | 
|  | */ | 
|  |  | 
|  | #if CONST_BITS == 13 | 
|  | #define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */ | 
|  | #define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */ | 
|  | #define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */ | 
|  | #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */ | 
|  | #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */ | 
|  | #define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */ | 
|  | #define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */ | 
|  | #define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */ | 
|  | #define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */ | 
|  | #define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */ | 
|  | #define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */ | 
|  | #define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */ | 
|  | #else | 
|  | #define FIX_0_298631336  FIX(0.298631336) | 
|  | #define FIX_0_390180644  FIX(0.390180644) | 
|  | #define FIX_0_541196100  FIX(0.541196100) | 
|  | #define FIX_0_765366865  FIX(0.765366865) | 
|  | #define FIX_0_899976223  FIX(0.899976223) | 
|  | #define FIX_1_175875602  FIX(1.175875602) | 
|  | #define FIX_1_501321110  FIX(1.501321110) | 
|  | #define FIX_1_847759065  FIX(1.847759065) | 
|  | #define FIX_1_961570560  FIX(1.961570560) | 
|  | #define FIX_2_053119869  FIX(2.053119869) | 
|  | #define FIX_2_562915447  FIX(2.562915447) | 
|  | #define FIX_3_072711026  FIX(3.072711026) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | 
|  | * For 8-bit samples with the recommended scaling, all the variable | 
|  | * and constant values involved are no more than 16 bits wide, so a | 
|  | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | 
|  | * For 12-bit samples, a full 32-bit multiplication will be needed. | 
|  | */ | 
|  |  | 
|  | #if BITS_IN_JSAMPLE == 8 | 
|  | #define MULTIPLY(var,const)  MULTIPLY16C16(var,const) | 
|  | #else | 
|  | #define MULTIPLY(var,const)  ((var) * (const)) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Perform the forward DCT on one block of samples. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jpeg_fdct_islow (DCTELEM * data) | 
|  | { | 
|  | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | 
|  | INT32 tmp10, tmp11, tmp12, tmp13; | 
|  | INT32 z1, z2, z3, z4, z5; | 
|  | DCTELEM *dataptr; | 
|  | int ctr; | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | /* Pass 1: process rows. */ | 
|  | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ | 
|  | /* furthermore, we scale the results by 2**PASS1_BITS. */ | 
|  |  | 
|  | dataptr = data; | 
|  | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
|  | tmp0 = dataptr[0] + dataptr[7]; | 
|  | tmp7 = dataptr[0] - dataptr[7]; | 
|  | tmp1 = dataptr[1] + dataptr[6]; | 
|  | tmp6 = dataptr[1] - dataptr[6]; | 
|  | tmp2 = dataptr[2] + dataptr[5]; | 
|  | tmp5 = dataptr[2] - dataptr[5]; | 
|  | tmp3 = dataptr[3] + dataptr[4]; | 
|  | tmp4 = dataptr[3] - dataptr[4]; | 
|  |  | 
|  | /* Even part per LL&M figure 1 --- note that published figure is faulty; | 
|  | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". | 
|  | */ | 
|  |  | 
|  | tmp10 = tmp0 + tmp3; | 
|  | tmp13 = tmp0 - tmp3; | 
|  | tmp11 = tmp1 + tmp2; | 
|  | tmp12 = tmp1 - tmp2; | 
|  |  | 
|  | dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); | 
|  | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); | 
|  |  | 
|  | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); | 
|  | dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), | 
|  | CONST_BITS-PASS1_BITS); | 
|  | dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), | 
|  | CONST_BITS-PASS1_BITS); | 
|  |  | 
|  | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | 
|  | * cK represents cos(K*pi/16). | 
|  | * i0..i3 in the paper are tmp4..tmp7 here. | 
|  | */ | 
|  |  | 
|  | z1 = tmp4 + tmp7; | 
|  | z2 = tmp5 + tmp6; | 
|  | z3 = tmp4 + tmp6; | 
|  | z4 = tmp5 + tmp7; | 
|  | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | 
|  |  | 
|  | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | 
|  | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | 
|  | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | 
|  | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | 
|  | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | 
|  | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | 
|  | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | 
|  | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | 
|  |  | 
|  | z3 += z5; | 
|  | z4 += z5; | 
|  |  | 
|  | dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); | 
|  | dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); | 
|  | dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); | 
|  | dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); | 
|  |  | 
|  | dataptr += DCTSIZE;         /* advance pointer to next row */ | 
|  | } | 
|  |  | 
|  | /* Pass 2: process columns. | 
|  | * We remove the PASS1_BITS scaling, but leave the results scaled up | 
|  | * by an overall factor of 8. | 
|  | */ | 
|  |  | 
|  | dataptr = data; | 
|  | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
|  | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | 
|  | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | 
|  | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | 
|  | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | 
|  | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | 
|  | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | 
|  | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | 
|  | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | 
|  |  | 
|  | /* Even part per LL&M figure 1 --- note that published figure is faulty; | 
|  | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". | 
|  | */ | 
|  |  | 
|  | tmp10 = tmp0 + tmp3; | 
|  | tmp13 = tmp0 - tmp3; | 
|  | tmp11 = tmp1 + tmp2; | 
|  | tmp12 = tmp1 - tmp2; | 
|  |  | 
|  | dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); | 
|  | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); | 
|  |  | 
|  | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); | 
|  | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), | 
|  | CONST_BITS+PASS1_BITS); | 
|  | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), | 
|  | CONST_BITS+PASS1_BITS); | 
|  |  | 
|  | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | 
|  | * cK represents cos(K*pi/16). | 
|  | * i0..i3 in the paper are tmp4..tmp7 here. | 
|  | */ | 
|  |  | 
|  | z1 = tmp4 + tmp7; | 
|  | z2 = tmp5 + tmp6; | 
|  | z3 = tmp4 + tmp6; | 
|  | z4 = tmp5 + tmp7; | 
|  | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | 
|  |  | 
|  | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | 
|  | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | 
|  | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | 
|  | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | 
|  | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | 
|  | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | 
|  | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | 
|  | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | 
|  |  | 
|  | z3 += z5; | 
|  | z4 += z5; | 
|  |  | 
|  | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, | 
|  | CONST_BITS+PASS1_BITS); | 
|  | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, | 
|  | CONST_BITS+PASS1_BITS); | 
|  | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, | 
|  | CONST_BITS+PASS1_BITS); | 
|  | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, | 
|  | CONST_BITS+PASS1_BITS); | 
|  |  | 
|  | dataptr++;                  /* advance pointer to next column */ | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* DCT_ISLOW_SUPPORTED */ |