| /* |
| * jchuff.c |
| * |
| * Copyright (C) 1991-1997, Thomas G. Lane. |
| * Modified 2006-2019 by Guido Vollbeding. |
| * This file is part of the Independent JPEG Group's software. |
| * For conditions of distribution and use, see the accompanying README file. |
| * |
| * This file contains Huffman entropy encoding routines. |
| * Both sequential and progressive modes are supported in this single module. |
| * |
| * Much of the complexity here has to do with supporting output suspension. |
| * If the data destination module demands suspension, we want to be able to |
| * back up to the start of the current MCU. To do this, we copy state |
| * variables into local working storage, and update them back to the |
| * permanent JPEG objects only upon successful completion of an MCU. |
| * |
| * We do not support output suspension for the progressive JPEG mode, since |
| * the library currently does not allow multiple-scan files to be written |
| * with output suspension. |
| */ |
| |
| #define JPEG_INTERNALS |
| #include "jinclude.h" |
| #include "jpeglib.h" |
| |
| |
| /* The legal range of a DCT coefficient is |
| * -1024 .. +1023 for 8-bit data; |
| * -16384 .. +16383 for 12-bit data. |
| * Hence the magnitude should always fit in 10 or 14 bits respectively. |
| */ |
| |
| #if BITS_IN_JSAMPLE == 8 |
| #define MAX_COEF_BITS 10 |
| #else |
| #define MAX_COEF_BITS 14 |
| #endif |
| |
| /* Derived data constructed for each Huffman table */ |
| |
| typedef struct { |
| unsigned int ehufco[256]; /* code for each symbol */ |
| char ehufsi[256]; /* length of code for each symbol */ |
| /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ |
| } c_derived_tbl; |
| |
| |
| /* Expanded entropy encoder object for Huffman encoding. |
| * |
| * The savable_state subrecord contains fields that change within an MCU, |
| * but must not be updated permanently until we complete the MCU. |
| */ |
| |
| typedef struct { |
| INT32 put_buffer; /* current bit-accumulation buffer */ |
| int put_bits; /* # of bits now in it */ |
| int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| } savable_state; |
| |
| /* This macro is to work around compilers with missing or broken |
| * structure assignment. You'll need to fix this code if you have |
| * such a compiler and you change MAX_COMPS_IN_SCAN. |
| */ |
| |
| #ifndef NO_STRUCT_ASSIGN |
| #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
| #else |
| #if MAX_COMPS_IN_SCAN == 4 |
| #define ASSIGN_STATE(dest,src) \ |
| ((dest).put_buffer = (src).put_buffer, \ |
| (dest).put_bits = (src).put_bits, \ |
| (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
| (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
| (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
| (dest).last_dc_val[3] = (src).last_dc_val[3]) |
| #endif |
| #endif |
| |
| |
| typedef struct { |
| struct jpeg_entropy_encoder pub; /* public fields */ |
| |
| savable_state saved; /* Bit buffer & DC state at start of MCU */ |
| |
| /* These fields are NOT loaded into local working state. */ |
| unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| int next_restart_num; /* next restart number to write (0-7) */ |
| |
| /* Pointers to derived tables (these workspaces have image lifespan) */ |
| c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
| c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
| |
| /* Statistics tables for optimization */ |
| long * dc_count_ptrs[NUM_HUFF_TBLS]; |
| long * ac_count_ptrs[NUM_HUFF_TBLS]; |
| |
| /* Following fields used only in progressive mode */ |
| |
| /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
| boolean gather_statistics; |
| |
| /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
| */ |
| JOCTET * next_output_byte; /* => next byte to write in buffer */ |
| size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
| j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
| |
| /* Coding status for AC components */ |
| int ac_tbl_no; /* the table number of the single component */ |
| unsigned int EOBRUN; /* run length of EOBs */ |
| unsigned int BE; /* # of buffered correction bits before MCU */ |
| char * bit_buffer; /* buffer for correction bits (1 per char) */ |
| /* packing correction bits tightly would save some space but cost time... */ |
| } huff_entropy_encoder; |
| |
| typedef huff_entropy_encoder * huff_entropy_ptr; |
| |
| /* Working state while writing an MCU (sequential mode). |
| * This struct contains all the fields that are needed by subroutines. |
| */ |
| |
| typedef struct { |
| JOCTET * next_output_byte; /* => next byte to write in buffer */ |
| size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
| savable_state cur; /* Current bit buffer & DC state */ |
| j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
| } working_state; |
| |
| /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
| * buffer can hold. Larger sizes may slightly improve compression, but |
| * 1000 is already well into the realm of overkill. |
| * The minimum safe size is 64 bits. |
| */ |
| |
| #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
| |
| /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
| * We assume that int right shift is unsigned if INT32 right shift is, |
| * which should be safe. |
| */ |
| |
| #ifdef RIGHT_SHIFT_IS_UNSIGNED |
| #define ISHIFT_TEMPS int ishift_temp; |
| #define IRIGHT_SHIFT(x,shft) \ |
| ((ishift_temp = (x)) < 0 ? \ |
| (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
| (ishift_temp >> (shft))) |
| #else |
| #define ISHIFT_TEMPS |
| #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
| #endif |
| |
| |
| /* |
| * Compute the derived values for a Huffman table. |
| * This routine also performs some validation checks on the table. |
| */ |
| |
| LOCAL(void) |
| jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
| c_derived_tbl ** pdtbl) |
| { |
| JHUFF_TBL *htbl; |
| c_derived_tbl *dtbl; |
| int p, i, l, lastp, si, maxsymbol; |
| char huffsize[257]; |
| unsigned int huffcode[257]; |
| unsigned int code; |
| |
| /* Note that huffsize[] and huffcode[] are filled in code-length order, |
| * paralleling the order of the symbols themselves in htbl->huffval[]. |
| */ |
| |
| /* Find the input Huffman table */ |
| if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
| ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
| htbl = |
| isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
| if (htbl == NULL) |
| htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno); |
| |
| /* Allocate a workspace if we haven't already done so. */ |
| if (*pdtbl == NULL) |
| *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small) |
| ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl)); |
| dtbl = *pdtbl; |
| |
| /* Figure C.1: make table of Huffman code length for each symbol */ |
| |
| p = 0; |
| for (l = 1; l <= 16; l++) { |
| i = (int) htbl->bits[l]; |
| if (i < 0 || p + i > 256) /* protect against table overrun */ |
| ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| while (i--) |
| huffsize[p++] = (char) l; |
| } |
| huffsize[p] = 0; |
| lastp = p; |
| |
| /* Figure C.2: generate the codes themselves */ |
| /* We also validate that the counts represent a legal Huffman code tree. */ |
| |
| code = 0; |
| si = huffsize[0]; |
| p = 0; |
| while (huffsize[p]) { |
| while (((int) huffsize[p]) == si) { |
| huffcode[p++] = code; |
| code++; |
| } |
| /* code is now 1 more than the last code used for codelength si; but |
| * it must still fit in si bits, since no code is allowed to be all ones. |
| */ |
| if (((INT32) code) >= (((INT32) 1) << si)) |
| ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| code <<= 1; |
| si++; |
| } |
| |
| /* Figure C.3: generate encoding tables */ |
| /* These are code and size indexed by symbol value */ |
| |
| /* Set all codeless symbols to have code length 0; |
| * this lets us detect duplicate VAL entries here, and later |
| * allows emit_bits to detect any attempt to emit such symbols. |
| */ |
| MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
| |
| /* This is also a convenient place to check for out-of-range |
| * and duplicated VAL entries. We allow 0..255 for AC symbols |
| * but only 0..15 for DC. (We could constrain them further |
| * based on data depth and mode, but this seems enough.) |
| */ |
| maxsymbol = isDC ? 15 : 255; |
| |
| for (p = 0; p < lastp; p++) { |
| i = htbl->huffval[p]; |
| if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
| ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| dtbl->ehufco[i] = huffcode[p]; |
| dtbl->ehufsi[i] = huffsize[p]; |
| } |
| } |
| |
| |
| /* Outputting bytes to the file. |
| * NB: these must be called only when actually outputting, |
| * that is, entropy->gather_statistics == FALSE. |
| */ |
| |
| /* Emit a byte, taking 'action' if must suspend. */ |
| #define emit_byte_s(state,val,action) \ |
| { *(state)->next_output_byte++ = (JOCTET) (val); \ |
| if (--(state)->free_in_buffer == 0) \ |
| if (! dump_buffer_s(state)) \ |
| { action; } } |
| |
| /* Emit a byte */ |
| #define emit_byte_e(entropy,val) \ |
| { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
| if (--(entropy)->free_in_buffer == 0) \ |
| dump_buffer_e(entropy); } |
| |
| |
| LOCAL(boolean) |
| dump_buffer_s (working_state * state) |
| /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
| { |
| struct jpeg_destination_mgr * dest = state->cinfo->dest; |
| |
| if (! (*dest->empty_output_buffer) (state->cinfo)) |
| return FALSE; |
| /* After a successful buffer dump, must reset buffer pointers */ |
| state->next_output_byte = dest->next_output_byte; |
| state->free_in_buffer = dest->free_in_buffer; |
| return TRUE; |
| } |
| |
| |
| LOCAL(void) |
| dump_buffer_e (huff_entropy_ptr entropy) |
| /* Empty the output buffer; we do not support suspension in this case. */ |
| { |
| struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
| |
| if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
| ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
| /* After a successful buffer dump, must reset buffer pointers */ |
| entropy->next_output_byte = dest->next_output_byte; |
| entropy->free_in_buffer = dest->free_in_buffer; |
| } |
| |
| |
| /* Outputting bits to the file */ |
| |
| /* Only the right 24 bits of put_buffer are used; the valid bits are |
| * left-justified in this part. At most 16 bits can be passed to emit_bits |
| * in one call, and we never retain more than 7 bits in put_buffer |
| * between calls, so 24 bits are sufficient. |
| */ |
| |
| INLINE |
| LOCAL(boolean) |
| emit_bits_s (working_state * state, unsigned int code, int size) |
| /* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
| { |
| /* This routine is heavily used, so it's worth coding tightly. */ |
| register INT32 put_buffer; |
| register int put_bits; |
| |
| /* if size is 0, caller used an invalid Huffman table entry */ |
| if (size == 0) |
| ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
| |
| /* mask off any extra bits in code */ |
| put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); |
| |
| /* new number of bits in buffer */ |
| put_bits = size + state->cur.put_bits; |
| |
| put_buffer <<= 24 - put_bits; /* align incoming bits */ |
| |
| /* and merge with old buffer contents */ |
| put_buffer |= state->cur.put_buffer; |
| |
| while (put_bits >= 8) { |
| int c = (int) ((put_buffer >> 16) & 0xFF); |
| |
| emit_byte_s(state, c, return FALSE); |
| if (c == 0xFF) { /* need to stuff a zero byte? */ |
| emit_byte_s(state, 0, return FALSE); |
| } |
| put_buffer <<= 8; |
| put_bits -= 8; |
| } |
| |
| state->cur.put_buffer = put_buffer; /* update state variables */ |
| state->cur.put_bits = put_bits; |
| |
| return TRUE; |
| } |
| |
| |
| INLINE |
| LOCAL(void) |
| emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) |
| /* Emit some bits, unless we are in gather mode */ |
| { |
| /* This routine is heavily used, so it's worth coding tightly. */ |
| register INT32 put_buffer; |
| register int put_bits; |
| |
| /* if size is 0, caller used an invalid Huffman table entry */ |
| if (size == 0) |
| ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
| |
| if (entropy->gather_statistics) |
| return; /* do nothing if we're only getting stats */ |
| |
| /* mask off any extra bits in code */ |
| put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); |
| |
| /* new number of bits in buffer */ |
| put_bits = size + entropy->saved.put_bits; |
| |
| put_buffer <<= 24 - put_bits; /* align incoming bits */ |
| |
| /* and merge with old buffer contents */ |
| put_buffer |= entropy->saved.put_buffer; |
| |
| while (put_bits >= 8) { |
| int c = (int) ((put_buffer >> 16) & 0xFF); |
| |
| emit_byte_e(entropy, c); |
| if (c == 0xFF) { /* need to stuff a zero byte? */ |
| emit_byte_e(entropy, 0); |
| } |
| put_buffer <<= 8; |
| put_bits -= 8; |
| } |
| |
| entropy->saved.put_buffer = put_buffer; /* update variables */ |
| entropy->saved.put_bits = put_bits; |
| } |
| |
| |
| LOCAL(boolean) |
| flush_bits_s (working_state * state) |
| { |
| if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ |
| return FALSE; |
| state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
| state->cur.put_bits = 0; |
| return TRUE; |
| } |
| |
| |
| LOCAL(void) |
| flush_bits_e (huff_entropy_ptr entropy) |
| { |
| emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
| entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ |
| entropy->saved.put_bits = 0; |
| } |
| |
| |
| /* |
| * Emit (or just count) a Huffman symbol. |
| */ |
| |
| INLINE |
| LOCAL(void) |
| emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
| { |
| if (entropy->gather_statistics) |
| entropy->dc_count_ptrs[tbl_no][symbol]++; |
| else { |
| c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; |
| emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
| } |
| } |
| |
| |
| INLINE |
| LOCAL(void) |
| emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
| { |
| if (entropy->gather_statistics) |
| entropy->ac_count_ptrs[tbl_no][symbol]++; |
| else { |
| c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; |
| emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
| } |
| } |
| |
| |
| /* |
| * Emit bits from a correction bit buffer. |
| */ |
| |
| LOCAL(void) |
| emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, |
| unsigned int nbits) |
| { |
| if (entropy->gather_statistics) |
| return; /* no real work */ |
| |
| while (nbits > 0) { |
| emit_bits_e(entropy, (unsigned int) (*bufstart), 1); |
| bufstart++; |
| nbits--; |
| } |
| } |
| |
| |
| /* |
| * Emit any pending EOBRUN symbol. |
| */ |
| |
| LOCAL(void) |
| emit_eobrun (huff_entropy_ptr entropy) |
| { |
| register int temp, nbits; |
| |
| if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
| temp = entropy->EOBRUN; |
| nbits = 0; |
| while ((temp >>= 1)) |
| nbits++; |
| /* safety check: shouldn't happen given limited correction-bit buffer */ |
| if (nbits > 14) |
| ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
| |
| emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
| if (nbits) |
| emit_bits_e(entropy, entropy->EOBRUN, nbits); |
| |
| entropy->EOBRUN = 0; |
| |
| /* Emit any buffered correction bits */ |
| emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
| entropy->BE = 0; |
| } |
| } |
| |
| |
| /* |
| * Emit a restart marker & resynchronize predictions. |
| */ |
| |
| LOCAL(boolean) |
| emit_restart_s (working_state * state, int restart_num) |
| { |
| int ci; |
| |
| if (! flush_bits_s(state)) |
| return FALSE; |
| |
| emit_byte_s(state, 0xFF, return FALSE); |
| emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); |
| |
| /* Re-initialize DC predictions to 0 */ |
| for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
| state->cur.last_dc_val[ci] = 0; |
| |
| /* The restart counter is not updated until we successfully write the MCU. */ |
| |
| return TRUE; |
| } |
| |
| |
| LOCAL(void) |
| emit_restart_e (huff_entropy_ptr entropy, int restart_num) |
| { |
| int ci; |
| |
| emit_eobrun(entropy); |
| |
| if (! entropy->gather_statistics) { |
| flush_bits_e(entropy); |
| emit_byte_e(entropy, 0xFF); |
| emit_byte_e(entropy, JPEG_RST0 + restart_num); |
| } |
| |
| if (entropy->cinfo->Ss == 0) { |
| /* Re-initialize DC predictions to 0 */ |
| for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
| entropy->saved.last_dc_val[ci] = 0; |
| } else { |
| /* Re-initialize all AC-related fields to 0 */ |
| entropy->EOBRUN = 0; |
| entropy->BE = 0; |
| } |
| } |
| |
| |
| /* |
| * MCU encoding for DC initial scan (either spectral selection, |
| * or first pass of successive approximation). |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| register int temp, temp2; |
| register int nbits; |
| int blkn, ci, tbl; |
| ISHIFT_TEMPS |
| |
| entropy->next_output_byte = cinfo->dest->next_output_byte; |
| entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) |
| if (entropy->restarts_to_go == 0) |
| emit_restart_e(entropy, entropy->next_restart_num); |
| |
| /* Encode the MCU data blocks */ |
| for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| ci = cinfo->MCU_membership[blkn]; |
| tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
| |
| /* Compute the DC value after the required point transform by Al. |
| * This is simply an arithmetic right shift. |
| */ |
| temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); |
| |
| /* DC differences are figured on the point-transformed values. */ |
| temp2 = temp - entropy->saved.last_dc_val[ci]; |
| entropy->saved.last_dc_val[ci] = temp; |
| |
| /* Encode the DC coefficient difference per section G.1.2.1 */ |
| temp = temp2; |
| if (temp < 0) { |
| temp = -temp; /* temp is abs value of input */ |
| /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
| /* This code assumes we are on a two's complement machine */ |
| temp2--; |
| } |
| |
| /* Find the number of bits needed for the magnitude of the coefficient */ |
| nbits = 0; |
| while (temp) { |
| nbits++; |
| temp >>= 1; |
| } |
| /* Check for out-of-range coefficient values. |
| * Since we're encoding a difference, the range limit is twice as much. |
| */ |
| if (nbits > MAX_COEF_BITS+1) |
| ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| |
| /* Count/emit the Huffman-coded symbol for the number of bits */ |
| emit_dc_symbol(entropy, tbl, nbits); |
| |
| /* Emit that number of bits of the value, if positive, */ |
| /* or the complement of its magnitude, if negative. */ |
| if (nbits) /* emit_bits rejects calls with size 0 */ |
| emit_bits_e(entropy, (unsigned int) temp2, nbits); |
| } |
| |
| cinfo->dest->next_output_byte = entropy->next_output_byte; |
| cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| |
| /* Update restart-interval state too */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * MCU encoding for AC initial scan (either spectral selection, |
| * or first pass of successive approximation). |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| const int * natural_order; |
| JBLOCKROW block; |
| register int temp, temp2; |
| register int nbits; |
| register int r, k; |
| int Se, Al; |
| |
| entropy->next_output_byte = cinfo->dest->next_output_byte; |
| entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) |
| if (entropy->restarts_to_go == 0) |
| emit_restart_e(entropy, entropy->next_restart_num); |
| |
| Se = cinfo->Se; |
| Al = cinfo->Al; |
| natural_order = cinfo->natural_order; |
| |
| /* Encode the MCU data block */ |
| block = MCU_data[0]; |
| |
| /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
| |
| r = 0; /* r = run length of zeros */ |
| |
| for (k = cinfo->Ss; k <= Se; k++) { |
| if ((temp = (*block)[natural_order[k]]) == 0) { |
| r++; |
| continue; |
| } |
| /* We must apply the point transform by Al. For AC coefficients this |
| * is an integer division with rounding towards 0. To do this portably |
| * in C, we shift after obtaining the absolute value; so the code is |
| * interwoven with finding the abs value (temp) and output bits (temp2). |
| */ |
| if (temp < 0) { |
| temp = -temp; /* temp is abs value of input */ |
| temp >>= Al; /* apply the point transform */ |
| /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
| temp2 = ~temp; |
| } else { |
| temp >>= Al; /* apply the point transform */ |
| temp2 = temp; |
| } |
| /* Watch out for case that nonzero coef is zero after point transform */ |
| if (temp == 0) { |
| r++; |
| continue; |
| } |
| |
| /* Emit any pending EOBRUN */ |
| if (entropy->EOBRUN > 0) |
| emit_eobrun(entropy); |
| /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
| while (r > 15) { |
| emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
| r -= 16; |
| } |
| |
| /* Find the number of bits needed for the magnitude of the coefficient */ |
| nbits = 1; /* there must be at least one 1 bit */ |
| while ((temp >>= 1)) |
| nbits++; |
| /* Check for out-of-range coefficient values */ |
| if (nbits > MAX_COEF_BITS) |
| ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| |
| /* Count/emit Huffman symbol for run length / number of bits */ |
| emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
| |
| /* Emit that number of bits of the value, if positive, */ |
| /* or the complement of its magnitude, if negative. */ |
| emit_bits_e(entropy, (unsigned int) temp2, nbits); |
| |
| r = 0; /* reset zero run length */ |
| } |
| |
| if (r > 0) { /* If there are trailing zeroes, */ |
| entropy->EOBRUN++; /* count an EOB */ |
| if (entropy->EOBRUN == 0x7FFF) |
| emit_eobrun(entropy); /* force it out to avoid overflow */ |
| } |
| |
| cinfo->dest->next_output_byte = entropy->next_output_byte; |
| cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| |
| /* Update restart-interval state too */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * MCU encoding for DC successive approximation refinement scan. |
| * Note: we assume such scans can be multi-component, |
| * although the spec is not very clear on the point. |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| int Al, blkn; |
| |
| entropy->next_output_byte = cinfo->dest->next_output_byte; |
| entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) |
| if (entropy->restarts_to_go == 0) |
| emit_restart_e(entropy, entropy->next_restart_num); |
| |
| Al = cinfo->Al; |
| |
| /* Encode the MCU data blocks */ |
| for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| /* We simply emit the Al'th bit of the DC coefficient value. */ |
| emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1); |
| } |
| |
| cinfo->dest->next_output_byte = entropy->next_output_byte; |
| cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| |
| /* Update restart-interval state too */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * MCU encoding for AC successive approximation refinement scan. |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| const int * natural_order; |
| JBLOCKROW block; |
| register int temp; |
| register int r, k; |
| int Se, Al; |
| int EOB; |
| char *BR_buffer; |
| unsigned int BR; |
| int absvalues[DCTSIZE2]; |
| |
| entropy->next_output_byte = cinfo->dest->next_output_byte; |
| entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) |
| if (entropy->restarts_to_go == 0) |
| emit_restart_e(entropy, entropy->next_restart_num); |
| |
| Se = cinfo->Se; |
| Al = cinfo->Al; |
| natural_order = cinfo->natural_order; |
| |
| /* Encode the MCU data block */ |
| block = MCU_data[0]; |
| |
| /* It is convenient to make a pre-pass to determine the transformed |
| * coefficients' absolute values and the EOB position. |
| */ |
| EOB = 0; |
| for (k = cinfo->Ss; k <= Se; k++) { |
| temp = (*block)[natural_order[k]]; |
| /* We must apply the point transform by Al. For AC coefficients this |
| * is an integer division with rounding towards 0. To do this portably |
| * in C, we shift after obtaining the absolute value. |
| */ |
| if (temp < 0) |
| temp = -temp; /* temp is abs value of input */ |
| temp >>= Al; /* apply the point transform */ |
| absvalues[k] = temp; /* save abs value for main pass */ |
| if (temp == 1) |
| EOB = k; /* EOB = index of last newly-nonzero coef */ |
| } |
| |
| /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
| |
| r = 0; /* r = run length of zeros */ |
| BR = 0; /* BR = count of buffered bits added now */ |
| BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
| |
| for (k = cinfo->Ss; k <= Se; k++) { |
| if ((temp = absvalues[k]) == 0) { |
| r++; |
| continue; |
| } |
| |
| /* Emit any required ZRLs, but not if they can be folded into EOB */ |
| while (r > 15 && k <= EOB) { |
| /* emit any pending EOBRUN and the BE correction bits */ |
| emit_eobrun(entropy); |
| /* Emit ZRL */ |
| emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
| r -= 16; |
| /* Emit buffered correction bits that must be associated with ZRL */ |
| emit_buffered_bits(entropy, BR_buffer, BR); |
| BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
| BR = 0; |
| } |
| |
| /* If the coef was previously nonzero, it only needs a correction bit. |
| * NOTE: a straight translation of the spec's figure G.7 would suggest |
| * that we also need to test r > 15. But if r > 15, we can only get here |
| * if k > EOB, which implies that this coefficient is not 1. |
| */ |
| if (temp > 1) { |
| /* The correction bit is the next bit of the absolute value. */ |
| BR_buffer[BR++] = (char) (temp & 1); |
| continue; |
| } |
| |
| /* Emit any pending EOBRUN and the BE correction bits */ |
| emit_eobrun(entropy); |
| |
| /* Count/emit Huffman symbol for run length / number of bits */ |
| emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
| |
| /* Emit output bit for newly-nonzero coef */ |
| temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; |
| emit_bits_e(entropy, (unsigned int) temp, 1); |
| |
| /* Emit buffered correction bits that must be associated with this code */ |
| emit_buffered_bits(entropy, BR_buffer, BR); |
| BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
| BR = 0; |
| r = 0; /* reset zero run length */ |
| } |
| |
| if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
| entropy->EOBRUN++; /* count an EOB */ |
| entropy->BE += BR; /* concat my correction bits to older ones */ |
| /* We force out the EOB if we risk either: |
| * 1. overflow of the EOB counter; |
| * 2. overflow of the correction bit buffer during the next MCU. |
| */ |
| if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
| emit_eobrun(entropy); |
| } |
| |
| cinfo->dest->next_output_byte = entropy->next_output_byte; |
| cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| |
| /* Update restart-interval state too */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* Encode a single block's worth of coefficients */ |
| |
| LOCAL(boolean) |
| encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
| c_derived_tbl *dctbl, c_derived_tbl *actbl) |
| { |
| register int temp, temp2; |
| register int nbits; |
| register int r, k; |
| int Se = state->cinfo->lim_Se; |
| const int * natural_order = state->cinfo->natural_order; |
| |
| /* Encode the DC coefficient difference per section F.1.2.1 */ |
| |
| temp = temp2 = block[0] - last_dc_val; |
| |
| if (temp < 0) { |
| temp = -temp; /* temp is abs value of input */ |
| /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
| /* This code assumes we are on a two's complement machine */ |
| temp2--; |
| } |
| |
| /* Find the number of bits needed for the magnitude of the coefficient */ |
| nbits = 0; |
| while (temp) { |
| nbits++; |
| temp >>= 1; |
| } |
| /* Check for out-of-range coefficient values. |
| * Since we're encoding a difference, the range limit is twice as much. |
| */ |
| if (nbits > MAX_COEF_BITS+1) |
| ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
| |
| /* Emit the Huffman-coded symbol for the number of bits */ |
| if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
| return FALSE; |
| |
| /* Emit that number of bits of the value, if positive, */ |
| /* or the complement of its magnitude, if negative. */ |
| if (nbits) /* emit_bits rejects calls with size 0 */ |
| if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
| return FALSE; |
| |
| /* Encode the AC coefficients per section F.1.2.2 */ |
| |
| r = 0; /* r = run length of zeros */ |
| |
| for (k = 1; k <= Se; k++) { |
| if ((temp2 = block[natural_order[k]]) == 0) { |
| r++; |
| } else { |
| /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
| while (r > 15) { |
| if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
| return FALSE; |
| r -= 16; |
| } |
| |
| temp = temp2; |
| if (temp < 0) { |
| temp = -temp; /* temp is abs value of input */ |
| /* This code assumes we are on a two's complement machine */ |
| temp2--; |
| } |
| |
| /* Find the number of bits needed for the magnitude of the coefficient */ |
| nbits = 1; /* there must be at least one 1 bit */ |
| while ((temp >>= 1)) |
| nbits++; |
| /* Check for out-of-range coefficient values */ |
| if (nbits > MAX_COEF_BITS) |
| ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
| |
| /* Emit Huffman symbol for run length / number of bits */ |
| temp = (r << 4) + nbits; |
| if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp])) |
| return FALSE; |
| |
| /* Emit that number of bits of the value, if positive, */ |
| /* or the complement of its magnitude, if negative. */ |
| if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
| return FALSE; |
| |
| r = 0; |
| } |
| } |
| |
| /* If the last coef(s) were zero, emit an end-of-block code */ |
| if (r > 0) |
| if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * Encode and output one MCU's worth of Huffman-compressed coefficients. |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| working_state state; |
| int blkn, ci; |
| jpeg_component_info * compptr; |
| |
| /* Load up working state */ |
| state.next_output_byte = cinfo->dest->next_output_byte; |
| state.free_in_buffer = cinfo->dest->free_in_buffer; |
| ASSIGN_STATE(state.cur, entropy->saved); |
| state.cinfo = cinfo; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) |
| if (! emit_restart_s(&state, entropy->next_restart_num)) |
| return FALSE; |
| } |
| |
| /* Encode the MCU data blocks */ |
| for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| ci = cinfo->MCU_membership[blkn]; |
| compptr = cinfo->cur_comp_info[ci]; |
| if (! encode_one_block(&state, |
| MCU_data[blkn][0], state.cur.last_dc_val[ci], |
| entropy->dc_derived_tbls[compptr->dc_tbl_no], |
| entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
| return FALSE; |
| /* Update last_dc_val */ |
| state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
| } |
| |
| /* Completed MCU, so update state */ |
| cinfo->dest->next_output_byte = state.next_output_byte; |
| cinfo->dest->free_in_buffer = state.free_in_buffer; |
| ASSIGN_STATE(entropy->saved, state.cur); |
| |
| /* Update restart-interval state too */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * Finish up at the end of a Huffman-compressed scan. |
| */ |
| |
| METHODDEF(void) |
| finish_pass_huff (j_compress_ptr cinfo) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| working_state state; |
| |
| if (cinfo->progressive_mode) { |
| entropy->next_output_byte = cinfo->dest->next_output_byte; |
| entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| |
| /* Flush out any buffered data */ |
| emit_eobrun(entropy); |
| flush_bits_e(entropy); |
| |
| cinfo->dest->next_output_byte = entropy->next_output_byte; |
| cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| } else { |
| /* Load up working state ... flush_bits needs it */ |
| state.next_output_byte = cinfo->dest->next_output_byte; |
| state.free_in_buffer = cinfo->dest->free_in_buffer; |
| ASSIGN_STATE(state.cur, entropy->saved); |
| state.cinfo = cinfo; |
| |
| /* Flush out the last data */ |
| if (! flush_bits_s(&state)) |
| ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| |
| /* Update state */ |
| cinfo->dest->next_output_byte = state.next_output_byte; |
| cinfo->dest->free_in_buffer = state.free_in_buffer; |
| ASSIGN_STATE(entropy->saved, state.cur); |
| } |
| } |
| |
| |
| /* |
| * Huffman coding optimization. |
| * |
| * We first scan the supplied data and count the number of uses of each symbol |
| * that is to be Huffman-coded. (This process MUST agree with the code above.) |
| * Then we build a Huffman coding tree for the observed counts. |
| * Symbols which are not needed at all for the particular image are not |
| * assigned any code, which saves space in the DHT marker as well as in |
| * the compressed data. |
| */ |
| |
| |
| /* Process a single block's worth of coefficients */ |
| |
| LOCAL(void) |
| htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
| long dc_counts[], long ac_counts[]) |
| { |
| register int temp; |
| register int nbits; |
| register int r, k; |
| int Se = cinfo->lim_Se; |
| const int * natural_order = cinfo->natural_order; |
| |
| /* Encode the DC coefficient difference per section F.1.2.1 */ |
| |
| temp = block[0] - last_dc_val; |
| if (temp < 0) |
| temp = -temp; |
| |
| /* Find the number of bits needed for the magnitude of the coefficient */ |
| nbits = 0; |
| while (temp) { |
| nbits++; |
| temp >>= 1; |
| } |
| /* Check for out-of-range coefficient values. |
| * Since we're encoding a difference, the range limit is twice as much. |
| */ |
| if (nbits > MAX_COEF_BITS+1) |
| ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| |
| /* Count the Huffman symbol for the number of bits */ |
| dc_counts[nbits]++; |
| |
| /* Encode the AC coefficients per section F.1.2.2 */ |
| |
| r = 0; /* r = run length of zeros */ |
| |
| for (k = 1; k <= Se; k++) { |
| if ((temp = block[natural_order[k]]) == 0) { |
| r++; |
| } else { |
| /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
| while (r > 15) { |
| ac_counts[0xF0]++; |
| r -= 16; |
| } |
| |
| /* Find the number of bits needed for the magnitude of the coefficient */ |
| if (temp < 0) |
| temp = -temp; |
| |
| /* Find the number of bits needed for the magnitude of the coefficient */ |
| nbits = 1; /* there must be at least one 1 bit */ |
| while ((temp >>= 1)) |
| nbits++; |
| /* Check for out-of-range coefficient values */ |
| if (nbits > MAX_COEF_BITS) |
| ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| |
| /* Count Huffman symbol for run length / number of bits */ |
| ac_counts[(r << 4) + nbits]++; |
| |
| r = 0; |
| } |
| } |
| |
| /* If the last coef(s) were zero, emit an end-of-block code */ |
| if (r > 0) |
| ac_counts[0]++; |
| } |
| |
| |
| /* |
| * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
| * No data is actually output, so no suspension return is possible. |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| int blkn, ci; |
| jpeg_component_info * compptr; |
| |
| /* Take care of restart intervals if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| /* Re-initialize DC predictions to 0 */ |
| for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
| entropy->saved.last_dc_val[ci] = 0; |
| /* Update restart state */ |
| entropy->restarts_to_go = cinfo->restart_interval; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| ci = cinfo->MCU_membership[blkn]; |
| compptr = cinfo->cur_comp_info[ci]; |
| htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
| entropy->dc_count_ptrs[compptr->dc_tbl_no], |
| entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
| entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * Generate the best Huffman code table for the given counts, fill htbl. |
| * |
| * The JPEG standard requires that no symbol be assigned a codeword of all |
| * one bits (so that padding bits added at the end of a compressed segment |
| * can't look like a valid code). Because of the canonical ordering of |
| * codewords, this just means that there must be an unused slot in the |
| * longest codeword length category. Section K.2 of the JPEG spec suggests |
| * reserving such a slot by pretending that symbol 256 is a valid symbol |
| * with count 1. In theory that's not optimal; giving it count zero but |
| * including it in the symbol set anyway should give a better Huffman code. |
| * But the theoretically better code actually seems to come out worse in |
| * practice, because it produces more all-ones bytes (which incur stuffed |
| * zero bytes in the final file). In any case the difference is tiny. |
| * |
| * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
| * If some symbols have a very small but nonzero probability, the Huffman tree |
| * must be adjusted to meet the code length restriction. We currently use |
| * the adjustment method suggested in JPEG section K.2. This method is *not* |
| * optimal; it may not choose the best possible limited-length code. But |
| * typically only very-low-frequency symbols will be given less-than-optimal |
| * lengths, so the code is almost optimal. Experimental comparisons against |
| * an optimal limited-length-code algorithm indicate that the difference is |
| * microscopic --- usually less than a hundredth of a percent of total size. |
| * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
| */ |
| |
| LOCAL(void) |
| jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
| { |
| #define MAX_CLEN 32 /* assumed maximum initial code length */ |
| UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
| int codesize[257]; /* codesize[k] = code length of symbol k */ |
| int others[257]; /* next symbol in current branch of tree */ |
| int c1, c2, i, j; |
| UINT8 *p; |
| long v; |
| |
| freq[256] = 1; /* make sure 256 has a nonzero count */ |
| /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
| * that no real symbol is given code-value of all ones, because 256 |
| * will be placed last in the largest codeword category. |
| * In the symbol list build procedure this element serves as sentinel |
| * for the zero run loop. |
| */ |
| |
| #ifndef DONT_USE_FANCY_HUFF_OPT |
| |
| /* Build list of symbols sorted in order of descending frequency */ |
| /* This approach has several benefits (thank to John Korejwa for the idea): |
| * 1. |
| * If a codelength category is split during the length limiting procedure |
| * below, the feature that more frequent symbols are assigned shorter |
| * codewords remains valid for the adjusted code. |
| * 2. |
| * To reduce consecutive ones in a Huffman data stream (thus reducing the |
| * number of stuff bytes in JPEG) it is preferable to follow 0 branches |
| * (and avoid 1 branches) as much as possible. This is easily done by |
| * assigning symbols to leaves of the Huffman tree in order of decreasing |
| * frequency, with no secondary sort based on codelengths. |
| * 3. |
| * The symbol list can be built independently from the assignment of code |
| * lengths by the Huffman procedure below. |
| * Note: The symbol list build procedure must be performed first, because |
| * the Huffman procedure assigning the codelengths clobbers the frequency |
| * counts! |
| */ |
| |
| /* Here we use the others array as a linked list of nonzero frequencies |
| * to be sorted. Already sorted elements are removed from the list. |
| */ |
| |
| /* Building list */ |
| |
| /* This item does not correspond to a valid symbol frequency and is used |
| * as starting index. |
| */ |
| j = 256; |
| |
| for (i = 0;; i++) { |
| if (freq[i] == 0) /* skip zero frequencies */ |
| continue; |
| if (i > 255) |
| break; |
| others[j] = i; /* this symbol value */ |
| j = i; /* previous symbol value */ |
| } |
| others[j] = -1; /* mark end of list */ |
| |
| /* Sorting list */ |
| |
| p = htbl->huffval; |
| while ((c1 = others[256]) >= 0) { |
| v = freq[c1]; |
| i = c1; /* first symbol value */ |
| j = 256; /* pseudo symbol value for starting index */ |
| while ((c2 = others[c1]) >= 0) { |
| if (freq[c2] > v) { |
| v = freq[c2]; |
| i = c2; /* this symbol value */ |
| j = c1; /* previous symbol value */ |
| } |
| c1 = c2; |
| } |
| others[j] = others[i]; /* remove this symbol i from list */ |
| *p++ = (UINT8) i; |
| } |
| |
| #endif /* DONT_USE_FANCY_HUFF_OPT */ |
| |
| /* This algorithm is explained in section K.2 of the JPEG standard */ |
| |
| MEMZERO(bits, SIZEOF(bits)); |
| MEMZERO(codesize, SIZEOF(codesize)); |
| for (i = 0; i < 257; i++) |
| others[i] = -1; /* init links to empty */ |
| |
| /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
| |
| for (;;) { |
| /* Find the smallest nonzero frequency, set c1 = its symbol */ |
| /* In case of ties, take the larger symbol number */ |
| c1 = -1; |
| v = 1000000000L; |
| for (i = 0; i <= 256; i++) { |
| if (freq[i] && freq[i] <= v) { |
| v = freq[i]; |
| c1 = i; |
| } |
| } |
| |
| /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
| /* In case of ties, take the larger symbol number */ |
| c2 = -1; |
| v = 1000000000L; |
| for (i = 0; i <= 256; i++) { |
| if (freq[i] && freq[i] <= v && i != c1) { |
| v = freq[i]; |
| c2 = i; |
| } |
| } |
| |
| /* Done if we've merged everything into one frequency */ |
| if (c2 < 0) |
| break; |
| |
| /* Else merge the two counts/trees */ |
| freq[c1] += freq[c2]; |
| freq[c2] = 0; |
| |
| /* Increment the codesize of everything in c1's tree branch */ |
| codesize[c1]++; |
| while (others[c1] >= 0) { |
| c1 = others[c1]; |
| codesize[c1]++; |
| } |
| |
| others[c1] = c2; /* chain c2 onto c1's tree branch */ |
| |
| /* Increment the codesize of everything in c2's tree branch */ |
| codesize[c2]++; |
| while (others[c2] >= 0) { |
| c2 = others[c2]; |
| codesize[c2]++; |
| } |
| } |
| |
| /* Now count the number of symbols of each code length */ |
| for (i = 0; i <= 256; i++) { |
| if (codesize[i]) { |
| /* The JPEG standard seems to think that this can't happen, */ |
| /* but I'm paranoid... */ |
| if (codesize[i] > MAX_CLEN) |
| ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); |
| |
| bits[codesize[i]]++; |
| } |
| } |
| |
| /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
| * Huffman procedure assigned any such lengths, we must adjust the coding. |
| * Here is what the JPEG spec says about how this next bit works: |
| * Since symbols are paired for the longest Huffman code, the symbols are |
| * removed from this length category two at a time. The prefix for the pair |
| * (which is one bit shorter) is allocated to one of the pair; then, |
| * skipping the BITS entry for that prefix length, a code word from the next |
| * shortest nonzero BITS entry is converted into a prefix for two code words |
| * one bit longer. |
| */ |
| |
| for (i = MAX_CLEN; i > 16; i--) { |
| while (bits[i] > 0) { |
| j = i - 2; /* find length of new prefix to be used */ |
| while (bits[j] == 0) { |
| if (j == 0) |
| ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); |
| j--; |
| } |
| |
| bits[i] -= 2; /* remove two symbols */ |
| bits[i-1]++; /* one goes in this length */ |
| bits[j+1] += 2; /* two new symbols in this length */ |
| bits[j]--; /* symbol of this length is now a prefix */ |
| } |
| } |
| |
| /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
| while (bits[i] == 0) /* find largest codelength still in use */ |
| i--; |
| bits[i]--; |
| |
| /* Return final symbol counts (only for lengths 0..16) */ |
| MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
| |
| #ifdef DONT_USE_FANCY_HUFF_OPT |
| |
| /* Return a list of the symbols sorted by code length */ |
| /* Note: Due to the codelength changes made above, it can happen |
| * that more frequent symbols are assigned longer codewords. |
| */ |
| p = htbl->huffval; |
| for (i = 1; i <= MAX_CLEN; i++) { |
| for (j = 0; j <= 255; j++) { |
| if (codesize[j] == i) { |
| *p++ = (UINT8) j; |
| } |
| } |
| } |
| |
| #endif /* DONT_USE_FANCY_HUFF_OPT */ |
| |
| /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
| htbl->sent_table = FALSE; |
| } |
| |
| |
| /* |
| * Finish up a statistics-gathering pass and create the new Huffman tables. |
| */ |
| |
| METHODDEF(void) |
| finish_pass_gather (j_compress_ptr cinfo) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| int ci, tbl; |
| jpeg_component_info * compptr; |
| JHUFF_TBL **htblptr; |
| boolean did_dc[NUM_HUFF_TBLS]; |
| boolean did_ac[NUM_HUFF_TBLS]; |
| |
| if (cinfo->progressive_mode) |
| /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
| emit_eobrun(entropy); |
| |
| /* It's important not to apply jpeg_gen_optimal_table more than once |
| * per table, because it clobbers the input frequency counts! |
| */ |
| MEMZERO(did_dc, SIZEOF(did_dc)); |
| MEMZERO(did_ac, SIZEOF(did_ac)); |
| |
| for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| compptr = cinfo->cur_comp_info[ci]; |
| /* DC needs no table for refinement scan */ |
| if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
| tbl = compptr->dc_tbl_no; |
| if (! did_dc[tbl]) { |
| htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
| if (*htblptr == NULL) |
| *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
| jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); |
| did_dc[tbl] = TRUE; |
| } |
| } |
| /* AC needs no table when not present */ |
| if (cinfo->Se) { |
| tbl = compptr->ac_tbl_no; |
| if (! did_ac[tbl]) { |
| htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
| if (*htblptr == NULL) |
| *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
| jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); |
| did_ac[tbl] = TRUE; |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| * Initialize for a Huffman-compressed scan. |
| * If gather_statistics is TRUE, we do not output anything during the scan, |
| * just count the Huffman symbols used and generate Huffman code tables. |
| */ |
| |
| METHODDEF(void) |
| start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
| { |
| huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| int ci, tbl; |
| jpeg_component_info * compptr; |
| |
| if (gather_statistics) |
| entropy->pub.finish_pass = finish_pass_gather; |
| else |
| entropy->pub.finish_pass = finish_pass_huff; |
| |
| if (cinfo->progressive_mode) { |
| entropy->cinfo = cinfo; |
| entropy->gather_statistics = gather_statistics; |
| |
| /* We assume jcmaster.c already validated the scan parameters. */ |
| |
| /* Select execution routine */ |
| if (cinfo->Ah == 0) { |
| if (cinfo->Ss == 0) |
| entropy->pub.encode_mcu = encode_mcu_DC_first; |
| else |
| entropy->pub.encode_mcu = encode_mcu_AC_first; |
| } else { |
| if (cinfo->Ss == 0) |
| entropy->pub.encode_mcu = encode_mcu_DC_refine; |
| else { |
| entropy->pub.encode_mcu = encode_mcu_AC_refine; |
| /* AC refinement needs a correction bit buffer */ |
| if (entropy->bit_buffer == NULL) |
| entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) |
| ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); |
| } |
| } |
| |
| /* Initialize AC stuff */ |
| entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; |
| entropy->EOBRUN = 0; |
| entropy->BE = 0; |
| } else { |
| if (gather_statistics) |
| entropy->pub.encode_mcu = encode_mcu_gather; |
| else |
| entropy->pub.encode_mcu = encode_mcu_huff; |
| } |
| |
| for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| compptr = cinfo->cur_comp_info[ci]; |
| /* DC needs no table for refinement scan */ |
| if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
| tbl = compptr->dc_tbl_no; |
| if (gather_statistics) { |
| /* Check for invalid table index */ |
| /* (make_c_derived_tbl does this in the other path) */ |
| if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
| ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
| /* Allocate and zero the statistics tables */ |
| /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
| if (entropy->dc_count_ptrs[tbl] == NULL) |
| entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) |
| ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); |
| MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); |
| } else { |
| /* Compute derived values for Huffman tables */ |
| /* We may do this more than once for a table, but it's not expensive */ |
| jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, |
| & entropy->dc_derived_tbls[tbl]); |
| } |
| /* Initialize DC predictions to 0 */ |
| entropy->saved.last_dc_val[ci] = 0; |
| } |
| /* AC needs no table when not present */ |
| if (cinfo->Se) { |
| tbl = compptr->ac_tbl_no; |
| if (gather_statistics) { |
| if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
| ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
| if (entropy->ac_count_ptrs[tbl] == NULL) |
| entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) |
| ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); |
| MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); |
| } else { |
| jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, |
| & entropy->ac_derived_tbls[tbl]); |
| } |
| } |
| } |
| |
| /* Initialize bit buffer to empty */ |
| entropy->saved.put_buffer = 0; |
| entropy->saved.put_bits = 0; |
| |
| /* Initialize restart stuff */ |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num = 0; |
| } |
| |
| |
| /* |
| * Module initialization routine for Huffman entropy encoding. |
| */ |
| |
| GLOBAL(void) |
| jinit_huff_encoder (j_compress_ptr cinfo) |
| { |
| huff_entropy_ptr entropy; |
| int i; |
| |
| entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) |
| ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); |
| cinfo->entropy = &entropy->pub; |
| entropy->pub.start_pass = start_pass_huff; |
| |
| /* Mark tables unallocated */ |
| for (i = 0; i < NUM_HUFF_TBLS; i++) { |
| entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
| entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
| } |
| |
| if (cinfo->progressive_mode) |
| entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
| } |