| /* |
| |
| Copyright (c) 2007-2010 Michael G Schwern |
| |
| This software originally derived from Paul Sheer's pivotal_gmtime_r.c. |
| |
| The MIT License: |
| |
| Permission is hereby granted, free of charge, to any person obtaining a copy |
| of this software and associated documentation files (the "Software"), to deal |
| in the Software without restriction, including without limitation the rights |
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| copies of the Software, and to permit persons to whom the Software is |
| furnished to do so, subject to the following conditions: |
| |
| The above copyright notice and this permission notice shall be included in |
| all copies or substantial portions of the Software. |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| THE SOFTWARE. |
| |
| */ |
| |
| /* |
| |
| Programmers who have available to them 64-bit time values as a 'long |
| long' type can use localtime64_r() and gmtime64_r() which correctly |
| converts the time even on 32-bit systems. Whether you have 64-bit time |
| values will depend on the operating system. |
| |
| localtime64_r() is a 64-bit equivalent of localtime_r(). |
| |
| gmtime64_r() is a 64-bit equivalent of gmtime_r(). |
| |
| */ |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <time.h> |
| #include <errno.h> |
| #include "time64.h" |
| #include "time64_limits.h" |
| |
| |
| static const char days_in_month[2][12] = { |
| {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
| {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
| }; |
| |
| static const short julian_days_by_month[2][12] = { |
| {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, |
| {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, |
| }; |
| |
| static const char wday_name[7][4] = { |
| "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" |
| }; |
| |
| static const char mon_name[12][4] = { |
| "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
| }; |
| |
| static const short length_of_year[2] = { 365, 366 }; |
| |
| /* Some numbers relating to the gregorian cycle */ |
| static const Year years_in_gregorian_cycle = 400; |
| #define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1) |
| static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL; |
| |
| /* Year range we can trust the time funcitons with */ |
| #define MAX_SAFE_YEAR 2037 |
| #define MIN_SAFE_YEAR 1971 |
| |
| /* 28 year Julian calendar cycle */ |
| #define SOLAR_CYCLE_LENGTH 28 |
| |
| /* Year cycle from MAX_SAFE_YEAR down. */ |
| static const short safe_years_high[SOLAR_CYCLE_LENGTH] = { |
| 2016, 2017, 2018, 2019, |
| 2020, 2021, 2022, 2023, |
| 2024, 2025, 2026, 2027, |
| 2028, 2029, 2030, 2031, |
| 2032, 2033, 2034, 2035, |
| 2036, 2037, 2010, 2011, |
| 2012, 2013, 2014, 2015 |
| }; |
| |
| /* Year cycle from MIN_SAFE_YEAR up */ |
| static const int safe_years_low[SOLAR_CYCLE_LENGTH] = { |
| 1996, 1997, 1998, 1971, |
| 1972, 1973, 1974, 1975, |
| 1976, 1977, 1978, 1979, |
| 1980, 1981, 1982, 1983, |
| 1984, 1985, 1986, 1987, |
| 1988, 1989, 1990, 1991, |
| 1992, 1993, 1994, 1995, |
| }; |
| |
| /* This isn't used, but it's handy to look at */ |
| #if 0 |
| static const char dow_year_start[SOLAR_CYCLE_LENGTH] = { |
| 5, 0, 1, 2, /* 0 2016 - 2019 */ |
| 3, 5, 6, 0, /* 4 */ |
| 1, 3, 4, 5, /* 8 1996 - 1998, 1971*/ |
| 6, 1, 2, 3, /* 12 1972 - 1975 */ |
| 4, 6, 0, 1, /* 16 */ |
| 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */ |
| 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */ |
| }; |
| #endif |
| |
| /* Let's assume people are going to be looking for dates in the future. |
| Let's provide some cheats so you can skip ahead. |
| This has a 4x speed boost when near 2008. |
| */ |
| /* Number of days since epoch on Jan 1st, 2008 GMT */ |
| #define CHEAT_DAYS (1199145600 / 24 / 60 / 60) |
| #define CHEAT_YEARS 108 |
| |
| #define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) |
| #define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) |
| |
| #ifdef USE_SYSTEM_LOCALTIME |
| # define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ |
| (a) <= SYSTEM_LOCALTIME_MAX && \ |
| (a) >= SYSTEM_LOCALTIME_MIN \ |
| ) |
| #else |
| # define SHOULD_USE_SYSTEM_LOCALTIME(a) (0) |
| #endif |
| |
| #ifdef USE_SYSTEM_GMTIME |
| # define SHOULD_USE_SYSTEM_GMTIME(a) ( \ |
| (a) <= SYSTEM_GMTIME_MAX && \ |
| (a) >= SYSTEM_GMTIME_MIN \ |
| ) |
| #else |
| # define SHOULD_USE_SYSTEM_GMTIME(a) (0) |
| #endif |
| |
| /* Multi varadic macros are a C99 thing, alas */ |
| #ifdef TIME_64_DEBUG |
| # define TIME64_TRACE(format) (fprintf(stderr, format)) |
| # define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1)) |
| # define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2)) |
| # define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3)) |
| #else |
| # define TIME64_TRACE(format) ((void)0) |
| # define TIME64_TRACE1(format, var1) ((void)0) |
| # define TIME64_TRACE2(format, var1, var2) ((void)0) |
| # define TIME64_TRACE3(format, var1, var2, var3) ((void)0) |
| #endif |
| |
| |
| static int is_exception_century(Year year) |
| { |
| int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); |
| TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); |
| |
| return(is_exception); |
| } |
| |
| |
| /* Compare two dates. |
| The result is like cmp. |
| Ignores things like gmtoffset and dst |
| */ |
| static int cmp_date( const struct TM* left, const struct tm* right ) { |
| if( left->tm_year > right->tm_year ) |
| return 1; |
| if( left->tm_year < right->tm_year ) |
| return -1; |
| if( left->tm_mon > right->tm_mon ) |
| return 1; |
| if( left->tm_mon < right->tm_mon ) |
| return -1; |
| if( left->tm_mday > right->tm_mday ) |
| return 1; |
| if( left->tm_mday < right->tm_mday ) |
| return -1; |
| if( left->tm_hour > right->tm_hour ) |
| return 1; |
| if( left->tm_hour < right->tm_hour ) |
| return -1; |
| if( left->tm_min > right->tm_min ) |
| return 1; |
| if( left->tm_min < right->tm_min ) |
| return -1; |
| if( left->tm_sec > right->tm_sec ) |
| return 1; |
| if( left->tm_sec < right->tm_sec ) |
| return -1; |
| return 0; |
| } |
| |
| |
| /* Check if a date is safely inside a range. |
| The intention is to check if its a few days inside. |
| */ |
| static int date_in_safe_range( const struct TM* date, const struct tm* min, const struct tm* max ) { |
| if( cmp_date(date, min) == -1 ) |
| return 0; |
| |
| if( cmp_date(date, max) == 1 ) |
| return 0; |
| |
| return 1; |
| } |
| |
| |
| /* timegm() is not in the C or POSIX spec, but it is such a useful |
| extension I would be remiss in leaving it out. Also I need it |
| for localtime64() |
| */ |
| Time64_T timegm64(const struct TM *date) { |
| Time64_T days = 0; |
| Time64_T seconds = 0; |
| Year year; |
| Year orig_year = (Year)date->tm_year; |
| int cycles = 0; |
| |
| if( (orig_year > 100) || (orig_year < -300) ) { |
| cycles = (orig_year - 100) / 400; |
| orig_year -= cycles * 400; |
| days += (Time64_T)cycles * days_in_gregorian_cycle; |
| } |
| TIME64_TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year); |
| |
| if( orig_year > 70 ) { |
| year = 70; |
| while( year < orig_year ) { |
| days += length_of_year[IS_LEAP(year)]; |
| year++; |
| } |
| } |
| else if ( orig_year < 70 ) { |
| year = 69; |
| do { |
| days -= length_of_year[IS_LEAP(year)]; |
| year--; |
| } while( year >= orig_year ); |
| } |
| |
| days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon]; |
| days += date->tm_mday - 1; |
| |
| seconds = days * 60 * 60 * 24; |
| |
| seconds += date->tm_hour * 60 * 60; |
| seconds += date->tm_min * 60; |
| seconds += date->tm_sec; |
| |
| return(seconds); |
| } |
| |
| |
| static int check_tm(struct TM *tm) |
| { |
| /* Don't forget leap seconds */ |
| assert(tm->tm_sec >= 0); |
| assert(tm->tm_sec <= 61); |
| |
| assert(tm->tm_min >= 0); |
| assert(tm->tm_min <= 59); |
| |
| assert(tm->tm_hour >= 0); |
| assert(tm->tm_hour <= 23); |
| |
| assert(tm->tm_mday >= 1); |
| assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); |
| |
| assert(tm->tm_mon >= 0); |
| assert(tm->tm_mon <= 11); |
| |
| assert(tm->tm_wday >= 0); |
| assert(tm->tm_wday <= 6); |
| |
| assert(tm->tm_yday >= 0); |
| assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); |
| |
| #ifdef HAVE_TM_TM_GMTOFF |
| assert(tm->tm_gmtoff >= -24 * 60 * 60); |
| assert(tm->tm_gmtoff <= 24 * 60 * 60); |
| #endif |
| |
| return 1; |
| } |
| |
| |
| /* The exceptional centuries without leap years cause the cycle to |
| shift by 16 |
| */ |
| static Year cycle_offset(Year year) |
| { |
| const Year start_year = 2000; |
| Year year_diff = year - start_year; |
| Year exceptions; |
| |
| if( year > start_year ) |
| year_diff--; |
| |
| exceptions = year_diff / 100; |
| exceptions -= year_diff / 400; |
| |
| TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", |
| year, exceptions, year_diff); |
| |
| return exceptions * 16; |
| } |
| |
| /* For a given year after 2038, pick the latest possible matching |
| year in the 28 year calendar cycle. |
| |
| A matching year... |
| 1) Starts on the same day of the week. |
| 2) Has the same leap year status. |
| |
| This is so the calendars match up. |
| |
| Also the previous year must match. When doing Jan 1st you might |
| wind up on Dec 31st the previous year when doing a -UTC time zone. |
| |
| Finally, the next year must have the same start day of week. This |
| is for Dec 31st with a +UTC time zone. |
| It doesn't need the same leap year status since we only care about |
| January 1st. |
| */ |
| static int safe_year(const Year year) |
| { |
| int _safe_year = (int)year; |
| Year year_cycle; |
| |
| if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) { |
| return _safe_year; |
| } |
| |
| year_cycle = year + cycle_offset(year); |
| |
| /* safe_years_low is off from safe_years_high by 8 years */ |
| if( year < MIN_SAFE_YEAR ) |
| year_cycle -= 8; |
| |
| /* Change non-leap xx00 years to an equivalent */ |
| if( is_exception_century(year) ) |
| year_cycle += 11; |
| |
| /* Also xx01 years, since the previous year will be wrong */ |
| if( is_exception_century(year - 1) ) |
| year_cycle += 17; |
| |
| year_cycle %= SOLAR_CYCLE_LENGTH; |
| if( year_cycle < 0 ) |
| year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; |
| |
| assert( year_cycle >= 0 ); |
| assert( year_cycle < SOLAR_CYCLE_LENGTH ); |
| if( year < MIN_SAFE_YEAR ) |
| _safe_year = safe_years_low[year_cycle]; |
| else if( year > MAX_SAFE_YEAR ) |
| _safe_year = safe_years_high[year_cycle]; |
| else |
| assert(0); |
| |
| TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", |
| year, year_cycle, _safe_year); |
| |
| assert(_safe_year <= MAX_SAFE_YEAR && _safe_year >= MIN_SAFE_YEAR); |
| |
| return _safe_year; |
| } |
| |
| |
| void copy_tm_to_TM64(const struct tm *src, struct TM *dest) { |
| if( src == NULL ) { |
| memset(dest, 0, sizeof(*dest)); |
| } |
| else { |
| # ifdef USE_TM64 |
| dest->tm_sec = src->tm_sec; |
| dest->tm_min = src->tm_min; |
| dest->tm_hour = src->tm_hour; |
| dest->tm_mday = src->tm_mday; |
| dest->tm_mon = src->tm_mon; |
| dest->tm_year = (Year)src->tm_year; |
| dest->tm_wday = src->tm_wday; |
| dest->tm_yday = src->tm_yday; |
| dest->tm_isdst = src->tm_isdst; |
| |
| # ifdef HAVE_TM_TM_GMTOFF |
| dest->tm_gmtoff = src->tm_gmtoff; |
| # endif |
| |
| # ifdef HAVE_TM_TM_ZONE |
| dest->tm_zone = src->tm_zone; |
| # endif |
| |
| # else |
| /* They're the same type */ |
| memcpy(dest, src, sizeof(*dest)); |
| # endif |
| } |
| } |
| |
| |
| void copy_TM64_to_tm(const struct TM *src, struct tm *dest) { |
| if( src == NULL ) { |
| memset(dest, 0, sizeof(*dest)); |
| } |
| else { |
| # ifdef USE_TM64 |
| dest->tm_sec = src->tm_sec; |
| dest->tm_min = src->tm_min; |
| dest->tm_hour = src->tm_hour; |
| dest->tm_mday = src->tm_mday; |
| dest->tm_mon = src->tm_mon; |
| dest->tm_year = (int)src->tm_year; |
| dest->tm_wday = src->tm_wday; |
| dest->tm_yday = src->tm_yday; |
| dest->tm_isdst = src->tm_isdst; |
| |
| # ifdef HAVE_TM_TM_GMTOFF |
| dest->tm_gmtoff = src->tm_gmtoff; |
| # endif |
| |
| # ifdef HAVE_TM_TM_ZONE |
| dest->tm_zone = src->tm_zone; |
| # endif |
| |
| # else |
| /* They're the same type */ |
| memcpy(dest, src, sizeof(*dest)); |
| # endif |
| } |
| } |
| |
| |
| #ifndef HAVE_LOCALTIME_R |
| /* Simulate localtime_r() to the best of our ability */ |
| static struct tm * fake_localtime_r(const time_t *time, struct tm *result) { |
| const struct tm *static_result = localtime(time); |
| |
| assert(result != NULL); |
| |
| if( static_result == NULL ) { |
| memset(result, 0, sizeof(*result)); |
| return NULL; |
| } |
| else { |
| memcpy(result, static_result, sizeof(*result)); |
| return result; |
| } |
| } |
| #endif |
| |
| |
| #ifndef HAVE_GMTIME_R |
| /* Simulate gmtime_r() to the best of our ability */ |
| static struct tm * fake_gmtime_r(const time_t *time, struct tm *result) { |
| const struct tm *static_result = gmtime(time); |
| |
| assert(result != NULL); |
| |
| if( static_result == NULL ) { |
| memset(result, 0, sizeof(*result)); |
| return NULL; |
| } |
| else { |
| memcpy(result, static_result, sizeof(*result)); |
| return result; |
| } |
| } |
| #endif |
| |
| |
| static Time64_T seconds_between_years(Year left_year, Year right_year) { |
| int increment = (left_year > right_year) ? 1 : -1; |
| Time64_T seconds = 0; |
| int cycles; |
| |
| if( left_year > 2400 ) { |
| cycles = (left_year - 2400) / 400; |
| left_year -= cycles * 400; |
| seconds += cycles * seconds_in_gregorian_cycle; |
| } |
| else if( left_year < 1600 ) { |
| cycles = (left_year - 1600) / 400; |
| left_year += cycles * 400; |
| seconds += cycles * seconds_in_gregorian_cycle; |
| } |
| |
| while( left_year != right_year ) { |
| seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24; |
| right_year += increment; |
| } |
| |
| return seconds * increment; |
| } |
| |
| |
| Time64_T mktime64(struct TM *input_date) { |
| struct tm safe_date; |
| struct TM date; |
| Time64_T timev; |
| Year year = input_date->tm_year + 1900; |
| |
| if( date_in_safe_range(input_date, &SYSTEM_MKTIME_MIN, &SYSTEM_MKTIME_MAX) ) |
| { |
| copy_TM64_to_tm(input_date, &safe_date); |
| timev = (Time64_T)mktime(&safe_date); |
| |
| /* Correct the possibly out of bound input date */ |
| copy_tm_to_TM64(&safe_date, input_date); |
| return timev; |
| } |
| |
| /* Have to make the year safe in date else it won't fit in safe_date */ |
| date = *input_date; |
| date.tm_year = safe_year(year) - 1900; |
| copy_TM64_to_tm(&date, &safe_date); |
| |
| timev = (Time64_T)mktime(&safe_date); |
| |
| /* Correct the user's possibly out of bound input date */ |
| copy_tm_to_TM64(&safe_date, input_date); |
| |
| timev += seconds_between_years(year, (Year)(safe_date.tm_year) + 1900); |
| |
| return timev; |
| } |
| |
| |
| /* Because I think mktime() is a crappy name */ |
| Time64_T timelocal64(struct TM *date) { |
| return mktime64(date); |
| } |
| |
| |
| struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p) |
| { |
| int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; |
| Time64_T v_tm_tday; |
| int leap; |
| Time64_T m; |
| Time64_T timev = *in_time; |
| Year year = 70; |
| int cycles = 0; |
| |
| assert(p != NULL); |
| |
| /* Use the system gmtime() if time_t is small enough */ |
| if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { |
| time_t safe_time = (time_t)*in_time; |
| struct tm safe_date; |
| GMTIME_R(&safe_time, &safe_date); |
| |
| copy_tm_to_TM64(&safe_date, p); |
| assert(check_tm(p)); |
| |
| return p; |
| } |
| |
| #ifdef HAVE_TM_TM_GMTOFF |
| p->tm_gmtoff = 0; |
| #endif |
| p->tm_isdst = 0; |
| |
| #ifdef HAVE_TM_TM_ZONE |
| p->tm_zone = (char*)"UTC"; |
| #endif |
| |
| v_tm_sec = (int)(timev % 60); |
| timev /= 60; |
| v_tm_min = (int)(timev % 60); |
| timev /= 60; |
| v_tm_hour = (int)(timev % 24); |
| timev /= 24; |
| v_tm_tday = timev; |
| |
| WRAP (v_tm_sec, v_tm_min, 60); |
| WRAP (v_tm_min, v_tm_hour, 60); |
| WRAP (v_tm_hour, v_tm_tday, 24); |
| |
| v_tm_wday = (int)((v_tm_tday + 4) % 7); |
| if (v_tm_wday < 0) |
| v_tm_wday += 7; |
| m = v_tm_tday; |
| |
| if (m >= CHEAT_DAYS) { |
| year = CHEAT_YEARS; |
| m -= CHEAT_DAYS; |
| } |
| |
| if (m >= 0) { |
| /* Gregorian cycles, this is huge optimization for distant times */ |
| cycles = (int)(m / (Time64_T) days_in_gregorian_cycle); |
| if( cycles ) { |
| m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
| year += (cycles * years_in_gregorian_cycle); |
| } |
| |
| /* Years */ |
| leap = IS_LEAP (year); |
| while (m >= (Time64_T) length_of_year[leap]) { |
| m -= (Time64_T) length_of_year[leap]; |
| year++; |
| leap = IS_LEAP (year); |
| } |
| |
| /* Months */ |
| v_tm_mon = 0; |
| while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { |
| m -= (Time64_T) days_in_month[leap][v_tm_mon]; |
| v_tm_mon++; |
| } |
| } else { |
| year--; |
| |
| /* Gregorian cycles */ |
| cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1); |
| if( cycles ) { |
| m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
| year += (cycles * years_in_gregorian_cycle); |
| } |
| |
| /* Years */ |
| leap = IS_LEAP (year); |
| while (m < (Time64_T) -length_of_year[leap]) { |
| m += (Time64_T) length_of_year[leap]; |
| year--; |
| leap = IS_LEAP (year); |
| } |
| |
| /* Months */ |
| v_tm_mon = 11; |
| while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { |
| m += (Time64_T) days_in_month[leap][v_tm_mon]; |
| v_tm_mon--; |
| } |
| m += (Time64_T) days_in_month[leap][v_tm_mon]; |
| } |
| |
| p->tm_year = year; |
| if( p->tm_year != year ) { |
| #ifdef EOVERFLOW |
| errno = EOVERFLOW; |
| #endif |
| return NULL; |
| } |
| |
| /* At this point m is less than a year so casting to an int is safe */ |
| p->tm_mday = (int) m + 1; |
| p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; |
| p->tm_sec = v_tm_sec; |
| p->tm_min = v_tm_min; |
| p->tm_hour = v_tm_hour; |
| p->tm_mon = v_tm_mon; |
| p->tm_wday = v_tm_wday; |
| |
| assert(check_tm(p)); |
| |
| return p; |
| } |
| |
| |
| struct TM *localtime64_r (const Time64_T *timev, struct TM *local_tm) |
| { |
| time_t safe_time; |
| struct tm safe_date; |
| struct TM gm_tm; |
| Year orig_year; |
| int month_diff; |
| |
| assert(local_tm != NULL); |
| |
| /* Use the system localtime() if time_t is small enough */ |
| if( SHOULD_USE_SYSTEM_LOCALTIME(*timev) ) { |
| safe_time = (time_t)*timev; |
| |
| TIME64_TRACE1("Using system localtime for %lld\n", *timev); |
| |
| LOCALTIME_R(&safe_time, &safe_date); |
| |
| copy_tm_to_TM64(&safe_date, local_tm); |
| assert(check_tm(local_tm)); |
| |
| return local_tm; |
| } |
| |
| if( gmtime64_r(timev, &gm_tm) == NULL ) { |
| TIME64_TRACE1("gmtime64_r returned null for %lld\n", *timev); |
| return NULL; |
| } |
| |
| orig_year = gm_tm.tm_year; |
| |
| if (gm_tm.tm_year > (2037 - 1900) || |
| gm_tm.tm_year < (1970 - 1900) |
| ) |
| { |
| TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); |
| gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year) + 1900) - 1900; |
| } |
| |
| safe_time = (time_t)timegm64(&gm_tm); |
| if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { |
| TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); |
| return NULL; |
| } |
| |
| copy_tm_to_TM64(&safe_date, local_tm); |
| |
| local_tm->tm_year = orig_year; |
| if( local_tm->tm_year != orig_year ) { |
| TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", |
| (Year)local_tm->tm_year, (Year)orig_year); |
| |
| #ifdef EOVERFLOW |
| errno = EOVERFLOW; |
| #endif |
| return NULL; |
| } |
| |
| |
| month_diff = local_tm->tm_mon - gm_tm.tm_mon; |
| |
| /* When localtime is Dec 31st previous year and |
| gmtime is Jan 1st next year. |
| */ |
| if( month_diff == 11 ) { |
| local_tm->tm_year--; |
| } |
| |
| /* When localtime is Jan 1st, next year and |
| gmtime is Dec 31st, previous year. |
| */ |
| if( month_diff == -11 ) { |
| local_tm->tm_year++; |
| } |
| |
| /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st |
| in a non-leap xx00. There is one point in the cycle |
| we can't account for which the safe xx00 year is a leap |
| year. So we need to correct for Dec 31st comming out as |
| the 366th day of the year. |
| */ |
| if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) |
| local_tm->tm_yday--; |
| |
| assert(check_tm(local_tm)); |
| |
| return local_tm; |
| } |
| |
| |
| static int valid_tm_wday( const struct TM* date ) { |
| if( 0 <= date->tm_wday && date->tm_wday <= 6 ) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int valid_tm_mon( const struct TM* date ) { |
| if( 0 <= date->tm_mon && date->tm_mon <= 11 ) |
| return 1; |
| |
| return 0; |
| } |
| |
| |
| char *asctime64_r( const struct TM* date, char *result ) { |
| /* I figure everything else can be displayed, even hour 25, but if |
| these are out of range we walk off the name arrays */ |
| if( !valid_tm_wday(date) || !valid_tm_mon(date) ) |
| return NULL; |
| |
| sprintf(result, TM64_ASCTIME_FORMAT, |
| wday_name[date->tm_wday], |
| mon_name[date->tm_mon], |
| date->tm_mday, date->tm_hour, |
| date->tm_min, date->tm_sec, |
| 1900 + date->tm_year); |
| |
| return result; |
| } |
| |
| |
| char *ctime64_r( const Time64_T* timev, char* result ) { |
| struct TM date; |
| |
| if (!localtime64_r( timev, &date )) |
| return NULL; |
| |
| return asctime64_r( &date, result ); |
| } |
| |