blob: d03dc2b2fb281bd88d194a698149352534bd2854 [file] [log] [blame]
/*
* plist.c
* Binary plist implementation
*
* Copyright (c) 2008 Jonathan Beck All Rights Reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <libxml/encoding.h>
#include <ctype.h>
#include <plist/plist.h>
#include "plist.h"
#include "hashtable.h"
#include "bytearray.h"
#include "ptrarray.h"
#include <node.h>
#include <node_iterator.h>
/* Magic marker and size. */
#define BPLIST_MAGIC ((uint8_t*)"bplist")
#define BPLIST_MAGIC_SIZE 6
#define BPLIST_VERSION ((uint8_t*)"00")
#define BPLIST_VERSION_SIZE 2
#define BPLIST_TRL_SIZE 26
#define BPLIST_TRL_OFFSIZE_IDX 0
#define BPLIST_TRL_PARMSIZE_IDX 1
#define BPLIST_TRL_NUMOBJ_IDX 2
#define BPLIST_TRL_ROOTOBJ_IDX 10
#define BPLIST_TRL_OFFTAB_IDX 18
enum
{
BPLIST_NULL = 0x00,
BPLIST_FALSE = 0x08,
BPLIST_TRUE = 0x09,
BPLIST_FILL = 0x0F, /* will be used for length grabbing */
BPLIST_UINT = 0x10,
BPLIST_REAL = 0x20,
BPLIST_DATE = 0x30,
BPLIST_DATA = 0x40,
BPLIST_STRING = 0x50,
BPLIST_UNICODE = 0x60,
BPLIST_UID = 0x70,
BPLIST_ARRAY = 0xA0,
BPLIST_SET = 0xC0,
BPLIST_DICT = 0xD0,
BPLIST_MASK = 0xF0
};
static void float_byte_convert(uint8_t * address, size_t size)
{
#if PLIST_BYTE_ORDER == PLIST_LITTLE_ENDIAN && !defined (__VFP_FP__)
uint8_t i = 0, j = 0;
uint8_t tmp = 0;
for (i = 0; i < (size / 2); i++)
{
tmp = address[i];
j = ((size - 1) + 0) - i;
address[i] = address[j];
address[j] = tmp;
}
#endif
}
union plist_uint_ptr
{
void *src;
uint8_t *u8ptr;
uint16_t *u16ptr;
uint32_t *u32ptr;
uint64_t *u64ptr;
};
#define get_unaligned(ptr) \
({ \
struct __attribute__((packed)) { \
typeof(*(ptr)) __v; \
} *__p = (void *) (ptr); \
__p->__v; \
})
static void byte_convert(uint8_t * address, size_t size)
{
#if PLIST_BYTE_ORDER == PLIST_LITTLE_ENDIAN
uint8_t i = 0, j = 0;
uint8_t tmp = 0;
for (i = 0; i < (size / 2); i++)
{
tmp = address[i];
j = ((size - 1) + 0) - i;
address[i] = address[j];
address[j] = tmp;
}
#endif
}
static uint32_t uint24_from_be(union plist_uint_ptr buf)
{
union plist_uint_ptr tmp;
uint32_t ret = 0;
tmp.src = &ret;
memcpy(tmp.u8ptr + 1, buf.u8ptr, 3 * sizeof(char));
byte_convert(tmp.u8ptr, sizeof(uint32_t));
return ret;
}
#ifndef be16toh
#if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN
#define be16toh(x) (x)
#else
#define be16toh(x) ((((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8))
#endif
#endif
#ifndef be32toh
#if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN
#define be32toh(x) (x)
#else
#define be32toh(x) ((((x) & 0xFF000000) >> 24) \
| (((x) & 0x00FF0000) >> 8) \
| (((x) & 0x0000FF00) << 8) \
| (((x) & 0x000000FF) << 24))
#endif
#endif
#ifndef be64toh
#if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN
#define be64toh(x) (x)
#else
#define be64toh(x) ((((x) & 0xFF00000000000000ull) >> 56) \
| (((x) & 0x00FF000000000000ull) >> 40) \
| (((x) & 0x0000FF0000000000ull) >> 24) \
| (((x) & 0x000000FF00000000ull) >> 8) \
| (((x) & 0x00000000FF000000ull) << 8) \
| (((x) & 0x0000000000FF0000ull) << 24) \
| (((x) & 0x000000000000FF00ull) << 40) \
| (((x) & 0x00000000000000FFull) << 56))
#endif
#endif
#define UINT_TO_HOST(x, n) \
({ \
union plist_uint_ptr __up; \
__up.src = x; \
(n == 8 ? be64toh( get_unaligned(__up.u64ptr) ) : \
(n == 4 ? be32toh( get_unaligned(__up.u32ptr) ) : \
(n == 3 ? uint24_from_be( __up ) : \
(n == 2 ? be16toh( get_unaligned(__up.u16ptr) ) : \
*__up.u8ptr )))); \
})
#define be64dec(x) \
({ \
union plist_uint_ptr __up; \
__up.src = x; \
be64toh( get_unaligned(__up.u64ptr) ); \
})
#define get_needed_bytes(x) \
( ((uint64_t)x) < (1ULL << 8) ? 1 : \
( ((uint64_t)x) < (1ULL << 16) ? 2 : \
( ((uint64_t)x) < (1ULL << 24) ? 3 : \
( ((uint64_t)x) < (1ULL << 32) ? 4 : 8))))
#define get_real_bytes(x) (x == (float) x ? 4 : 8)
#define NODE_IS_ROOT(x) (((node_t*)x)->isRoot)
static plist_t parse_uint_node(char *bnode, uint8_t size, char **next_object)
{
plist_data_t data = plist_new_plist_data();
size = 1 << size; // make length less misleading
switch (size)
{
case sizeof(uint8_t):
case sizeof(uint16_t):
case sizeof(uint32_t):
case sizeof(uint64_t):
memcpy(&data->intval, bnode, size);
data->intval = UINT_TO_HOST(&data->intval, size);
break;
default:
free(data);
return NULL;
};
*next_object = bnode + size;
data->type = PLIST_UINT;
data->length = sizeof(uint64_t);
return node_create(NULL, data);
}
static plist_t parse_real_node(char *bnode, uint8_t size)
{
plist_data_t data = plist_new_plist_data();
float floatval = 0.0;
uint8_t* buf;
size = 1 << size; // make length less misleading
buf = malloc (size);
memcpy (buf, bnode, size);
switch (size)
{
case sizeof(float):
float_byte_convert(buf, size);
floatval = *(float *) buf;
data->realval = floatval;
break;
case sizeof(double):
float_byte_convert(buf, size);
data->realval = *(double *) buf;
break;
default:
free(data);
return NULL;
}
free (buf);
data->type = PLIST_REAL;
data->length = sizeof(double);
return node_create(NULL, data);
}
static plist_t parse_date_node(char *bnode, uint8_t size)
{
plist_t node = parse_real_node(bnode, size);
plist_data_t data = plist_get_data(node);
double time_real = data->realval;
data->timeval.tv_sec = (long) time_real;
data->timeval.tv_usec = (time_real - (long) time_real) * 1000000;
data->type = PLIST_DATE;
data->length = sizeof(struct timeval);
return node;
}
static plist_t parse_string_node(char *bnode, uint64_t size)
{
plist_data_t data = plist_new_plist_data();
data->type = PLIST_STRING;
data->strval = (char *) malloc(sizeof(char) * (size + 1));
memcpy(data->strval, bnode, size);
data->strval[size] = '\0';
data->length = strlen(data->strval);
return node_create(NULL, data);
}
static char *plist_utf16_to_utf8(uint16_t *unistr, long len, long *items_read, long *items_written)
{
if (!unistr || (len <= 0)) return NULL;
char *outbuf = (char*)malloc(3*(len+1));
int p = 0;
int i = 0;
uint16_t wc;
while (i < len) {
wc = unistr[i++];
if (wc >= 0x800) {
outbuf[p++] = (char)(0xE0 + ((wc >> 12) & 0xF));
outbuf[p++] = (char)(0x80 + ((wc >> 6) & 0x3F));
outbuf[p++] = (char)(0x80 + (wc & 0x3F));
} else if (wc >= 0x80) {
outbuf[p++] = (char)(0xC0 + ((wc >> 6) & 0x1F));
outbuf[p++] = (char)(0x80 + (wc & 0x3F));
} else {
outbuf[p++] = (char)(wc & 0x7F);
}
}
if (items_read) {
*items_read = i;
}
if (items_written) {
*items_written = p;
}
outbuf[p] = 0;
return outbuf;
}
static plist_t parse_unicode_node(char *bnode, uint64_t size)
{
plist_data_t data = plist_new_plist_data();
uint64_t i = 0;
uint16_t *unicodestr = NULL;
char *tmpstr = NULL;
long items_read = 0;
long items_written = 0;
data->type = PLIST_STRING;
unicodestr = (uint16_t*) malloc(sizeof(uint16_t) * size);
memcpy(unicodestr, bnode, sizeof(uint16_t) * size);
for (i = 0; i < size; i++)
byte_convert((uint8_t *) (unicodestr + i), sizeof(uint16_t));
tmpstr = plist_utf16_to_utf8(unicodestr, size, &items_read, &items_written);
free(unicodestr);
data->type = PLIST_STRING;
data->strval = (char *) malloc(sizeof(char) * (items_written + 1));
memcpy(data->strval, tmpstr, items_written);
data->strval[items_written] = '\0';
data->length = strlen(data->strval);
free(tmpstr);
return node_create(NULL, data);
}
static plist_t parse_data_node(char *bnode, uint64_t size)
{
plist_data_t data = plist_new_plist_data();
data->type = PLIST_DATA;
data->length = size;
data->buff = (uint8_t *) malloc(sizeof(uint8_t) * size);
memcpy(data->buff, bnode, sizeof(uint8_t) * size);
return node_create(NULL, data);
}
static plist_t parse_dict_node(char *bnode, uint64_t size, uint32_t ref_size)
{
plist_data_t data = plist_new_plist_data();
data->type = PLIST_DICT;
data->length = size;
data->buff = (uint8_t *) malloc(sizeof(uint8_t) * size * ref_size * 2);
memcpy(data->buff, bnode, sizeof(uint8_t) * size * ref_size * 2);
return node_create(NULL, data);
}
static plist_t parse_array_node(char *bnode, uint64_t size, uint32_t ref_size)
{
plist_data_t data = plist_new_plist_data();
data->type = PLIST_ARRAY;
data->length = size;
data->buff = (uint8_t *) malloc(sizeof(uint8_t) * size * ref_size);
memcpy(data->buff, bnode, sizeof(uint8_t) * size * ref_size);
return node_create(NULL, data);
}
static plist_t parse_bin_node(char *object, uint8_t dict_size, char **next_object)
{
uint16_t type = 0;
uint64_t size = 0;
if (!object)
return NULL;
type = (*object) & 0xF0;
size = (*object) & 0x0F;
object++;
switch (type)
{
case BPLIST_NULL:
switch (size)
{
case BPLIST_TRUE:
{
plist_data_t data = plist_new_plist_data();
data->type = PLIST_BOOLEAN;
data->boolval = TRUE;
data->length = 1;
return node_create(NULL, data);
}
case BPLIST_FALSE:
{
plist_data_t data = plist_new_plist_data();
data->type = PLIST_BOOLEAN;
data->boolval = FALSE;
data->length = 1;
return node_create(NULL, data);
}
case BPLIST_NULL:
default:
return NULL;
}
case BPLIST_UINT:
return parse_uint_node(object, size, next_object);
case BPLIST_REAL:
return parse_real_node(object, size);
case BPLIST_DATE:
if (3 != size)
return NULL;
else
return parse_date_node(object, size);
case BPLIST_DATA:
if (0x0F == size)
{
plist_t size_node = parse_bin_node(object, dict_size, &object);
if (plist_get_node_type(size_node) != PLIST_UINT)
return NULL;
plist_get_uint_val(size_node, &size);
plist_free(size_node);
}
return parse_data_node(object, size);
case BPLIST_STRING:
if (0x0F == size)
{
plist_t size_node = parse_bin_node(object, dict_size, &object);
if (plist_get_node_type(size_node) != PLIST_UINT)
return NULL;
plist_get_uint_val(size_node, &size);
plist_free(size_node);
}
return parse_string_node(object, size);
case BPLIST_UNICODE:
if (0x0F == size)
{
plist_t size_node = parse_bin_node(object, dict_size, &object);
if (plist_get_node_type(size_node) != PLIST_UINT)
return NULL;
plist_get_uint_val(size_node, &size);
plist_free(size_node);
}
return parse_unicode_node(object, size);
case BPLIST_UID:
case BPLIST_ARRAY:
if (0x0F == size)
{
plist_t size_node = parse_bin_node(object, dict_size, &object);
if (plist_get_node_type(size_node) != PLIST_UINT)
return NULL;
plist_get_uint_val(size_node, &size);
plist_free(size_node);
}
return parse_array_node(object, size, dict_size);
case BPLIST_SET:
case BPLIST_DICT:
if (0x0F == size)
{
plist_t size_node = parse_bin_node(object, dict_size, &object);
if (plist_get_node_type(size_node) != PLIST_UINT)
return NULL;
plist_get_uint_val(size_node, &size);
plist_free(size_node);
}
return parse_dict_node(object, size, dict_size);
default:
return NULL;
}
return NULL;
}
static void* copy_plist_data(const void* src)
{
plist_data_t srcdata = (plist_data_t) src;
plist_data_t dstdata = plist_new_plist_data();
dstdata->type = srcdata->type;
dstdata->length = srcdata->length;
switch (dstdata->type)
{
case PLIST_BOOLEAN:
dstdata->boolval = srcdata->boolval;
break;
case PLIST_UINT:
dstdata->intval = srcdata->intval;
break;
case PLIST_DATE:
dstdata->timeval.tv_sec = srcdata->timeval.tv_sec;
dstdata->timeval.tv_usec = srcdata->timeval.tv_usec;
break;
case PLIST_REAL:
dstdata->realval = srcdata->realval;
break;
case PLIST_KEY:
case PLIST_STRING:
dstdata->strval = strdup(srcdata->strval);
break;
case PLIST_DATA:
case PLIST_ARRAY:
dstdata->buff = (uint8_t *) malloc(sizeof(uint8_t *) * srcdata->length);
memcpy(dstdata->buff, srcdata->buff, sizeof(uint8_t *) * srcdata->length);
break;
case PLIST_DICT:
dstdata->buff = (uint8_t *) malloc(sizeof(uint8_t *) * srcdata->length * 2);
memcpy(dstdata->buff, srcdata->buff, sizeof(uint8_t *) * srcdata->length * 2);
break;
default:
break;
}
return dstdata;
}
void plist_from_bin(const char *plist_bin, uint32_t length, plist_t * plist)
{
char *trailer = NULL;
uint8_t offset_size = 0;
uint8_t dict_param_size = 0;
uint64_t num_objects = 0;
uint64_t root_object = 0;
uint64_t offset_table_index = 0;
plist_t *nodeslist = NULL;
uint64_t i = 0;
uint64_t current_offset = 0;
char *offset_table = NULL;
uint32_t j = 0, str_i = 0, str_j = 0;
uint32_t index1 = 0, index2 = 0;
//first check we have enough data
if (!(length >= BPLIST_MAGIC_SIZE + BPLIST_VERSION_SIZE + BPLIST_TRL_SIZE))
return;
//check that plist_bin in actually a plist
if (memcmp(plist_bin, BPLIST_MAGIC, BPLIST_MAGIC_SIZE) != 0)
return;
//check for known version
if (memcmp(plist_bin + BPLIST_MAGIC_SIZE, BPLIST_VERSION, BPLIST_VERSION_SIZE) != 0)
return;
//now parse trailer
trailer = (char *) (plist_bin + (length - BPLIST_TRL_SIZE));
offset_size = trailer[BPLIST_TRL_OFFSIZE_IDX];
dict_param_size = trailer[BPLIST_TRL_PARMSIZE_IDX];
num_objects = be64dec(trailer + BPLIST_TRL_NUMOBJ_IDX);
root_object = be64dec(trailer + BPLIST_TRL_ROOTOBJ_IDX);
offset_table_index = be64dec(trailer + BPLIST_TRL_OFFTAB_IDX);
if (num_objects == 0)
return;
//allocate serialized array of nodes
nodeslist = (plist_t *) malloc(sizeof(plist_t) * num_objects);
if (!nodeslist)
return;
//parse serialized nodes
offset_table = (char *) (plist_bin + offset_table_index);
for (i = 0; i < num_objects; i++)
{
char *obj = NULL;
current_offset = UINT_TO_HOST(offset_table + i * offset_size, offset_size);
obj = (char *) (plist_bin + current_offset);
nodeslist[i] = parse_bin_node(obj, dict_param_size, &obj);
}
//setup children for structured types
for (i = 0; i < num_objects; i++)
{
plist_data_t data = plist_get_data(nodeslist[i]);
switch (data->type)
{
case PLIST_DICT:
for (j = 0; j < data->length; j++)
{
str_i = j * dict_param_size;
str_j = (j + data->length) * dict_param_size;
index1 = UINT_TO_HOST(data->buff + str_i, dict_param_size);
index2 = UINT_TO_HOST(data->buff + str_j, dict_param_size);
//first one is actually a key
plist_get_data(nodeslist[index1])->type = PLIST_KEY;
if (index1 < num_objects)
{
if (NODE_IS_ROOT(nodeslist[index1]))
node_attach(nodeslist[i], nodeslist[index1]);
else
node_attach(nodeslist[i], node_copy_deep(nodeslist[index1], copy_plist_data));
}
if (index2 < num_objects)
{
if (NODE_IS_ROOT(nodeslist[index2]))
node_attach(nodeslist[i], nodeslist[index2]);
else
node_attach(nodeslist[i], node_copy_deep(nodeslist[index2], copy_plist_data));
}
}
free(data->buff);
break;
case PLIST_ARRAY:
for (j = 0; j < data->length; j++)
{
str_j = j * dict_param_size;
index1 = UINT_TO_HOST(data->buff + str_j, dict_param_size);
if (index1 < num_objects)
{
if (NODE_IS_ROOT(nodeslist[index1]))
node_attach(nodeslist[i], nodeslist[index1]);
else
node_attach(nodeslist[i], node_copy_deep(nodeslist[index1], copy_plist_data));
}
}
free(data->buff);
break;
default:
break;
}
}
*plist = nodeslist[root_object];
free(nodeslist);
}
static unsigned int plist_data_hash(const void* key)
{
plist_data_t data = plist_get_data((plist_t) key);
unsigned int hash = data->type;
unsigned int i = 0;
char *buff = NULL;
unsigned int size = 0;
switch (data->type)
{
case PLIST_BOOLEAN:
case PLIST_UINT:
case PLIST_REAL:
buff = (char *) &data->intval; //works also for real as we use an union
size = 8;
break;
case PLIST_KEY:
case PLIST_STRING:
buff = data->strval;
size = strlen(buff);
break;
case PLIST_DATA:
case PLIST_ARRAY:
case PLIST_DICT:
//for these types only hash pointer
buff = (char *) &key;
size = sizeof(const void*);
break;
case PLIST_DATE:
buff = (char *) &(data->timeval);
size = data->length;
break;
default:
break;
}
//now perform hash
for (i = 0; i < size; buff++, i++)
hash = hash << 7 ^ (*buff);
return hash;
}
struct serialize_s
{
ptrarray_t* objects;
hashtable_t* ref_table;
};
static void serialize_plist(node_t* node, void* data)
{
uint64_t *index_val = NULL;
struct serialize_s *ser = (struct serialize_s *) data;
uint64_t current_index = ser->objects->len;
//first check that node is not yet in objects
void* val = hash_table_lookup(ser->ref_table, node);
if (val)
{
//data is already in table
return;
}
//insert new ref
index_val = (uint64_t *) malloc(sizeof(uint64_t));
*index_val = current_index;
hash_table_insert(ser->ref_table, node, index_val);
//now append current node to object array
ptr_array_add(ser->objects, node);
//now recurse on children
node_iterator_t *ni = node_iterator_create(node->children);
node_t *ch;
while ((ch = node_iterator_next(ni))) {
serialize_plist(ch, data);
}
node_iterator_destroy(ni);
return;
}
static int free_index(void* key, void* value, void* user_data)
{
free((uint64_t *) value);
return TRUE;
}
#define Log2(x) (x == 8 ? 3 : (x == 4 ? 2 : (x == 2 ? 1 : 0)))
static void write_int(bytearray_t * bplist, uint64_t val)
{
uint64_t size = get_needed_bytes(val);
uint8_t *buff = NULL;
//do not write 3bytes int node
if (size == 3)
size++;
#if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN
val = val << ((sizeof(uint64_t) - size) * 8);
#endif
buff = (uint8_t *) malloc(sizeof(uint8_t) + size);
buff[0] = BPLIST_UINT | Log2(size);
memcpy(buff + 1, &val, size);
byte_convert(buff + 1, size);
byte_array_append(bplist, buff, sizeof(uint8_t) + size);
free(buff);
}
static void write_real(bytearray_t * bplist, double val)
{
uint64_t size = get_real_bytes(val); //cheat to know used space
uint8_t *buff = (uint8_t *) malloc(sizeof(uint8_t) + size);
buff[0] = BPLIST_REAL | Log2(size);
if (size == sizeof(double))
{
memcpy(buff + 1, &val, size);
}
else if (size == sizeof(float))
{
float tmpval = (float) val;
memcpy(buff + 1, &tmpval, size);
}
float_byte_convert(buff + 1, size);
byte_array_append(bplist, buff, sizeof(uint8_t) + size);
free(buff);
}
static void write_date(bytearray_t * bplist, double val)
{
uint64_t size = 8; //dates always use 8 bytes
uint8_t *buff = (uint8_t *) malloc(sizeof(uint8_t) + size);
buff[0] = BPLIST_DATE | Log2(size);
memcpy(buff + 1, &val, size);
float_byte_convert(buff + 1, size);
byte_array_append(bplist, buff, sizeof(uint8_t) + size);
free(buff);
}
static void write_raw_data(bytearray_t * bplist, uint8_t mark, uint8_t * val, uint64_t size)
{
uint8_t *buff = NULL;
uint8_t marker = mark | (size < 15 ? size : 0xf);
byte_array_append(bplist, &marker, sizeof(uint8_t));
if (size >= 15)
{
bytearray_t *int_buff = byte_array_new();
write_int(int_buff, size);
byte_array_append(bplist, int_buff->data, int_buff->len);
byte_array_free(int_buff);
}
//stupid unicode buffer length
if (BPLIST_UNICODE==mark) size *= 2;
buff = (uint8_t *) malloc(size);
memcpy(buff, val, size);
byte_array_append(bplist, buff, size);
free(buff);
}
static void write_data(bytearray_t * bplist, uint8_t * val, uint64_t size)
{
write_raw_data(bplist, BPLIST_DATA, val, size);
}
static void write_string(bytearray_t * bplist, char *val)
{
uint64_t size = strlen(val);
write_raw_data(bplist, BPLIST_STRING, (uint8_t *) val, size);
}
static void write_unicode(bytearray_t * bplist, uint16_t * val, uint64_t size)
{
uint64_t i = 0;
uint64_t size2 = size * sizeof(uint16_t);
uint8_t *buff = (uint8_t *) malloc(size2);
memcpy(buff, val, size2);
for (i = 0; i < size; i++)
byte_convert(buff + i * sizeof(uint16_t), sizeof(uint16_t));
write_raw_data(bplist, BPLIST_UNICODE, buff, size);
free(buff);
}
static void write_array(bytearray_t * bplist, node_t* node, hashtable_t* ref_table, uint8_t dict_param_size)
{
uint64_t idx = 0;
uint8_t *buff = NULL;
node_t* cur = NULL;
uint64_t i = 0;
uint64_t size = node_n_children(node);
uint8_t marker = BPLIST_ARRAY | (size < 15 ? size : 0xf);
byte_array_append(bplist, &marker, sizeof(uint8_t));
if (size >= 15)
{
bytearray_t *int_buff = byte_array_new();
write_int(int_buff, size);
byte_array_append(bplist, int_buff->data, int_buff->len);
byte_array_free(int_buff);
}
buff = (uint8_t *) malloc(size * dict_param_size);
for (i = 0, cur = node_first_child(node); cur && i < size; cur = node_next_sibling(cur), i++)
{
idx = *(uint64_t *) (hash_table_lookup(ref_table, cur));
#if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN
idx = idx << ((sizeof(uint64_t) - dict_param_size) * 8);
#endif
memcpy(buff + i * dict_param_size, &idx, dict_param_size);
byte_convert(buff + i * dict_param_size, dict_param_size);
}
//now append to bplist
byte_array_append(bplist, buff, size * dict_param_size);
free(buff);
}
static void write_dict(bytearray_t * bplist, node_t* node, hashtable_t* ref_table, uint8_t dict_param_size)
{
uint64_t idx1 = 0;
uint64_t idx2 = 0;
uint8_t *buff = NULL;
node_t* cur = NULL;
uint64_t i = 0;
uint64_t size = node_n_children(node) / 2;
uint8_t marker = BPLIST_DICT | (size < 15 ? size : 0xf);
byte_array_append(bplist, &marker, sizeof(uint8_t));
if (size >= 15)
{
bytearray_t *int_buff = byte_array_new();
write_int(int_buff, size);
byte_array_append(bplist, int_buff->data, int_buff->len);
byte_array_free(int_buff);
}
buff = (uint8_t *) malloc(size * 2 * dict_param_size);
for (i = 0, cur = node_first_child(node); cur && i < size; cur = node_next_sibling(node_next_sibling(cur)), i++)
{
idx1 = *(uint64_t *) (hash_table_lookup(ref_table, cur));
#if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN
idx1 = idx1 << ((sizeof(uint64_t) - dict_param_size) * 8);
#endif
memcpy(buff + i * dict_param_size, &idx1, dict_param_size);
byte_convert(buff + i * dict_param_size, dict_param_size);
idx2 = *(uint64_t *) (hash_table_lookup(ref_table, cur->next));
#if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN
idx2 = idx2 << ((sizeof(uint64_t) - dict_param_size) * 8);
#endif
memcpy(buff + (i + size) * dict_param_size, &idx2, dict_param_size);
byte_convert(buff + (i + size) * dict_param_size, dict_param_size);
}
//now append to bplist
byte_array_append(bplist, buff, size * 2 * dict_param_size);
free(buff);
}
static int is_ascii_string(char* s, int len)
{
int ret = 1, i = 0;
for(i = 0; i < len; i++)
{
if ( !isascii( s[i] ) )
{
ret = 0;
break;
}
}
return ret;
}
uint16_t *plist_utf8_to_utf16(char *unistr, long size, long *items_read, long *items_written)
{
uint16_t *outbuf = (uint16_t*)malloc((size+1)*sizeof(uint16_t));
int p = 0;
int i = 0;
unsigned char c0;
unsigned char c1;
unsigned char c2;
while (i < size) {
c0 = unistr[i];
c1 = (i < size-1) ? unistr[i+1] : 0;
c2 = (i < size-2) ? unistr[i+2] : 0;
if ((c0 >= 0xE0) && (i < size-2) && (c1 >= 0x80) && (c2 >= 0x80)) {
// 3 byte sequence
outbuf[p++] = ((c2 & 0x3F) + ((c1 & 3) << 6)) + (((c1 >> 2) & 15) << 8) + ((c0 & 15) << 12);
i+=3;
} else if ((c0 >= 0xC0) && (i < size-1) && (c1 >= 0x80)) {
// 2 byte sequence
outbuf[p++] = ((c1 & 0x3F) + ((c0 & 3) << 6)) + (((c0 >> 2) & 7) << 8);
i+=2;
} else if (c0 < 0x80) {
// 1 byte sequence
outbuf[p++] = c0;
i+=1;
} else {
// invalid character
fprintf(stderr, "invalid utf8 sequence in string at index %d\n", i);
break;
}
}
if (items_read) {
*items_read = i;
}
if (items_written) {
*items_written = p;
}
outbuf[p] = 0;
return outbuf;
}
void plist_to_bin(plist_t plist, char **plist_bin, uint32_t * length)
{
ptrarray_t* objects = NULL;
hashtable_t* ref_table = NULL;
struct serialize_s ser_s;
uint8_t offset_size = 0;
uint8_t dict_param_size = 0;
uint64_t num_objects = 0;
uint64_t root_object = 0;
uint64_t offset_table_index = 0;
bytearray_t *bplist_buff = NULL;
uint64_t i = 0;
uint8_t *buff = NULL;
uint64_t *offsets = NULL;
uint8_t pad[6] = { 0, 0, 0, 0, 0, 0 };
uint8_t trailer[BPLIST_TRL_SIZE];
//for string
long len = 0;
int type = 0;
long items_read = 0;
long items_written = 0;
uint16_t *unicodestr = NULL;
//check for valid input
if (!plist || !plist_bin || *plist_bin || !length)
return;
//list of objects
objects = ptr_array_new(256);
//hashtable to write only once same nodes
ref_table = hash_table_new(plist_data_hash, plist_data_compare);
//serialize plist
ser_s.objects = objects;
ser_s.ref_table = ref_table;
serialize_plist(plist, &ser_s);
//now stream to output buffer
offset_size = 0; //unknown yet
dict_param_size = get_needed_bytes(objects->len);
num_objects = objects->len;
root_object = 0; //root is first in list
offset_table_index = 0; //unknown yet
//setup a dynamic bytes array to store bplist in
bplist_buff = byte_array_new();
//set magic number and version
byte_array_append(bplist_buff, BPLIST_MAGIC, BPLIST_MAGIC_SIZE);
byte_array_append(bplist_buff, BPLIST_VERSION, BPLIST_VERSION_SIZE);
//write objects and table
offsets = (uint64_t *) malloc(num_objects * sizeof(uint64_t));
for (i = 0; i < num_objects; i++)
{
plist_data_t data = plist_get_data(ptr_array_index(objects, i));
offsets[i] = bplist_buff->len;
switch (data->type)
{
case PLIST_BOOLEAN:
buff = (uint8_t *) malloc(sizeof(uint8_t));
buff[0] = data->boolval ? BPLIST_TRUE : BPLIST_FALSE;
byte_array_append(bplist_buff, buff, sizeof(uint8_t));
free(buff);
break;
case PLIST_UINT:
write_int(bplist_buff, data->intval);
break;
case PLIST_REAL:
write_real(bplist_buff, data->realval);
break;
case PLIST_KEY:
case PLIST_STRING:
len = strlen(data->strval);
if ( is_ascii_string(data->strval, len) )
{
write_string(bplist_buff, data->strval);
}
else
{
unicodestr = plist_utf8_to_utf16(data->strval, len, &items_read, &items_written);
write_unicode(bplist_buff, unicodestr, items_written);
free(unicodestr);
}
break;
case PLIST_DATA:
write_data(bplist_buff, data->buff, data->length);
case PLIST_ARRAY:
write_array(bplist_buff, ptr_array_index(objects, i), ref_table, dict_param_size);
break;
case PLIST_DICT:
write_dict(bplist_buff, ptr_array_index(objects, i), ref_table, dict_param_size);
break;
case PLIST_DATE:
write_date(bplist_buff, data->timeval.tv_sec + (double) data->timeval.tv_usec / 1000000);
break;
default:
break;
}
}
//free intermediate objects
//hash_table_foreach_remove(ref_table, free_index, NULL);
ptr_array_free(objects);
hash_table_destroy(ref_table);
//write offsets
offset_size = get_needed_bytes(bplist_buff->len);
offset_table_index = bplist_buff->len;
for (i = 0; i < num_objects; i++)
{
uint8_t *offsetbuff = (uint8_t *) malloc(offset_size);
#if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN
offsets[i] = offsets[i] << ((sizeof(uint64_t) - offset_size) * 8);
#endif
memcpy(offsetbuff, &offsets[i], offset_size);
byte_convert(offsetbuff, offset_size);
byte_array_append(bplist_buff, offsetbuff, offset_size);
free(offsetbuff);
}
//experimental pad to reflect apple's files
byte_array_append(bplist_buff, pad, 6);
//setup trailer
num_objects = be64toh(num_objects);
root_object = be64toh(root_object);
offset_table_index = be64toh(offset_table_index);
memcpy(trailer + BPLIST_TRL_OFFSIZE_IDX, &offset_size, sizeof(uint8_t));
memcpy(trailer + BPLIST_TRL_PARMSIZE_IDX, &dict_param_size, sizeof(uint8_t));
memcpy(trailer + BPLIST_TRL_NUMOBJ_IDX, &num_objects, sizeof(uint64_t));
memcpy(trailer + BPLIST_TRL_ROOTOBJ_IDX, &root_object, sizeof(uint64_t));
memcpy(trailer + BPLIST_TRL_OFFTAB_IDX, &offset_table_index, sizeof(uint64_t));
byte_array_append(bplist_buff, trailer, BPLIST_TRL_SIZE);
//duplicate buffer
*plist_bin = (char *) malloc(bplist_buff->len);
memcpy(*plist_bin, bplist_buff->data, bplist_buff->len);
*length = bplist_buff->len;
byte_array_free(bplist_buff);
free(offsets);
}