| /* |
| ** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) |
| ** Copyright (C) [dates of first publication] Silicon Graphics, Inc. |
| ** All Rights Reserved. |
| ** |
| ** Permission is hereby granted, free of charge, to any person obtaining a copy |
| ** of this software and associated documentation files (the "Software"), to deal |
| ** in the Software without restriction, including without limitation the rights |
| ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
| ** of the Software, and to permit persons to whom the Software is furnished to do so, |
| ** subject to the following conditions: |
| ** |
| ** The above copyright notice including the dates of first publication and either this |
| ** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be |
| ** included in all copies or substantial portions of the Software. |
| ** |
| ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, |
| ** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A |
| ** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC. |
| ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE |
| ** OR OTHER DEALINGS IN THE SOFTWARE. |
| ** |
| ** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not |
| ** be used in advertising or otherwise to promote the sale, use or other dealings in |
| ** this Software without prior written authorization from Silicon Graphics, Inc. |
| */ |
| /* |
| ** Author: Eric Veach, July 1994. |
| */ |
| |
| //#include "tesos.h" |
| #include <stddef.h> |
| #include <assert.h> |
| #include "mesh.h" |
| #include "geom.h" |
| #include "bucketalloc.h" |
| |
| #define TRUE 1 |
| #define FALSE 0 |
| |
| /************************ Utility Routines ************************/ |
| |
| /* Allocate and free half-edges in pairs for efficiency. |
| * The *only* place that should use this fact is allocation/free. |
| */ |
| typedef struct { TESShalfEdge e, eSym; } EdgePair; |
| |
| /* MakeEdge creates a new pair of half-edges which form their own loop. |
| * No vertex or face structures are allocated, but these must be assigned |
| * before the current edge operation is completed. |
| */ |
| static TESShalfEdge *MakeEdge( TESSmesh* mesh, TESShalfEdge *eNext ) |
| { |
| TESShalfEdge *e; |
| TESShalfEdge *eSym; |
| TESShalfEdge *ePrev; |
| EdgePair *pair = (EdgePair *)bucketAlloc( mesh->edgeBucket ); |
| if (pair == NULL) return NULL; |
| |
| e = &pair->e; |
| eSym = &pair->eSym; |
| |
| /* Make sure eNext points to the first edge of the edge pair */ |
| if( eNext->Sym < eNext ) { eNext = eNext->Sym; } |
| |
| /* Insert in circular doubly-linked list before eNext. |
| * Note that the prev pointer is stored in Sym->next. |
| */ |
| ePrev = eNext->Sym->next; |
| eSym->next = ePrev; |
| ePrev->Sym->next = e; |
| e->next = eNext; |
| eNext->Sym->next = eSym; |
| |
| e->Sym = eSym; |
| e->Onext = e; |
| e->Lnext = eSym; |
| e->Org = NULL; |
| e->Lface = NULL; |
| e->winding = 0; |
| e->activeRegion = NULL; |
| e->mark = 0; |
| |
| eSym->Sym = e; |
| eSym->Onext = eSym; |
| eSym->Lnext = e; |
| eSym->Org = NULL; |
| eSym->Lface = NULL; |
| eSym->winding = 0; |
| eSym->activeRegion = NULL; |
| eSym->mark = 0; |
| |
| return e; |
| } |
| |
| /* Splice( a, b ) is best described by the Guibas/Stolfi paper or the |
| * CS348a notes (see mesh.h). Basically it modifies the mesh so that |
| * a->Onext and b->Onext are exchanged. This can have various effects |
| * depending on whether a and b belong to different face or vertex rings. |
| * For more explanation see tessMeshSplice() below. |
| */ |
| static void Splice( TESShalfEdge *a, TESShalfEdge *b ) |
| { |
| TESShalfEdge *aOnext = a->Onext; |
| TESShalfEdge *bOnext = b->Onext; |
| |
| aOnext->Sym->Lnext = b; |
| bOnext->Sym->Lnext = a; |
| a->Onext = bOnext; |
| b->Onext = aOnext; |
| } |
| |
| /* MakeVertex( newVertex, eOrig, vNext ) attaches a new vertex and makes it the |
| * origin of all edges in the vertex loop to which eOrig belongs. "vNext" gives |
| * a place to insert the new vertex in the global vertex list. We insert |
| * the new vertex *before* vNext so that algorithms which walk the vertex |
| * list will not see the newly created vertices. |
| */ |
| static void MakeVertex( TESSvertex *newVertex, |
| TESShalfEdge *eOrig, TESSvertex *vNext ) |
| { |
| TESShalfEdge *e; |
| TESSvertex *vPrev; |
| TESSvertex *vNew = newVertex; |
| |
| assert(vNew != NULL); |
| |
| /* insert in circular doubly-linked list before vNext */ |
| vPrev = vNext->prev; |
| vNew->prev = vPrev; |
| vPrev->next = vNew; |
| vNew->next = vNext; |
| vNext->prev = vNew; |
| |
| vNew->anEdge = eOrig; |
| /* leave coords, s, t undefined */ |
| |
| /* fix other edges on this vertex loop */ |
| e = eOrig; |
| do { |
| e->Org = vNew; |
| e = e->Onext; |
| } while( e != eOrig ); |
| } |
| |
| /* MakeFace( newFace, eOrig, fNext ) attaches a new face and makes it the left |
| * face of all edges in the face loop to which eOrig belongs. "fNext" gives |
| * a place to insert the new face in the global face list. We insert |
| * the new face *before* fNext so that algorithms which walk the face |
| * list will not see the newly created faces. |
| */ |
| static void MakeFace( TESSface *newFace, TESShalfEdge *eOrig, TESSface *fNext ) |
| { |
| TESShalfEdge *e; |
| TESSface *fPrev; |
| TESSface *fNew = newFace; |
| |
| assert(fNew != NULL); |
| |
| /* insert in circular doubly-linked list before fNext */ |
| fPrev = fNext->prev; |
| fNew->prev = fPrev; |
| fPrev->next = fNew; |
| fNew->next = fNext; |
| fNext->prev = fNew; |
| |
| fNew->anEdge = eOrig; |
| fNew->trail = NULL; |
| fNew->marked = FALSE; |
| |
| /* The new face is marked "inside" if the old one was. This is a |
| * convenience for the common case where a face has been split in two. |
| */ |
| fNew->inside = fNext->inside; |
| |
| /* fix other edges on this face loop */ |
| e = eOrig; |
| do { |
| e->Lface = fNew; |
| e = e->Lnext; |
| } while( e != eOrig ); |
| } |
| |
| /* KillEdge( eDel ) destroys an edge (the half-edges eDel and eDel->Sym), |
| * and removes from the global edge list. |
| */ |
| static void KillEdge( TESSmesh *mesh, TESShalfEdge *eDel ) |
| { |
| TESShalfEdge *ePrev, *eNext; |
| |
| /* Half-edges are allocated in pairs, see EdgePair above */ |
| if( eDel->Sym < eDel ) { eDel = eDel->Sym; } |
| |
| /* delete from circular doubly-linked list */ |
| eNext = eDel->next; |
| ePrev = eDel->Sym->next; |
| eNext->Sym->next = ePrev; |
| ePrev->Sym->next = eNext; |
| |
| bucketFree( mesh->edgeBucket, eDel ); |
| } |
| |
| |
| /* KillVertex( vDel ) destroys a vertex and removes it from the global |
| * vertex list. It updates the vertex loop to point to a given new vertex. |
| */ |
| static void KillVertex( TESSmesh *mesh, TESSvertex *vDel, TESSvertex *newOrg ) |
| { |
| TESShalfEdge *e, *eStart = vDel->anEdge; |
| TESSvertex *vPrev, *vNext; |
| |
| /* change the origin of all affected edges */ |
| e = eStart; |
| do { |
| e->Org = newOrg; |
| e = e->Onext; |
| } while( e != eStart ); |
| |
| /* delete from circular doubly-linked list */ |
| vPrev = vDel->prev; |
| vNext = vDel->next; |
| vNext->prev = vPrev; |
| vPrev->next = vNext; |
| |
| bucketFree( mesh->vertexBucket, vDel ); |
| } |
| |
| /* KillFace( fDel ) destroys a face and removes it from the global face |
| * list. It updates the face loop to point to a given new face. |
| */ |
| static void KillFace( TESSmesh *mesh, TESSface *fDel, TESSface *newLface ) |
| { |
| TESShalfEdge *e, *eStart = fDel->anEdge; |
| TESSface *fPrev, *fNext; |
| |
| /* change the left face of all affected edges */ |
| e = eStart; |
| do { |
| e->Lface = newLface; |
| e = e->Lnext; |
| } while( e != eStart ); |
| |
| /* delete from circular doubly-linked list */ |
| fPrev = fDel->prev; |
| fNext = fDel->next; |
| fNext->prev = fPrev; |
| fPrev->next = fNext; |
| |
| bucketFree( mesh->faceBucket, fDel ); |
| } |
| |
| |
| /****************** Basic Edge Operations **********************/ |
| |
| /* tessMeshMakeEdge creates one edge, two vertices, and a loop (face). |
| * The loop consists of the two new half-edges. |
| */ |
| TESShalfEdge *tessMeshMakeEdge( TESSmesh *mesh ) |
| { |
| TESSvertex *newVertex1 = (TESSvertex*)bucketAlloc(mesh->vertexBucket); |
| TESSvertex *newVertex2 = (TESSvertex*)bucketAlloc(mesh->vertexBucket); |
| TESSface *newFace = (TESSface*)bucketAlloc(mesh->faceBucket); |
| TESShalfEdge *e; |
| |
| /* if any one is null then all get freed */ |
| if (newVertex1 == NULL || newVertex2 == NULL || newFace == NULL) { |
| if (newVertex1 != NULL) bucketFree( mesh->vertexBucket, newVertex1 ); |
| if (newVertex2 != NULL) bucketFree( mesh->vertexBucket, newVertex2 ); |
| if (newFace != NULL) bucketFree( mesh->faceBucket, newFace ); |
| return NULL; |
| } |
| |
| e = MakeEdge( mesh, &mesh->eHead ); |
| if (e == NULL) return NULL; |
| |
| MakeVertex( newVertex1, e, &mesh->vHead ); |
| MakeVertex( newVertex2, e->Sym, &mesh->vHead ); |
| MakeFace( newFace, e, &mesh->fHead ); |
| return e; |
| } |
| |
| |
| /* tessMeshSplice( eOrg, eDst ) is the basic operation for changing the |
| * mesh connectivity and topology. It changes the mesh so that |
| * eOrg->Onext <- OLD( eDst->Onext ) |
| * eDst->Onext <- OLD( eOrg->Onext ) |
| * where OLD(...) means the value before the meshSplice operation. |
| * |
| * This can have two effects on the vertex structure: |
| * - if eOrg->Org != eDst->Org, the two vertices are merged together |
| * - if eOrg->Org == eDst->Org, the origin is split into two vertices |
| * In both cases, eDst->Org is changed and eOrg->Org is untouched. |
| * |
| * Similarly (and independently) for the face structure, |
| * - if eOrg->Lface == eDst->Lface, one loop is split into two |
| * - if eOrg->Lface != eDst->Lface, two distinct loops are joined into one |
| * In both cases, eDst->Lface is changed and eOrg->Lface is unaffected. |
| * |
| * Some special cases: |
| * If eDst == eOrg, the operation has no effect. |
| * If eDst == eOrg->Lnext, the new face will have a single edge. |
| * If eDst == eOrg->Lprev, the old face will have a single edge. |
| * If eDst == eOrg->Onext, the new vertex will have a single edge. |
| * If eDst == eOrg->Oprev, the old vertex will have a single edge. |
| */ |
| int tessMeshSplice( TESSmesh* mesh, TESShalfEdge *eOrg, TESShalfEdge *eDst ) |
| { |
| int joiningLoops = FALSE; |
| int joiningVertices = FALSE; |
| |
| if( eOrg == eDst ) return 1; |
| |
| if( eDst->Org != eOrg->Org ) { |
| /* We are merging two disjoint vertices -- destroy eDst->Org */ |
| joiningVertices = TRUE; |
| KillVertex( mesh, eDst->Org, eOrg->Org ); |
| } |
| if( eDst->Lface != eOrg->Lface ) { |
| /* We are connecting two disjoint loops -- destroy eDst->Lface */ |
| joiningLoops = TRUE; |
| KillFace( mesh, eDst->Lface, eOrg->Lface ); |
| } |
| |
| /* Change the edge structure */ |
| Splice( eDst, eOrg ); |
| |
| if( ! joiningVertices ) { |
| TESSvertex *newVertex = (TESSvertex*)bucketAlloc( mesh->vertexBucket ); |
| if (newVertex == NULL) return 0; |
| |
| /* We split one vertex into two -- the new vertex is eDst->Org. |
| * Make sure the old vertex points to a valid half-edge. |
| */ |
| MakeVertex( newVertex, eDst, eOrg->Org ); |
| eOrg->Org->anEdge = eOrg; |
| } |
| if( ! joiningLoops ) { |
| TESSface *newFace = (TESSface*)bucketAlloc( mesh->faceBucket ); |
| if (newFace == NULL) return 0; |
| |
| /* We split one loop into two -- the new loop is eDst->Lface. |
| * Make sure the old face points to a valid half-edge. |
| */ |
| MakeFace( newFace, eDst, eOrg->Lface ); |
| eOrg->Lface->anEdge = eOrg; |
| } |
| |
| return 1; |
| } |
| |
| |
| /* tessMeshDelete( eDel ) removes the edge eDel. There are several cases: |
| * if (eDel->Lface != eDel->Rface), we join two loops into one; the loop |
| * eDel->Lface is deleted. Otherwise, we are splitting one loop into two; |
| * the newly created loop will contain eDel->Dst. If the deletion of eDel |
| * would create isolated vertices, those are deleted as well. |
| * |
| * This function could be implemented as two calls to tessMeshSplice |
| * plus a few calls to memFree, but this would allocate and delete |
| * unnecessary vertices and faces. |
| */ |
| int tessMeshDelete( TESSmesh *mesh, TESShalfEdge *eDel ) |
| { |
| TESShalfEdge *eDelSym = eDel->Sym; |
| int joiningLoops = FALSE; |
| |
| /* First step: disconnect the origin vertex eDel->Org. We make all |
| * changes to get a consistent mesh in this "intermediate" state. |
| */ |
| if( eDel->Lface != eDel->Rface ) { |
| /* We are joining two loops into one -- remove the left face */ |
| joiningLoops = TRUE; |
| KillFace( mesh, eDel->Lface, eDel->Rface ); |
| } |
| |
| if( eDel->Onext == eDel ) { |
| KillVertex( mesh, eDel->Org, NULL ); |
| } else { |
| /* Make sure that eDel->Org and eDel->Rface point to valid half-edges */ |
| eDel->Rface->anEdge = eDel->Oprev; |
| eDel->Org->anEdge = eDel->Onext; |
| |
| Splice( eDel, eDel->Oprev ); |
| if( ! joiningLoops ) { |
| TESSface *newFace= (TESSface*)bucketAlloc( mesh->faceBucket ); |
| if (newFace == NULL) return 0; |
| |
| /* We are splitting one loop into two -- create a new loop for eDel. */ |
| MakeFace( newFace, eDel, eDel->Lface ); |
| } |
| } |
| |
| /* Claim: the mesh is now in a consistent state, except that eDel->Org |
| * may have been deleted. Now we disconnect eDel->Dst. |
| */ |
| if( eDelSym->Onext == eDelSym ) { |
| KillVertex( mesh, eDelSym->Org, NULL ); |
| KillFace( mesh, eDelSym->Lface, NULL ); |
| } else { |
| /* Make sure that eDel->Dst and eDel->Lface point to valid half-edges */ |
| eDel->Lface->anEdge = eDelSym->Oprev; |
| eDelSym->Org->anEdge = eDelSym->Onext; |
| Splice( eDelSym, eDelSym->Oprev ); |
| } |
| |
| /* Any isolated vertices or faces have already been freed. */ |
| KillEdge( mesh, eDel ); |
| |
| return 1; |
| } |
| |
| |
| /******************** Other Edge Operations **********************/ |
| |
| /* All these routines can be implemented with the basic edge |
| * operations above. They are provided for convenience and efficiency. |
| */ |
| |
| |
| /* tessMeshAddEdgeVertex( eOrg ) creates a new edge eNew such that |
| * eNew == eOrg->Lnext, and eNew->Dst is a newly created vertex. |
| * eOrg and eNew will have the same left face. |
| */ |
| TESShalfEdge *tessMeshAddEdgeVertex( TESSmesh *mesh, TESShalfEdge *eOrg ) |
| { |
| TESShalfEdge *eNewSym; |
| TESShalfEdge *eNew = MakeEdge( mesh, eOrg ); |
| if (eNew == NULL) return NULL; |
| |
| eNewSym = eNew->Sym; |
| |
| /* Connect the new edge appropriately */ |
| Splice( eNew, eOrg->Lnext ); |
| |
| /* Set the vertex and face information */ |
| eNew->Org = eOrg->Dst; |
| { |
| TESSvertex *newVertex= (TESSvertex*)bucketAlloc( mesh->vertexBucket ); |
| if (newVertex == NULL) return NULL; |
| |
| MakeVertex( newVertex, eNewSym, eNew->Org ); |
| } |
| eNew->Lface = eNewSym->Lface = eOrg->Lface; |
| |
| return eNew; |
| } |
| |
| |
| /* tessMeshSplitEdge( eOrg ) splits eOrg into two edges eOrg and eNew, |
| * such that eNew == eOrg->Lnext. The new vertex is eOrg->Dst == eNew->Org. |
| * eOrg and eNew will have the same left face. |
| */ |
| TESShalfEdge *tessMeshSplitEdge( TESSmesh *mesh, TESShalfEdge *eOrg ) |
| { |
| TESShalfEdge *eNew; |
| TESShalfEdge *tempHalfEdge= tessMeshAddEdgeVertex( mesh, eOrg ); |
| if (tempHalfEdge == NULL) return NULL; |
| |
| eNew = tempHalfEdge->Sym; |
| |
| /* Disconnect eOrg from eOrg->Dst and connect it to eNew->Org */ |
| Splice( eOrg->Sym, eOrg->Sym->Oprev ); |
| Splice( eOrg->Sym, eNew ); |
| |
| /* Set the vertex and face information */ |
| eOrg->Dst = eNew->Org; |
| eNew->Dst->anEdge = eNew->Sym; /* may have pointed to eOrg->Sym */ |
| eNew->Rface = eOrg->Rface; |
| eNew->winding = eOrg->winding; /* copy old winding information */ |
| eNew->Sym->winding = eOrg->Sym->winding; |
| |
| return eNew; |
| } |
| |
| |
| /* tessMeshConnect( eOrg, eDst ) creates a new edge from eOrg->Dst |
| * to eDst->Org, and returns the corresponding half-edge eNew. |
| * If eOrg->Lface == eDst->Lface, this splits one loop into two, |
| * and the newly created loop is eNew->Lface. Otherwise, two disjoint |
| * loops are merged into one, and the loop eDst->Lface is destroyed. |
| * |
| * If (eOrg == eDst), the new face will have only two edges. |
| * If (eOrg->Lnext == eDst), the old face is reduced to a single edge. |
| * If (eOrg->Lnext->Lnext == eDst), the old face is reduced to two edges. |
| */ |
| TESShalfEdge *tessMeshConnect( TESSmesh *mesh, TESShalfEdge *eOrg, TESShalfEdge *eDst ) |
| { |
| TESShalfEdge *eNewSym; |
| int joiningLoops = FALSE; |
| TESShalfEdge *eNew = MakeEdge( mesh, eOrg ); |
| if (eNew == NULL) return NULL; |
| |
| eNewSym = eNew->Sym; |
| |
| if( eDst->Lface != eOrg->Lface ) { |
| /* We are connecting two disjoint loops -- destroy eDst->Lface */ |
| joiningLoops = TRUE; |
| KillFace( mesh, eDst->Lface, eOrg->Lface ); |
| } |
| |
| /* Connect the new edge appropriately */ |
| Splice( eNew, eOrg->Lnext ); |
| Splice( eNewSym, eDst ); |
| |
| /* Set the vertex and face information */ |
| eNew->Org = eOrg->Dst; |
| eNewSym->Org = eDst->Org; |
| eNew->Lface = eNewSym->Lface = eOrg->Lface; |
| |
| /* Make sure the old face points to a valid half-edge */ |
| eOrg->Lface->anEdge = eNewSym; |
| |
| if( ! joiningLoops ) { |
| TESSface *newFace= (TESSface*)bucketAlloc( mesh->faceBucket ); |
| if (newFace == NULL) return NULL; |
| |
| /* We split one loop into two -- the new loop is eNew->Lface */ |
| MakeFace( newFace, eNew, eOrg->Lface ); |
| } |
| return eNew; |
| } |
| |
| |
| /******************** Other Operations **********************/ |
| |
| /* tessMeshZapFace( fZap ) destroys a face and removes it from the |
| * global face list. All edges of fZap will have a NULL pointer as their |
| * left face. Any edges which also have a NULL pointer as their right face |
| * are deleted entirely (along with any isolated vertices this produces). |
| * An entire mesh can be deleted by zapping its faces, one at a time, |
| * in any order. Zapped faces cannot be used in further mesh operations! |
| */ |
| void tessMeshZapFace( TESSmesh *mesh, TESSface *fZap ) |
| { |
| TESShalfEdge *eStart = fZap->anEdge; |
| TESShalfEdge *e, *eNext, *eSym; |
| TESSface *fPrev, *fNext; |
| |
| /* walk around face, deleting edges whose right face is also NULL */ |
| eNext = eStart->Lnext; |
| do { |
| e = eNext; |
| eNext = e->Lnext; |
| |
| e->Lface = NULL; |
| if( e->Rface == NULL ) { |
| /* delete the edge -- see TESSmeshDelete above */ |
| |
| if( e->Onext == e ) { |
| KillVertex( mesh, e->Org, NULL ); |
| } else { |
| /* Make sure that e->Org points to a valid half-edge */ |
| e->Org->anEdge = e->Onext; |
| Splice( e, e->Oprev ); |
| } |
| eSym = e->Sym; |
| if( eSym->Onext == eSym ) { |
| KillVertex( mesh, eSym->Org, NULL ); |
| } else { |
| /* Make sure that eSym->Org points to a valid half-edge */ |
| eSym->Org->anEdge = eSym->Onext; |
| Splice( eSym, eSym->Oprev ); |
| } |
| KillEdge( mesh, e ); |
| } |
| } while( e != eStart ); |
| |
| /* delete from circular doubly-linked list */ |
| fPrev = fZap->prev; |
| fNext = fZap->next; |
| fNext->prev = fPrev; |
| fPrev->next = fNext; |
| |
| bucketFree( mesh->faceBucket, fZap ); |
| } |
| |
| |
| /* tessMeshNewMesh() creates a new mesh with no edges, no vertices, |
| * and no loops (what we usually call a "face"). |
| */ |
| TESSmesh *tessMeshNewMesh( TESSalloc* alloc ) |
| { |
| TESSvertex *v; |
| TESSface *f; |
| TESShalfEdge *e; |
| TESShalfEdge *eSym; |
| TESSmesh *mesh = (TESSmesh *)alloc->memalloc( alloc->userData, sizeof( TESSmesh )); |
| if (mesh == NULL) { |
| return NULL; |
| } |
| |
| if (alloc->meshEdgeBucketSize < 16) |
| alloc->meshEdgeBucketSize = 16; |
| if (alloc->meshEdgeBucketSize > 4096) |
| alloc->meshEdgeBucketSize = 4096; |
| |
| if (alloc->meshVertexBucketSize < 16) |
| alloc->meshVertexBucketSize = 16; |
| if (alloc->meshVertexBucketSize > 4096) |
| alloc->meshVertexBucketSize = 4096; |
| |
| if (alloc->meshFaceBucketSize < 16) |
| alloc->meshFaceBucketSize = 16; |
| if (alloc->meshFaceBucketSize > 4096) |
| alloc->meshFaceBucketSize = 4096; |
| |
| mesh->edgeBucket = createBucketAlloc( alloc, "Mesh Edges", sizeof(EdgePair), alloc->meshEdgeBucketSize ); |
| mesh->vertexBucket = createBucketAlloc( alloc, "Mesh Vertices", sizeof(TESSvertex), alloc->meshVertexBucketSize ); |
| mesh->faceBucket = createBucketAlloc( alloc, "Mesh Faces", sizeof(TESSface), alloc->meshFaceBucketSize ); |
| |
| v = &mesh->vHead; |
| f = &mesh->fHead; |
| e = &mesh->eHead; |
| eSym = &mesh->eHeadSym; |
| |
| v->next = v->prev = v; |
| v->anEdge = NULL; |
| |
| f->next = f->prev = f; |
| f->anEdge = NULL; |
| f->trail = NULL; |
| f->marked = FALSE; |
| f->inside = FALSE; |
| |
| e->next = e; |
| e->Sym = eSym; |
| e->Onext = NULL; |
| e->Lnext = NULL; |
| e->Org = NULL; |
| e->Lface = NULL; |
| e->winding = 0; |
| e->activeRegion = NULL; |
| |
| eSym->next = eSym; |
| eSym->Sym = e; |
| eSym->Onext = NULL; |
| eSym->Lnext = NULL; |
| eSym->Org = NULL; |
| eSym->Lface = NULL; |
| eSym->winding = 0; |
| eSym->activeRegion = NULL; |
| |
| return mesh; |
| } |
| |
| |
| /* tessMeshUnion( mesh1, mesh2 ) forms the union of all structures in |
| * both meshes, and returns the new mesh (the old meshes are destroyed). |
| */ |
| TESSmesh *tessMeshUnion( TESSalloc* alloc, TESSmesh *mesh1, TESSmesh *mesh2 ) |
| { |
| TESSface *f1 = &mesh1->fHead; |
| TESSvertex *v1 = &mesh1->vHead; |
| TESShalfEdge *e1 = &mesh1->eHead; |
| TESSface *f2 = &mesh2->fHead; |
| TESSvertex *v2 = &mesh2->vHead; |
| TESShalfEdge *e2 = &mesh2->eHead; |
| |
| /* Add the faces, vertices, and edges of mesh2 to those of mesh1 */ |
| if( f2->next != f2 ) { |
| f1->prev->next = f2->next; |
| f2->next->prev = f1->prev; |
| f2->prev->next = f1; |
| f1->prev = f2->prev; |
| } |
| |
| if( v2->next != v2 ) { |
| v1->prev->next = v2->next; |
| v2->next->prev = v1->prev; |
| v2->prev->next = v1; |
| v1->prev = v2->prev; |
| } |
| |
| if( e2->next != e2 ) { |
| e1->Sym->next->Sym->next = e2->next; |
| e2->next->Sym->next = e1->Sym->next; |
| e2->Sym->next->Sym->next = e1; |
| e1->Sym->next = e2->Sym->next; |
| } |
| |
| alloc->memfree( alloc->userData, mesh2 ); |
| return mesh1; |
| } |
| |
| |
| static int CountFaceVerts( TESSface *f ) |
| { |
| TESShalfEdge *eCur = f->anEdge; |
| int n = 0; |
| do |
| { |
| n++; |
| eCur = eCur->Lnext; |
| } |
| while (eCur != f->anEdge); |
| return n; |
| } |
| |
| int tessMeshMergeConvexFaces( TESSmesh *mesh, int maxVertsPerFace ) |
| { |
| TESSface *f; |
| TESShalfEdge *eCur, *eNext, *eSym; |
| TESSvertex *vStart; |
| int curNv, symNv; |
| |
| for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) |
| { |
| // Skip faces which are outside the result. |
| if( !f->inside ) |
| continue; |
| |
| eCur = f->anEdge; |
| vStart = eCur->Org; |
| |
| while (1) |
| { |
| eNext = eCur->Lnext; |
| eSym = eCur->Sym; |
| |
| // Try to merge if the neighbour face is valid. |
| if( eSym && eSym->Lface && eSym->Lface->inside ) |
| { |
| // Try to merge the neighbour faces if the resulting polygons |
| // does not exceed maximum number of vertices. |
| curNv = CountFaceVerts( f ); |
| symNv = CountFaceVerts( eSym->Lface ); |
| if( (curNv+symNv-2) <= maxVertsPerFace ) |
| { |
| // Merge if the resulting poly is convex. |
| if( VertCCW( eCur->Lprev->Org, eCur->Org, eSym->Lnext->Lnext->Org ) && |
| VertCCW( eSym->Lprev->Org, eSym->Org, eCur->Lnext->Lnext->Org ) ) |
| { |
| eNext = eSym->Lnext; |
| if( !tessMeshDelete( mesh, eSym ) ) |
| return 0; |
| eCur = 0; |
| } |
| } |
| } |
| |
| if( eCur && eCur->Lnext->Org == vStart ) |
| break; |
| |
| // Continue to next edge. |
| eCur = eNext; |
| } |
| } |
| |
| return 1; |
| } |
| |
| #include <stdio.h> |
| |
| void tessMeshFlipEdge( TESSmesh *mesh, TESShalfEdge *edge ) |
| { |
| assert(EdgeIsInternal(edge)); |
| |
| TESShalfEdge *a0 = edge; |
| TESShalfEdge *a1 = a0->Lnext; |
| TESShalfEdge *a2 = a1->Lnext; |
| assert(a2->Lnext == a0); |
| TESShalfEdge *b0 = edge->Sym; |
| TESShalfEdge *b1 = b0->Lnext; |
| TESShalfEdge *b2 = b1->Lnext; |
| assert(b2->Lnext == b0); |
| |
| TESSvertex *aOrg = a0->Org; |
| TESSvertex *aOpp = a2->Org; |
| TESSvertex *bOrg = b0->Org; |
| TESSvertex *bOpp = b2->Org; |
| |
| TESSface *fa = a0->Lface; |
| TESSface *fb = b0->Lface; |
| |
| a0->Org = bOpp; |
| a0->Onext = b1->Sym; |
| b0->Org = aOpp; |
| b0->Onext = a1->Sym; |
| a2->Onext = b0; |
| b2->Onext = a0; |
| b1->Onext = a2->Sym; |
| a1->Onext = b2->Sym; |
| |
| a0->Lnext = a2; |
| a2->Lnext = b1; |
| b1->Lnext = a0; |
| |
| b0->Lnext = b2; |
| b2->Lnext = a1; |
| a1->Lnext = b0; |
| |
| a1->Lface = fb; |
| b1->Lface = fa; |
| |
| fa->anEdge = a0; |
| fb->anEdge = b0; |
| |
| if (aOrg->anEdge == a0) aOrg->anEdge = b1; |
| if (bOrg->anEdge == b0) bOrg->anEdge = a1; |
| |
| assert( a0->Lnext->Onext->Sym == a0 ); |
| assert( a0->Onext->Sym->Lnext == a0 ); |
| assert( a0->Org->anEdge->Org == a0->Org ); |
| |
| |
| assert( a1->Lnext->Onext->Sym == a1 ); |
| assert( a1->Onext->Sym->Lnext == a1 ); |
| assert( a1->Org->anEdge->Org == a1->Org ); |
| |
| assert( a2->Lnext->Onext->Sym == a2 ); |
| assert( a2->Onext->Sym->Lnext == a2 ); |
| assert( a2->Org->anEdge->Org == a2->Org ); |
| |
| assert( b0->Lnext->Onext->Sym == b0 ); |
| assert( b0->Onext->Sym->Lnext == b0 ); |
| assert( b0->Org->anEdge->Org == b0->Org ); |
| |
| assert( b1->Lnext->Onext->Sym == b1 ); |
| assert( b1->Onext->Sym->Lnext == b1 ); |
| assert( b1->Org->anEdge->Org == b1->Org ); |
| |
| assert( b2->Lnext->Onext->Sym == b2 ); |
| assert( b2->Onext->Sym->Lnext == b2 ); |
| assert( b2->Org->anEdge->Org == b2->Org ); |
| |
| assert(aOrg->anEdge->Org == aOrg); |
| assert(bOrg->anEdge->Org == bOrg); |
| |
| assert(a0->Oprev->Onext->Org == a0->Org); |
| } |
| |
| #ifdef DELETE_BY_ZAPPING |
| |
| /* tessMeshDeleteMesh( mesh ) will free all storage for any valid mesh. |
| */ |
| void tessMeshDeleteMesh( TESSalloc* alloc, TESSmesh *mesh ) |
| { |
| TESSface *fHead = &mesh->fHead; |
| |
| while( fHead->next != fHead ) { |
| tessMeshZapFace( fHead->next ); |
| } |
| assert( mesh->vHead.next == &mesh->vHead ); |
| |
| alloc->memfree( alloc->userData, mesh ); |
| } |
| |
| #else |
| |
| /* tessMeshDeleteMesh( mesh ) will free all storage for any valid mesh. |
| */ |
| void tessMeshDeleteMesh( TESSalloc* alloc, TESSmesh *mesh ) |
| { |
| deleteBucketAlloc(mesh->edgeBucket); |
| deleteBucketAlloc(mesh->vertexBucket); |
| deleteBucketAlloc(mesh->faceBucket); |
| |
| alloc->memfree( alloc->userData, mesh ); |
| } |
| |
| #endif |
| |
| #ifndef NDEBUG |
| |
| /* tessMeshCheckMesh( mesh ) checks a mesh for self-consistency. |
| */ |
| void tessMeshCheckMesh( TESSmesh *mesh ) |
| { |
| TESSface *fHead = &mesh->fHead; |
| TESSvertex *vHead = &mesh->vHead; |
| TESShalfEdge *eHead = &mesh->eHead; |
| TESSface *f, *fPrev; |
| TESSvertex *v, *vPrev; |
| TESShalfEdge *e, *ePrev; |
| |
| fPrev = fHead; |
| for( fPrev = fHead ; (f = fPrev->next) != fHead; fPrev = f) { |
| assert( f->prev == fPrev ); |
| e = f->anEdge; |
| do { |
| assert( e->Sym != e ); |
| assert( e->Sym->Sym == e ); |
| assert( e->Lnext->Onext->Sym == e ); |
| assert( e->Onext->Sym->Lnext == e ); |
| assert( e->Lface == f ); |
| e = e->Lnext; |
| } while( e != f->anEdge ); |
| } |
| assert( f->prev == fPrev && f->anEdge == NULL ); |
| |
| vPrev = vHead; |
| for( vPrev = vHead ; (v = vPrev->next) != vHead; vPrev = v) { |
| assert( v->prev == vPrev ); |
| e = v->anEdge; |
| do { |
| assert( e->Sym != e ); |
| assert( e->Sym->Sym == e ); |
| assert( e->Lnext->Onext->Sym == e ); |
| assert( e->Onext->Sym->Lnext == e ); |
| assert( e->Org == v ); |
| e = e->Onext; |
| } while( e != v->anEdge ); |
| } |
| assert( v->prev == vPrev && v->anEdge == NULL ); |
| |
| ePrev = eHead; |
| for( ePrev = eHead ; (e = ePrev->next) != eHead; ePrev = e) { |
| assert( e->Sym->next == ePrev->Sym ); |
| assert( e->Sym != e ); |
| assert( e->Sym->Sym == e ); |
| assert( e->Org != NULL ); |
| assert( e->Dst != NULL ); |
| assert( e->Lnext->Onext->Sym == e ); |
| assert( e->Onext->Sym->Lnext == e ); |
| } |
| assert( e->Sym->next == ePrev->Sym |
| && e->Sym == &mesh->eHeadSym |
| && e->Sym->Sym == e |
| && e->Org == NULL && e->Dst == NULL |
| && e->Lface == NULL && e->Rface == NULL ); |
| } |
| |
| #endif |