| /* |
| ** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) |
| ** Copyright (C) [dates of first publication] Silicon Graphics, Inc. |
| ** All Rights Reserved. |
| ** |
| ** Permission is hereby granted, free of charge, to any person obtaining a copy |
| ** of this software and associated documentation files (the "Software"), to deal |
| ** in the Software without restriction, including without limitation the rights |
| ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
| ** of the Software, and to permit persons to whom the Software is furnished to do so, |
| ** subject to the following conditions: |
| ** |
| ** The above copyright notice including the dates of first publication and either this |
| ** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be |
| ** included in all copies or substantial portions of the Software. |
| ** |
| ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, |
| ** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A |
| ** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC. |
| ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE |
| ** OR OTHER DEALINGS IN THE SOFTWARE. |
| ** |
| ** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not |
| ** be used in advertising or otherwise to promote the sale, use or other dealings in |
| ** this Software without prior written authorization from Silicon Graphics, Inc. |
| */ |
| /* |
| ** Author: Eric Veach, July 1994. |
| */ |
| |
| #include <stddef.h> |
| #include <assert.h> |
| #include <setjmp.h> |
| #include "bucketalloc.h" |
| #include "tess.h" |
| #include "mesh.h" |
| #include "sweep.h" |
| #include "geom.h" |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #define TRUE 1 |
| #define FALSE 0 |
| |
| #define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2]) |
| |
| #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT) |
| static void Normalize( TESSreal v[3] ) |
| { |
| TESSreal len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; |
| |
| assert( len > 0 ); |
| len = sqrtf( len ); |
| v[0] /= len; |
| v[1] /= len; |
| v[2] /= len; |
| } |
| #endif |
| |
| #define ABS(x) ((x) < 0 ? -(x) : (x)) |
| |
| static int LongAxis( TESSreal v[3] ) |
| { |
| int i = 0; |
| |
| if( ABS(v[1]) > ABS(v[0]) ) { i = 1; } |
| if( ABS(v[2]) > ABS(v[i]) ) { i = 2; } |
| return i; |
| } |
| |
| static void ComputeNormal( TESStesselator *tess, TESSreal norm[3] ) |
| { |
| TESSvertex *v, *v1, *v2; |
| TESSreal c, tLen2, maxLen2; |
| TESSreal maxVal[3], minVal[3], d1[3], d2[3], tNorm[3]; |
| TESSvertex *maxVert[3], *minVert[3]; |
| TESSvertex *vHead = &tess->mesh->vHead; |
| int i; |
| |
| v = vHead->next; |
| for( i = 0; i < 3; ++i ) { |
| c = v->coords[i]; |
| minVal[i] = c; |
| minVert[i] = v; |
| maxVal[i] = c; |
| maxVert[i] = v; |
| } |
| |
| for( v = vHead->next; v != vHead; v = v->next ) { |
| for( i = 0; i < 3; ++i ) { |
| c = v->coords[i]; |
| if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; } |
| if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; } |
| } |
| } |
| |
| /* Find two vertices separated by at least 1/sqrt(3) of the maximum |
| * distance between any two vertices |
| */ |
| i = 0; |
| if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; } |
| if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; } |
| if( minVal[i] >= maxVal[i] ) { |
| /* All vertices are the same -- normal doesn't matter */ |
| norm[0] = 0; norm[1] = 0; norm[2] = 1; |
| return; |
| } |
| |
| /* Look for a third vertex which forms the triangle with maximum area |
| * (Length of normal == twice the triangle area) |
| */ |
| maxLen2 = 0; |
| v1 = minVert[i]; |
| v2 = maxVert[i]; |
| d1[0] = v1->coords[0] - v2->coords[0]; |
| d1[1] = v1->coords[1] - v2->coords[1]; |
| d1[2] = v1->coords[2] - v2->coords[2]; |
| for( v = vHead->next; v != vHead; v = v->next ) { |
| d2[0] = v->coords[0] - v2->coords[0]; |
| d2[1] = v->coords[1] - v2->coords[1]; |
| d2[2] = v->coords[2] - v2->coords[2]; |
| tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1]; |
| tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2]; |
| tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0]; |
| tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2]; |
| if( tLen2 > maxLen2 ) { |
| maxLen2 = tLen2; |
| norm[0] = tNorm[0]; |
| norm[1] = tNorm[1]; |
| norm[2] = tNorm[2]; |
| } |
| } |
| |
| if( maxLen2 <= 0 ) { |
| /* All points lie on a single line -- any decent normal will do */ |
| norm[0] = norm[1] = norm[2] = 0; |
| norm[LongAxis(d1)] = 1; |
| } |
| } |
| |
| |
| static void CheckOrientation( TESStesselator *tess ) |
| { |
| TESSreal area; |
| TESSface *f, *fHead = &tess->mesh->fHead; |
| TESSvertex *v, *vHead = &tess->mesh->vHead; |
| TESShalfEdge *e; |
| |
| /* When we compute the normal automatically, we choose the orientation |
| * so that the the sum of the signed areas of all contours is non-negative. |
| */ |
| area = 0; |
| for( f = fHead->next; f != fHead; f = f->next ) { |
| e = f->anEdge; |
| if( e->winding <= 0 ) continue; |
| do { |
| area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t); |
| e = e->Lnext; |
| } while( e != f->anEdge ); |
| } |
| if( area < 0 ) { |
| /* Reverse the orientation by flipping all the t-coordinates */ |
| for( v = vHead->next; v != vHead; v = v->next ) { |
| v->t = - v->t; |
| } |
| tess->tUnit[0] = - tess->tUnit[0]; |
| tess->tUnit[1] = - tess->tUnit[1]; |
| tess->tUnit[2] = - tess->tUnit[2]; |
| } |
| } |
| |
| #ifdef FOR_TRITE_TEST_PROGRAM |
| #include <stdlib.h> |
| extern int RandomSweep; |
| #define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0) |
| #define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0) |
| #else |
| #if defined(SLANTED_SWEEP) |
| /* The "feature merging" is not intended to be complete. There are |
| * special cases where edges are nearly parallel to the sweep line |
| * which are not implemented. The algorithm should still behave |
| * robustly (ie. produce a reasonable tesselation) in the presence |
| * of such edges, however it may miss features which could have been |
| * merged. We could minimize this effect by choosing the sweep line |
| * direction to be something unusual (ie. not parallel to one of the |
| * coordinate axes). |
| */ |
| #define S_UNIT_X (TESSreal)0.50941539564955385 /* Pre-normalized */ |
| #define S_UNIT_Y (TESSreal)0.86052074622010633 |
| #else |
| #define S_UNIT_X (TESSreal)1.0 |
| #define S_UNIT_Y (TESSreal)0.0 |
| #endif |
| #endif |
| |
| /* Determine the polygon normal and project vertices onto the plane |
| * of the polygon. |
| */ |
| void tessProjectPolygon( TESStesselator *tess ) |
| { |
| TESSvertex *v, *vHead = &tess->mesh->vHead; |
| TESSreal norm[3]; |
| TESSreal *sUnit, *tUnit; |
| int i, first, computedNormal = FALSE; |
| |
| norm[0] = tess->normal[0]; |
| norm[1] = tess->normal[1]; |
| norm[2] = tess->normal[2]; |
| if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) { |
| ComputeNormal( tess, norm ); |
| computedNormal = TRUE; |
| } |
| sUnit = tess->sUnit; |
| tUnit = tess->tUnit; |
| i = LongAxis( norm ); |
| |
| #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT) |
| /* Choose the initial sUnit vector to be approximately perpendicular |
| * to the normal. |
| */ |
| Normalize( norm ); |
| |
| sUnit[i] = 0; |
| sUnit[(i+1)%3] = S_UNIT_X; |
| sUnit[(i+2)%3] = S_UNIT_Y; |
| |
| /* Now make it exactly perpendicular */ |
| w = Dot( sUnit, norm ); |
| sUnit[0] -= w * norm[0]; |
| sUnit[1] -= w * norm[1]; |
| sUnit[2] -= w * norm[2]; |
| Normalize( sUnit ); |
| |
| /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */ |
| tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1]; |
| tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2]; |
| tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0]; |
| Normalize( tUnit ); |
| #else |
| /* Project perpendicular to a coordinate axis -- better numerically */ |
| sUnit[i] = 0; |
| sUnit[(i+1)%3] = S_UNIT_X; |
| sUnit[(i+2)%3] = S_UNIT_Y; |
| |
| tUnit[i] = 0; |
| tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y; |
| tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X; |
| #endif |
| |
| /* Project the vertices onto the sweep plane */ |
| for( v = vHead->next; v != vHead; v = v->next ) |
| { |
| v->s = Dot( v->coords, sUnit ); |
| v->t = Dot( v->coords, tUnit ); |
| } |
| if( computedNormal ) { |
| CheckOrientation( tess ); |
| } |
| |
| /* Compute ST bounds. */ |
| first = 1; |
| for( v = vHead->next; v != vHead; v = v->next ) |
| { |
| if (first) |
| { |
| tess->bmin[0] = tess->bmax[0] = v->s; |
| tess->bmin[1] = tess->bmax[1] = v->t; |
| first = 0; |
| } |
| else |
| { |
| if (v->s < tess->bmin[0]) tess->bmin[0] = v->s; |
| if (v->s > tess->bmax[0]) tess->bmax[0] = v->s; |
| if (v->t < tess->bmin[1]) tess->bmin[1] = v->t; |
| if (v->t > tess->bmax[1]) tess->bmax[1] = v->t; |
| } |
| } |
| } |
| |
| #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \ |
| eDst->Sym->winding += eSrc->Sym->winding) |
| |
| /* tessMeshTessellateMonoRegion( face ) tessellates a monotone region |
| * (what else would it do??) The region must consist of a single |
| * loop of half-edges (see mesh.h) oriented CCW. "Monotone" in this |
| * case means that any vertical line intersects the interior of the |
| * region in a single interval. |
| * |
| * Tessellation consists of adding interior edges (actually pairs of |
| * half-edges), to split the region into non-overlapping triangles. |
| * |
| * The basic idea is explained in Preparata and Shamos (which I don''t |
| * have handy right now), although their implementation is more |
| * complicated than this one. The are two edge chains, an upper chain |
| * and a lower chain. We process all vertices from both chains in order, |
| * from right to left. |
| * |
| * The algorithm ensures that the following invariant holds after each |
| * vertex is processed: the untessellated region consists of two |
| * chains, where one chain (say the upper) is a single edge, and |
| * the other chain is concave. The left vertex of the single edge |
| * is always to the left of all vertices in the concave chain. |
| * |
| * Each step consists of adding the rightmost unprocessed vertex to one |
| * of the two chains, and forming a fan of triangles from the rightmost |
| * of two chain endpoints. Determining whether we can add each triangle |
| * to the fan is a simple orientation test. By making the fan as large |
| * as possible, we restore the invariant (check it yourself). |
| */ |
| int tessMeshTessellateMonoRegion( TESSmesh *mesh, TESSface *face ) |
| { |
| TESShalfEdge *up, *lo; |
| |
| /* All edges are oriented CCW around the boundary of the region. |
| * First, find the half-edge whose origin vertex is rightmost. |
| * Since the sweep goes from left to right, face->anEdge should |
| * be close to the edge we want. |
| */ |
| up = face->anEdge; |
| assert( up->Lnext != up && up->Lnext->Lnext != up ); |
| |
| for( ; VertLeq( up->Dst, up->Org ); up = up->Lprev ) |
| ; |
| for( ; VertLeq( up->Org, up->Dst ); up = up->Lnext ) |
| ; |
| lo = up->Lprev; |
| |
| while( up->Lnext != lo ) { |
| if( VertLeq( up->Dst, lo->Org )) { |
| /* up->Dst is on the left. It is safe to form triangles from lo->Org. |
| * The EdgeGoesLeft test guarantees progress even when some triangles |
| * are CW, given that the upper and lower chains are truly monotone. |
| */ |
| while( lo->Lnext != up && (EdgeGoesLeft( lo->Lnext ) |
| || EdgeSign( lo->Org, lo->Dst, lo->Lnext->Dst ) <= 0 )) { |
| TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, lo->Lnext, lo ); |
| if (tempHalfEdge == NULL) return 0; |
| lo = tempHalfEdge->Sym; |
| } |
| lo = lo->Lprev; |
| } else { |
| /* lo->Org is on the left. We can make CCW triangles from up->Dst. */ |
| while( lo->Lnext != up && (EdgeGoesRight( up->Lprev ) |
| || EdgeSign( up->Dst, up->Org, up->Lprev->Org ) >= 0 )) { |
| TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, up, up->Lprev ); |
| if (tempHalfEdge == NULL) return 0; |
| up = tempHalfEdge->Sym; |
| } |
| up = up->Lnext; |
| } |
| } |
| |
| /* Now lo->Org == up->Dst == the leftmost vertex. The remaining region |
| * can be tessellated in a fan from this leftmost vertex. |
| */ |
| assert( lo->Lnext != up ); |
| while( lo->Lnext->Lnext != up ) { |
| TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, lo->Lnext, lo ); |
| if (tempHalfEdge == NULL) return 0; |
| lo = tempHalfEdge->Sym; |
| } |
| |
| return 1; |
| } |
| |
| |
| /* tessMeshTessellateInterior( mesh ) tessellates each region of |
| * the mesh which is marked "inside" the polygon. Each such region |
| * must be monotone. |
| */ |
| int tessMeshTessellateInterior( TESSmesh *mesh ) |
| { |
| TESSface *f, *next; |
| |
| /*LINTED*/ |
| for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) { |
| /* Make sure we don''t try to tessellate the new triangles. */ |
| next = f->next; |
| if( f->inside ) { |
| if ( !tessMeshTessellateMonoRegion( mesh, f ) ) return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| |
| /* tessMeshDiscardExterior( mesh ) zaps (ie. sets to NULL) all faces |
| * which are not marked "inside" the polygon. Since further mesh operations |
| * on NULL faces are not allowed, the main purpose is to clean up the |
| * mesh so that exterior loops are not represented in the data structure. |
| */ |
| void tessMeshDiscardExterior( TESSmesh *mesh ) |
| { |
| TESSface *f, *next; |
| |
| /*LINTED*/ |
| for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) { |
| /* Since f will be destroyed, save its next pointer. */ |
| next = f->next; |
| if( ! f->inside ) { |
| tessMeshZapFace( mesh, f ); |
| } |
| } |
| } |
| |
| /* tessMeshSetWindingNumber( mesh, value, keepOnlyBoundary ) resets the |
| * winding numbers on all edges so that regions marked "inside" the |
| * polygon have a winding number of "value", and regions outside |
| * have a winding number of 0. |
| * |
| * If keepOnlyBoundary is TRUE, it also deletes all edges which do not |
| * separate an interior region from an exterior one. |
| */ |
| int tessMeshSetWindingNumber( TESSmesh *mesh, int value, |
| int keepOnlyBoundary ) |
| { |
| TESShalfEdge *e, *eNext; |
| |
| for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) { |
| eNext = e->next; |
| if( e->Rface->inside != e->Lface->inside ) { |
| |
| /* This is a boundary edge (one side is interior, one is exterior). */ |
| e->winding = (e->Lface->inside) ? value : -value; |
| } else { |
| |
| /* Both regions are interior, or both are exterior. */ |
| if( ! keepOnlyBoundary ) { |
| e->winding = 0; |
| } else { |
| if ( !tessMeshDelete( mesh, e ) ) return 0; |
| } |
| } |
| } |
| return 1; |
| } |
| |
| void* heapAlloc( void* userData, unsigned int size ) |
| { |
| TESS_NOTUSED( userData ); |
| return malloc( size ); |
| } |
| |
| void* heapRealloc( void *userData, void* ptr, unsigned int size ) |
| { |
| TESS_NOTUSED( userData ); |
| return realloc( ptr, size ); |
| } |
| |
| void heapFree( void* userData, void* ptr ) |
| { |
| TESS_NOTUSED( userData ); |
| free( ptr ); |
| } |
| |
| static TESSalloc defaulAlloc = |
| { |
| heapAlloc, |
| heapRealloc, |
| heapFree, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| }; |
| |
| TESStesselator* tessNewTess( TESSalloc* alloc ) |
| { |
| TESStesselator* tess; |
| |
| if (alloc == NULL) |
| alloc = &defaulAlloc; |
| |
| /* Only initialize fields which can be changed by the api. Other fields |
| * are initialized where they are used. |
| */ |
| |
| tess = (TESStesselator *)alloc->memalloc( alloc->userData, sizeof( TESStesselator )); |
| if ( tess == NULL ) { |
| return 0; /* out of memory */ |
| } |
| tess->alloc = *alloc; |
| /* Check and set defaults. */ |
| if (tess->alloc.meshEdgeBucketSize == 0) |
| tess->alloc.meshEdgeBucketSize = 512; |
| if (tess->alloc.meshVertexBucketSize == 0) |
| tess->alloc.meshVertexBucketSize = 512; |
| if (tess->alloc.meshFaceBucketSize == 0) |
| tess->alloc.meshFaceBucketSize = 256; |
| if (tess->alloc.dictNodeBucketSize == 0) |
| tess->alloc.dictNodeBucketSize = 512; |
| if (tess->alloc.regionBucketSize == 0) |
| tess->alloc.regionBucketSize = 256; |
| |
| tess->normal[0] = 0; |
| tess->normal[1] = 0; |
| tess->normal[2] = 0; |
| |
| tess->bmin[0] = 0; |
| tess->bmin[1] = 0; |
| tess->bmax[0] = 0; |
| tess->bmax[1] = 0; |
| |
| tess->windingRule = TESS_WINDING_ODD; |
| |
| if (tess->alloc.regionBucketSize < 16) |
| tess->alloc.regionBucketSize = 16; |
| if (tess->alloc.regionBucketSize > 4096) |
| tess->alloc.regionBucketSize = 4096; |
| tess->regionPool = createBucketAlloc( &tess->alloc, "Regions", |
| sizeof(ActiveRegion), tess->alloc.regionBucketSize ); |
| |
| // Initialize to begin polygon. |
| tess->mesh = NULL; |
| |
| tess->outOfMemory = 0; |
| tess->vertexIndexCounter = 0; |
| |
| tess->vertices = 0; |
| tess->vertexIndices = 0; |
| tess->vertexCount = 0; |
| tess->elements = 0; |
| tess->elementCount = 0; |
| |
| return tess; |
| } |
| |
| void tessDeleteTess( TESStesselator *tess ) |
| { |
| |
| struct TESSalloc alloc = tess->alloc; |
| |
| deleteBucketAlloc( tess->regionPool ); |
| |
| if( tess->mesh != NULL ) { |
| tessMeshDeleteMesh( &alloc, tess->mesh ); |
| tess->mesh = NULL; |
| } |
| if (tess->vertices != NULL) { |
| alloc.memfree( alloc.userData, tess->vertices ); |
| tess->vertices = 0; |
| } |
| if (tess->vertexIndices != NULL) { |
| alloc.memfree( alloc.userData, tess->vertexIndices ); |
| tess->vertexIndices = 0; |
| } |
| if (tess->elements != NULL) { |
| alloc.memfree( alloc.userData, tess->elements ); |
| tess->elements = 0; |
| } |
| |
| alloc.memfree( alloc.userData, tess ); |
| } |
| |
| |
| static TESSindex GetNeighbourFace(TESShalfEdge* edge) |
| { |
| if (!edge->Rface) |
| return TESS_UNDEF; |
| if (!edge->Rface->inside) |
| return TESS_UNDEF; |
| return edge->Rface->n; |
| } |
| |
| void OutputPolymesh( TESStesselator *tess, TESSmesh *mesh, int elementType, int polySize, int vertexSize ) |
| { |
| TESSvertex* v = 0; |
| TESSface* f = 0; |
| TESShalfEdge* edge = 0; |
| int maxFaceCount = 0; |
| int maxVertexCount = 0; |
| int faceVerts, i; |
| TESSindex *elements = 0; |
| TESSreal *vert; |
| |
| // Assume that the input data is triangles now. |
| // Try to merge as many polygons as possible |
| if (polySize > 3) |
| { |
| if (!tessMeshMergeConvexFaces( mesh, polySize )) |
| { |
| tess->outOfMemory = 1; |
| return; |
| } |
| } |
| |
| // Mark unused |
| for ( v = mesh->vHead.next; v != &mesh->vHead; v = v->next ) |
| v->n = TESS_UNDEF; |
| |
| // Create unique IDs for all vertices and faces. |
| for ( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) |
| { |
| f->n = TESS_UNDEF; |
| if( !f->inside ) continue; |
| |
| edge = f->anEdge; |
| faceVerts = 0; |
| do |
| { |
| v = edge->Org; |
| if ( v->n == TESS_UNDEF ) |
| { |
| v->n = maxVertexCount; |
| maxVertexCount++; |
| } |
| faceVerts++; |
| edge = edge->Lnext; |
| } |
| while (edge != f->anEdge); |
| |
| assert( faceVerts <= polySize ); |
| |
| f->n = maxFaceCount; |
| ++maxFaceCount; |
| } |
| |
| tess->elementCount = maxFaceCount; |
| if (elementType == TESS_CONNECTED_POLYGONS) |
| maxFaceCount *= 2; |
| tess->elements = (TESSindex*)tess->alloc.memalloc( tess->alloc.userData, |
| sizeof(TESSindex) * maxFaceCount * polySize ); |
| if (!tess->elements) |
| { |
| tess->outOfMemory = 1; |
| return; |
| } |
| |
| tess->vertexCount = maxVertexCount; |
| tess->vertices = (TESSreal*)tess->alloc.memalloc( tess->alloc.userData, |
| sizeof(TESSreal) * tess->vertexCount * vertexSize ); |
| if (!tess->vertices) |
| { |
| tess->outOfMemory = 1; |
| return; |
| } |
| |
| tess->vertexIndices = (TESSindex*)tess->alloc.memalloc( tess->alloc.userData, |
| sizeof(TESSindex) * tess->vertexCount ); |
| if (!tess->vertexIndices) |
| { |
| tess->outOfMemory = 1; |
| return; |
| } |
| |
| // Output vertices. |
| for ( v = mesh->vHead.next; v != &mesh->vHead; v = v->next ) |
| { |
| if ( v->n != TESS_UNDEF ) |
| { |
| // Store coordinate |
| vert = &tess->vertices[v->n*vertexSize]; |
| vert[0] = v->coords[0]; |
| vert[1] = v->coords[1]; |
| if ( vertexSize > 2 ) |
| vert[2] = v->coords[2]; |
| // Store vertex index. |
| tess->vertexIndices[v->n] = v->idx; |
| } |
| } |
| |
| // Output indices. |
| elements = tess->elements; |
| for ( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) |
| { |
| if ( !f->inside ) continue; |
| |
| // Store polygon |
| edge = f->anEdge; |
| faceVerts = 0; |
| do |
| { |
| v = edge->Org; |
| *elements++ = v->n; |
| faceVerts++; |
| edge = edge->Lnext; |
| } |
| while (edge != f->anEdge); |
| // Fill unused. |
| for (i = faceVerts; i < polySize; ++i) |
| *elements++ = TESS_UNDEF; |
| |
| // Store polygon connectivity |
| if ( elementType == TESS_CONNECTED_POLYGONS ) |
| { |
| edge = f->anEdge; |
| do |
| { |
| *elements++ = GetNeighbourFace( edge ); |
| edge = edge->Lnext; |
| } |
| while (edge != f->anEdge); |
| // Fill unused. |
| for (i = faceVerts; i < polySize; ++i) |
| *elements++ = TESS_UNDEF; |
| } |
| } |
| } |
| |
| void OutputContours( TESStesselator *tess, TESSmesh *mesh, int vertexSize ) |
| { |
| TESSface *f = 0; |
| TESShalfEdge *edge = 0; |
| TESShalfEdge *start = 0; |
| TESSreal *verts = 0; |
| TESSindex *elements = 0; |
| TESSindex *vertInds = 0; |
| int startVert = 0; |
| int vertCount = 0; |
| |
| tess->vertexCount = 0; |
| tess->elementCount = 0; |
| |
| for ( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) |
| { |
| if ( !f->inside ) continue; |
| |
| start = edge = f->anEdge; |
| do |
| { |
| ++tess->vertexCount; |
| edge = edge->Lnext; |
| } |
| while ( edge != start ); |
| |
| ++tess->elementCount; |
| } |
| |
| tess->elements = (TESSindex*)tess->alloc.memalloc( tess->alloc.userData, |
| sizeof(TESSindex) * tess->elementCount * 2 ); |
| if (!tess->elements) |
| { |
| tess->outOfMemory = 1; |
| return; |
| } |
| |
| tess->vertices = (TESSreal*)tess->alloc.memalloc( tess->alloc.userData, |
| sizeof(TESSreal) * tess->vertexCount * vertexSize ); |
| if (!tess->vertices) |
| { |
| tess->outOfMemory = 1; |
| return; |
| } |
| |
| tess->vertexIndices = (TESSindex*)tess->alloc.memalloc( tess->alloc.userData, |
| sizeof(TESSindex) * tess->vertexCount ); |
| if (!tess->vertexIndices) |
| { |
| tess->outOfMemory = 1; |
| return; |
| } |
| |
| verts = tess->vertices; |
| elements = tess->elements; |
| vertInds = tess->vertexIndices; |
| |
| startVert = 0; |
| |
| for ( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) |
| { |
| if ( !f->inside ) continue; |
| |
| vertCount = 0; |
| start = edge = f->anEdge; |
| do |
| { |
| *verts++ = edge->Org->coords[0]; |
| *verts++ = edge->Org->coords[1]; |
| if ( vertexSize > 2 ) |
| *verts++ = edge->Org->coords[2]; |
| *vertInds++ = edge->Org->idx; |
| ++vertCount; |
| edge = edge->Lnext; |
| } |
| while ( edge != start ); |
| |
| elements[0] = startVert; |
| elements[1] = vertCount; |
| elements += 2; |
| |
| startVert += vertCount; |
| } |
| } |
| |
| void tessAddContour( TESStesselator *tess, int size, const void* vertices, |
| int stride, int numVertices ) |
| { |
| const unsigned char *src = (const unsigned char*)vertices; |
| TESShalfEdge *e; |
| int i; |
| |
| if ( tess->mesh == NULL ) |
| tess->mesh = tessMeshNewMesh( &tess->alloc ); |
| if ( tess->mesh == NULL ) { |
| tess->outOfMemory = 1; |
| return; |
| } |
| |
| if ( size < 2 ) |
| size = 2; |
| if ( size > 3 ) |
| size = 3; |
| |
| e = NULL; |
| |
| for( i = 0; i < numVertices; ++i ) |
| { |
| const TESSreal* coords = (const TESSreal*)src; |
| src += stride; |
| |
| if( e == NULL ) { |
| /* Make a self-loop (one vertex, one edge). */ |
| e = tessMeshMakeEdge( tess->mesh ); |
| if ( e == NULL ) { |
| tess->outOfMemory = 1; |
| return; |
| } |
| if ( !tessMeshSplice( tess->mesh, e, e->Sym ) ) { |
| tess->outOfMemory = 1; |
| return; |
| } |
| } else { |
| /* Create a new vertex and edge which immediately follow e |
| * in the ordering around the left face. |
| */ |
| if ( tessMeshSplitEdge( tess->mesh, e ) == NULL ) { |
| tess->outOfMemory = 1; |
| return; |
| } |
| e = e->Lnext; |
| } |
| |
| /* The new vertex is now e->Org. */ |
| e->Org->coords[0] = coords[0]; |
| e->Org->coords[1] = coords[1]; |
| if ( size > 2 ) |
| e->Org->coords[2] = coords[2]; |
| else |
| e->Org->coords[2] = 0; |
| /* Store the insertion number so that the vertex can be later recognized. */ |
| e->Org->idx = tess->vertexIndexCounter++; |
| |
| /* The winding of an edge says how the winding number changes as we |
| * cross from the edge''s right face to its left face. We add the |
| * vertices in such an order that a CCW contour will add +1 to |
| * the winding number of the region inside the contour. |
| */ |
| e->winding = 1; |
| e->Sym->winding = -1; |
| } |
| } |
| |
| int tessTesselate( TESStesselator *tess, int windingRule, int elementType, |
| int polySize, int vertexSize, const TESSreal* normal ) |
| { |
| TESSmesh *mesh; |
| int rc = 1; |
| |
| if (tess->vertices != NULL) { |
| tess->alloc.memfree( tess->alloc.userData, tess->vertices ); |
| tess->vertices = 0; |
| } |
| if (tess->elements != NULL) { |
| tess->alloc.memfree( tess->alloc.userData, tess->elements ); |
| tess->elements = 0; |
| } |
| if (tess->vertexIndices != NULL) { |
| tess->alloc.memfree( tess->alloc.userData, tess->vertexIndices ); |
| tess->vertexIndices = 0; |
| } |
| |
| tess->vertexIndexCounter = 0; |
| |
| if (normal) |
| { |
| tess->normal[0] = normal[0]; |
| tess->normal[1] = normal[1]; |
| tess->normal[2] = normal[2]; |
| } |
| |
| tess->windingRule = windingRule; |
| |
| if (vertexSize < 2) |
| vertexSize = 2; |
| if (vertexSize > 3) |
| vertexSize = 3; |
| |
| if (setjmp(tess->env) != 0) { |
| /* come back here if out of memory */ |
| return 0; |
| } |
| |
| if (!tess->mesh) |
| { |
| return 0; |
| } |
| |
| /* Determine the polygon normal and project vertices onto the plane |
| * of the polygon. |
| */ |
| tessProjectPolygon( tess ); |
| |
| /* tessComputeInterior( tess ) computes the planar arrangement specified |
| * by the given contours, and further subdivides this arrangement |
| * into regions. Each region is marked "inside" if it belongs |
| * to the polygon, according to the rule given by tess->windingRule. |
| * Each interior region is guaranteed be monotone. |
| */ |
| if ( !tessComputeInterior( tess ) ) { |
| longjmp(tess->env,1); /* could've used a label */ |
| } |
| |
| mesh = tess->mesh; |
| |
| /* If the user wants only the boundary contours, we throw away all edges |
| * except those which separate the interior from the exterior. |
| * Otherwise we tessellate all the regions marked "inside". |
| */ |
| if (elementType == TESS_BOUNDARY_CONTOURS) { |
| rc = tessMeshSetWindingNumber( mesh, 1, TRUE ); |
| } else { |
| rc = tessMeshTessellateInterior( mesh ); |
| } |
| if (rc == 0) longjmp(tess->env,1); /* could've used a label */ |
| |
| tessMeshCheckMesh( mesh ); |
| |
| if (elementType == TESS_BOUNDARY_CONTOURS) { |
| OutputContours( tess, mesh, vertexSize ); /* output contours */ |
| } |
| else |
| { |
| OutputPolymesh( tess, mesh, elementType, polySize, vertexSize ); /* output polygons */ |
| } |
| |
| tessMeshDeleteMesh( &tess->alloc, mesh ); |
| tess->mesh = NULL; |
| |
| if (tess->outOfMemory) |
| return 0; |
| return 1; |
| } |
| |
| int tessGetVertexCount( TESStesselator *tess ) |
| { |
| return tess->vertexCount; |
| } |
| |
| const TESSreal* tessGetVertices( TESStesselator *tess ) |
| { |
| return tess->vertices; |
| } |
| |
| const TESSindex* tessGetVertexIndices( TESStesselator *tess ) |
| { |
| return tess->vertexIndices; |
| } |
| |
| int tessGetElementCount( TESStesselator *tess ) |
| { |
| return tess->elementCount; |
| } |
| |
| const int* tessGetElements( TESStesselator *tess ) |
| { |
| return tess->elements; |
| } |