/* | |
** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) | |
** Copyright (C) [dates of first publication] Silicon Graphics, Inc. | |
** All Rights Reserved. | |
** | |
** Permission is hereby granted, free of charge, to any person obtaining a copy | |
** of this software and associated documentation files (the "Software"), to deal | |
** in the Software without restriction, including without limitation the rights | |
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies | |
** of the Software, and to permit persons to whom the Software is furnished to do so, | |
** subject to the following conditions: | |
** | |
** The above copyright notice including the dates of first publication and either this | |
** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be | |
** included in all copies or substantial portions of the Software. | |
** | |
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, | |
** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A | |
** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC. | |
** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE | |
** OR OTHER DEALINGS IN THE SOFTWARE. | |
** | |
** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not | |
** be used in advertising or otherwise to promote the sale, use or other dealings in | |
** this Software without prior written authorization from Silicon Graphics, Inc. | |
*/ | |
/* | |
** Author: Eric Veach, July 1994. | |
*/ | |
//#include "tesos.h" | |
#include <assert.h> | |
#include "mesh.h" | |
#include "geom.h" | |
#include <math.h> | |
int tesvertLeq( TESSvertex *u, TESSvertex *v ) | |
{ | |
/* Returns TRUE if u is lexicographically <= v. */ | |
return VertLeq( u, v ); | |
} | |
TESSreal tesedgeEval( TESSvertex *u, TESSvertex *v, TESSvertex *w ) | |
{ | |
/* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w), | |
* evaluates the t-coord of the edge uw at the s-coord of the vertex v. | |
* Returns v->t - (uw)(v->s), ie. the signed distance from uw to v. | |
* If uw is vertical (and thus passes thru v), the result is zero. | |
* | |
* The calculation is extremely accurate and stable, even when v | |
* is very close to u or w. In particular if we set v->t = 0 and | |
* let r be the negated result (this evaluates (uw)(v->s)), then | |
* r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t). | |
*/ | |
TESSreal gapL, gapR; | |
assert( VertLeq( u, v ) && VertLeq( v, w )); | |
gapL = v->s - u->s; | |
gapR = w->s - v->s; | |
if( gapL + gapR > 0 ) { | |
if( gapL < gapR ) { | |
return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR)); | |
} else { | |
return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR)); | |
} | |
} | |
/* vertical line */ | |
return 0; | |
} | |
TESSreal tesedgeSign( TESSvertex *u, TESSvertex *v, TESSvertex *w ) | |
{ | |
/* Returns a number whose sign matches EdgeEval(u,v,w) but which | |
* is cheaper to evaluate. Returns > 0, == 0 , or < 0 | |
* as v is above, on, or below the edge uw. | |
*/ | |
TESSreal gapL, gapR; | |
assert( VertLeq( u, v ) && VertLeq( v, w )); | |
gapL = v->s - u->s; | |
gapR = w->s - v->s; | |
if( gapL + gapR > 0 ) { | |
return (v->t - w->t) * gapL + (v->t - u->t) * gapR; | |
} | |
/* vertical line */ | |
return 0; | |
} | |
/*********************************************************************** | |
* Define versions of EdgeSign, EdgeEval with s and t transposed. | |
*/ | |
TESSreal testransEval( TESSvertex *u, TESSvertex *v, TESSvertex *w ) | |
{ | |
/* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w), | |
* evaluates the t-coord of the edge uw at the s-coord of the vertex v. | |
* Returns v->s - (uw)(v->t), ie. the signed distance from uw to v. | |
* If uw is vertical (and thus passes thru v), the result is zero. | |
* | |
* The calculation is extremely accurate and stable, even when v | |
* is very close to u or w. In particular if we set v->s = 0 and | |
* let r be the negated result (this evaluates (uw)(v->t)), then | |
* r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s). | |
*/ | |
TESSreal gapL, gapR; | |
assert( TransLeq( u, v ) && TransLeq( v, w )); | |
gapL = v->t - u->t; | |
gapR = w->t - v->t; | |
if( gapL + gapR > 0 ) { | |
if( gapL < gapR ) { | |
return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR)); | |
} else { | |
return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR)); | |
} | |
} | |
/* vertical line */ | |
return 0; | |
} | |
TESSreal testransSign( TESSvertex *u, TESSvertex *v, TESSvertex *w ) | |
{ | |
/* Returns a number whose sign matches TransEval(u,v,w) but which | |
* is cheaper to evaluate. Returns > 0, == 0 , or < 0 | |
* as v is above, on, or below the edge uw. | |
*/ | |
TESSreal gapL, gapR; | |
assert( TransLeq( u, v ) && TransLeq( v, w )); | |
gapL = v->t - u->t; | |
gapR = w->t - v->t; | |
if( gapL + gapR > 0 ) { | |
return (v->s - w->s) * gapL + (v->s - u->s) * gapR; | |
} | |
/* vertical line */ | |
return 0; | |
} | |
int tesvertCCW( TESSvertex *u, TESSvertex *v, TESSvertex *w ) | |
{ | |
/* For almost-degenerate situations, the results are not reliable. | |
* Unless the floating-point arithmetic can be performed without | |
* rounding errors, *any* implementation will give incorrect results | |
* on some degenerate inputs, so the client must have some way to | |
* handle this situation. | |
*/ | |
return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0; | |
} | |
/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b), | |
* or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces | |
* this in the rare case that one argument is slightly negative. | |
* The implementation is extremely stable numerically. | |
* In particular it guarantees that the result r satisfies | |
* MIN(x,y) <= r <= MAX(x,y), and the results are very accurate | |
* even when a and b differ greatly in magnitude. | |
*/ | |
#define RealInterpolate(a,x,b,y) \ | |
(a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \ | |
((a <= b) ? ((b == 0) ? ((x+y) / 2) \ | |
: (x + (y-x) * (a/(a+b)))) \ | |
: (y + (x-y) * (b/(a+b))))) | |
#ifndef FOR_TRITE_TEST_PROGRAM | |
#define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y) | |
#else | |
/* Claim: the ONLY property the sweep algorithm relies on is that | |
* MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that. | |
*/ | |
#include <stdlib.h> | |
extern int RandomInterpolate; | |
double Interpolate( double a, double x, double b, double y) | |
{ | |
printf("*********************%d\n",RandomInterpolate); | |
if( RandomInterpolate ) { | |
a = 1.2 * drand48() - 0.1; | |
a = (a < 0) ? 0 : ((a > 1) ? 1 : a); | |
b = 1.0 - a; | |
} | |
return RealInterpolate(a,x,b,y); | |
} | |
#endif | |
#define Swap(a,b) if (1) { TESSvertex *t = a; a = b; b = t; } else | |
void tesedgeIntersect( TESSvertex *o1, TESSvertex *d1, | |
TESSvertex *o2, TESSvertex *d2, | |
TESSvertex *v ) | |
/* Given edges (o1,d1) and (o2,d2), compute their point of intersection. | |
* The computed point is guaranteed to lie in the intersection of the | |
* bounding rectangles defined by each edge. | |
*/ | |
{ | |
TESSreal z1, z2; | |
/* This is certainly not the most efficient way to find the intersection | |
* of two line segments, but it is very numerically stable. | |
* | |
* Strategy: find the two middle vertices in the VertLeq ordering, | |
* and interpolate the intersection s-value from these. Then repeat | |
* using the TransLeq ordering to find the intersection t-value. | |
*/ | |
if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); } | |
if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); } | |
if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); } | |
if( ! VertLeq( o2, d1 )) { | |
/* Technically, no intersection -- do our best */ | |
v->s = (o2->s + d1->s) / 2; | |
} else if( VertLeq( d1, d2 )) { | |
/* Interpolate between o2 and d1 */ | |
z1 = EdgeEval( o1, o2, d1 ); | |
z2 = EdgeEval( o2, d1, d2 ); | |
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } | |
v->s = Interpolate( z1, o2->s, z2, d1->s ); | |
} else { | |
/* Interpolate between o2 and d2 */ | |
z1 = EdgeSign( o1, o2, d1 ); | |
z2 = -EdgeSign( o1, d2, d1 ); | |
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } | |
v->s = Interpolate( z1, o2->s, z2, d2->s ); | |
} | |
/* Now repeat the process for t */ | |
if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); } | |
if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); } | |
if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); } | |
if( ! TransLeq( o2, d1 )) { | |
/* Technically, no intersection -- do our best */ | |
v->t = (o2->t + d1->t) / 2; | |
} else if( TransLeq( d1, d2 )) { | |
/* Interpolate between o2 and d1 */ | |
z1 = TransEval( o1, o2, d1 ); | |
z2 = TransEval( o2, d1, d2 ); | |
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } | |
v->t = Interpolate( z1, o2->t, z2, d1->t ); | |
} else { | |
/* Interpolate between o2 and d2 */ | |
z1 = TransSign( o1, o2, d1 ); | |
z2 = -TransSign( o1, d2, d1 ); | |
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } | |
v->t = Interpolate( z1, o2->t, z2, d2->t ); | |
} | |
} | |
/* | |
Calculate the angle between v1-v2 and v1-v0 | |
*/ | |
TESSreal calcAngle( TESSvertex *v0, TESSvertex *v1, TESSvertex *v2 ) | |
{ | |
TESSreal num, den, ax, ay, bx, by; | |
ax = v2->s - v1->s; | |
ay = v2->t - v1->t; | |
bx = v0->s - v1->s; | |
by = v0->t - v1->t; | |
num = ax * bx + ay * by; | |
den = sqrt( ax * ax + ay * ay ) * sqrt( bx * bx + by * by ); | |
if ( den > 0.0 ) num /= den; | |
if ( num < -1.0 ) num = -1.0; | |
if ( num > 1.0 ) num = 1.0; | |
return acos( num ); | |
} | |
/* | |
Returns 1 is edge is locally delaunay | |
*/ | |
int tesedgeIsLocallyDelaunay( TESShalfEdge *e ) | |
{ | |
return (calcAngle(e->Lnext->Org, e->Lnext->Lnext->Org, e->Org) + | |
calcAngle(e->Sym->Lnext->Org, e->Sym->Lnext->Lnext->Org, e->Sym->Org)) < (M_PI + 0.01); | |
} |