| /*
|
| ** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
|
| ** Copyright (C) [dates of first publication] Silicon Graphics, Inc.
|
| ** All Rights Reserved.
|
| **
|
| ** Permission is hereby granted, free of charge, to any person obtaining a copy
|
| ** of this software and associated documentation files (the "Software"), to deal
|
| ** in the Software without restriction, including without limitation the rights
|
| ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
| ** of the Software, and to permit persons to whom the Software is furnished to do so,
|
| ** subject to the following conditions:
|
| **
|
| ** The above copyright notice including the dates of first publication and either this
|
| ** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
|
| ** included in all copies or substantial portions of the Software.
|
| **
|
| ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
| ** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
| ** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
|
| ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
| ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
| ** OR OTHER DEALINGS IN THE SOFTWARE.
|
| **
|
| ** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
|
| ** be used in advertising or otherwise to promote the sale, use or other dealings in
|
| ** this Software without prior written authorization from Silicon Graphics, Inc.
|
| */
|
| /*
|
| ** Author: Eric Veach, July 1994.
|
| */
|
|
|
| //#include "tesos.h"
|
| #include <assert.h>
|
| #include "mesh.h"
|
| #include "geom.h"
|
| #include <math.h>
|
|
|
| int tesvertLeq( TESSvertex *u, TESSvertex *v )
|
| {
|
| /* Returns TRUE if u is lexicographically <= v. */
|
|
|
| return VertLeq( u, v );
|
| }
|
|
|
| TESSreal tesedgeEval( TESSvertex *u, TESSvertex *v, TESSvertex *w )
|
| {
|
| /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
|
| * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
|
| * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
|
| * If uw is vertical (and thus passes thru v), the result is zero.
|
| *
|
| * The calculation is extremely accurate and stable, even when v
|
| * is very close to u or w. In particular if we set v->t = 0 and
|
| * let r be the negated result (this evaluates (uw)(v->s)), then
|
| * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
|
| */
|
| TESSreal gapL, gapR;
|
|
|
| assert( VertLeq( u, v ) && VertLeq( v, w ));
|
|
|
| gapL = v->s - u->s;
|
| gapR = w->s - v->s;
|
|
|
| if( gapL + gapR > 0 ) {
|
| if( gapL < gapR ) {
|
| return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
|
| } else {
|
| return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
|
| }
|
| }
|
| /* vertical line */
|
| return 0;
|
| }
|
|
|
| TESSreal tesedgeSign( TESSvertex *u, TESSvertex *v, TESSvertex *w )
|
| {
|
| /* Returns a number whose sign matches EdgeEval(u,v,w) but which
|
| * is cheaper to evaluate. Returns > 0, == 0 , or < 0
|
| * as v is above, on, or below the edge uw.
|
| */
|
| TESSreal gapL, gapR;
|
|
|
| assert( VertLeq( u, v ) && VertLeq( v, w ));
|
|
|
| gapL = v->s - u->s;
|
| gapR = w->s - v->s;
|
|
|
| if( gapL + gapR > 0 ) {
|
| return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
|
| }
|
| /* vertical line */
|
| return 0;
|
| }
|
|
|
|
|
| /***********************************************************************
|
| * Define versions of EdgeSign, EdgeEval with s and t transposed.
|
| */
|
|
|
| TESSreal testransEval( TESSvertex *u, TESSvertex *v, TESSvertex *w )
|
| {
|
| /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
|
| * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
|
| * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
|
| * If uw is vertical (and thus passes thru v), the result is zero.
|
| *
|
| * The calculation is extremely accurate and stable, even when v
|
| * is very close to u or w. In particular if we set v->s = 0 and
|
| * let r be the negated result (this evaluates (uw)(v->t)), then
|
| * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
|
| */
|
| TESSreal gapL, gapR;
|
|
|
| assert( TransLeq( u, v ) && TransLeq( v, w ));
|
|
|
| gapL = v->t - u->t;
|
| gapR = w->t - v->t;
|
|
|
| if( gapL + gapR > 0 ) {
|
| if( gapL < gapR ) {
|
| return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
|
| } else {
|
| return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
|
| }
|
| }
|
| /* vertical line */
|
| return 0;
|
| }
|
|
|
| TESSreal testransSign( TESSvertex *u, TESSvertex *v, TESSvertex *w )
|
| {
|
| /* Returns a number whose sign matches TransEval(u,v,w) but which
|
| * is cheaper to evaluate. Returns > 0, == 0 , or < 0
|
| * as v is above, on, or below the edge uw.
|
| */
|
| TESSreal gapL, gapR;
|
|
|
| assert( TransLeq( u, v ) && TransLeq( v, w ));
|
|
|
| gapL = v->t - u->t;
|
| gapR = w->t - v->t;
|
|
|
| if( gapL + gapR > 0 ) {
|
| return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
|
| }
|
| /* vertical line */
|
| return 0;
|
| }
|
|
|
|
|
| int tesvertCCW( TESSvertex *u, TESSvertex *v, TESSvertex *w )
|
| {
|
| /* For almost-degenerate situations, the results are not reliable.
|
| * Unless the floating-point arithmetic can be performed without
|
| * rounding errors, *any* implementation will give incorrect results
|
| * on some degenerate inputs, so the client must have some way to
|
| * handle this situation.
|
| */
|
| return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
|
| }
|
|
|
| /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
|
| * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
|
| * this in the rare case that one argument is slightly negative.
|
| * The implementation is extremely stable numerically.
|
| * In particular it guarantees that the result r satisfies
|
| * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
|
| * even when a and b differ greatly in magnitude.
|
| */
|
| #define RealInterpolate(a,x,b,y) \
|
| (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
|
| ((a <= b) ? ((b == 0) ? ((x+y) / 2) \
|
| : (x + (y-x) * (a/(a+b)))) \
|
| : (y + (x-y) * (b/(a+b)))))
|
|
|
| #ifndef FOR_TRITE_TEST_PROGRAM
|
| #define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
|
| #else
|
|
|
| /* Claim: the ONLY property the sweep algorithm relies on is that
|
| * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
|
| */
|
| #include <stdlib.h>
|
| extern int RandomInterpolate;
|
|
|
| double Interpolate( double a, double x, double b, double y)
|
| {
|
| printf("*********************%d\n",RandomInterpolate);
|
| if( RandomInterpolate ) {
|
| a = 1.2 * drand48() - 0.1;
|
| a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
|
| b = 1.0 - a;
|
| }
|
| return RealInterpolate(a,x,b,y);
|
| }
|
|
|
| #endif
|
|
|
| #define Swap(a,b) if (1) { TESSvertex *t = a; a = b; b = t; } else
|
|
|
| void tesedgeIntersect( TESSvertex *o1, TESSvertex *d1,
|
| TESSvertex *o2, TESSvertex *d2,
|
| TESSvertex *v )
|
| /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
|
| * The computed point is guaranteed to lie in the intersection of the
|
| * bounding rectangles defined by each edge.
|
| */
|
| {
|
| TESSreal z1, z2;
|
|
|
| /* This is certainly not the most efficient way to find the intersection
|
| * of two line segments, but it is very numerically stable.
|
| *
|
| * Strategy: find the two middle vertices in the VertLeq ordering,
|
| * and interpolate the intersection s-value from these. Then repeat
|
| * using the TransLeq ordering to find the intersection t-value.
|
| */
|
|
|
| if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
|
| if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
|
| if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
|
|
|
| if( ! VertLeq( o2, d1 )) {
|
| /* Technically, no intersection -- do our best */
|
| v->s = (o2->s + d1->s) / 2;
|
| } else if( VertLeq( d1, d2 )) {
|
| /* Interpolate between o2 and d1 */
|
| z1 = EdgeEval( o1, o2, d1 );
|
| z2 = EdgeEval( o2, d1, d2 );
|
| if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
| v->s = Interpolate( z1, o2->s, z2, d1->s );
|
| } else {
|
| /* Interpolate between o2 and d2 */
|
| z1 = EdgeSign( o1, o2, d1 );
|
| z2 = -EdgeSign( o1, d2, d1 );
|
| if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
| v->s = Interpolate( z1, o2->s, z2, d2->s );
|
| }
|
|
|
| /* Now repeat the process for t */
|
|
|
| if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
|
| if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
|
| if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
|
|
|
| if( ! TransLeq( o2, d1 )) {
|
| /* Technically, no intersection -- do our best */
|
| v->t = (o2->t + d1->t) / 2;
|
| } else if( TransLeq( d1, d2 )) {
|
| /* Interpolate between o2 and d1 */
|
| z1 = TransEval( o1, o2, d1 );
|
| z2 = TransEval( o2, d1, d2 );
|
| if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
| v->t = Interpolate( z1, o2->t, z2, d1->t );
|
| } else {
|
| /* Interpolate between o2 and d2 */
|
| z1 = TransSign( o1, o2, d1 );
|
| z2 = -TransSign( o1, d2, d1 );
|
| if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
| v->t = Interpolate( z1, o2->t, z2, d2->t );
|
| }
|
| }
|
| |
| TESSreal inCircle( TESSvertex *v, TESSvertex *v0, TESSvertex *v1, TESSvertex *v2 ) { |
| TESSreal adx, ady, bdx, bdy, cdx, cdy; |
| TESSreal abdet, bcdet, cadet; |
| TESSreal alift, blift, clift; |
| |
| adx = v0->s - v->s; |
| ady = v0->t - v->t; |
| bdx = v1->s - v->s; |
| bdy = v1->t - v->t; |
| cdx = v2->s - v->s; |
| cdy = v2->t - v->t; |
| |
| abdet = adx * bdy - bdx * ady; |
| bcdet = bdx * cdy - cdx * bdy; |
| cadet = cdx * ady - adx * cdy; |
| |
| alift = adx * adx + ady * ady; |
| blift = bdx * bdx + bdy * bdy; |
| clift = cdx * cdx + cdy * cdy; |
| |
| return alift * bcdet + blift * cadet + clift * abdet; |
| } |
|
|
| /*
|
| Returns 1 is edge is locally delaunay
|
| */
|
| int tesedgeIsLocallyDelaunay( TESShalfEdge *e )
|
| { |
| return inCircle(e->Sym->Lnext->Lnext->Org, e->Lnext->Org, e->Lnext->Lnext->Org, e->Org) < 0; |
| }
|