blob: 62a6654535eabec386704402641a059616c64fb2 [file] [log] [blame]
/*
** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
** Copyright (C) [dates of first publication] Silicon Graphics, Inc.
** All Rights Reserved.
**
** Permission is hereby granted, free of charge, to any person obtaining a copy
** of this software and associated documentation files (the "Software"), to deal
** in the Software without restriction, including without limitation the rights
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
** of the Software, and to permit persons to whom the Software is furnished to do so,
** subject to the following conditions:
**
** The above copyright notice including the dates of first publication and either this
** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
** included in all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
** OR OTHER DEALINGS IN THE SOFTWARE.
**
** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
** be used in advertising or otherwise to promote the sale, use or other dealings in
** this Software without prior written authorization from Silicon Graphics, Inc.
*/
/*
** Author: Eric Veach, July 1994.
*/
//#include "tesos.h"
#include <stddef.h>
#include <assert.h>
#include "../Include/tesselator.h"
#include "priorityq.h"
#define INIT_SIZE 32
#define TRUE 1
#define FALSE 0
#ifdef FOR_TRITE_TEST_PROGRAM
#define LEQ(x,y) (*pq->leq)(x,y)
#else
/* Violates modularity, but a little faster */
#include "geom.h"
#define LEQ(x,y) VertLeq((TESSvertex *)x, (TESSvertex *)y)
#endif
/* Include all the code for the regular heap-based queue here. */
/* The basic operations are insertion of a new key (pqInsert),
* and examination/extraction of a key whose value is minimum
* (pqMinimum/pqExtractMin). Deletion is also allowed (pqDelete);
* for this purpose pqInsert returns a "handle" which is supplied
* as the argument.
*
* An initial heap may be created efficiently by calling pqInsert
* repeatedly, then calling pqInit. In any case pqInit must be called
* before any operations other than pqInsert are used.
*
* If the heap is empty, pqMinimum/pqExtractMin will return a NULL key.
* This may also be tested with pqIsEmpty.
*/
/* Since we support deletion the data structure is a little more
* complicated than an ordinary heap. "nodes" is the heap itself;
* active nodes are stored in the range 1..pq->size. When the
* heap exceeds its allocated size (pq->max), its size doubles.
* The children of node i are nodes 2i and 2i+1.
*
* Each node stores an index into an array "handles". Each handle
* stores a key, plus a pointer back to the node which currently
* represents that key (ie. nodes[handles[i].node].handle == i).
*/
#define pqHeapMinimum(pq) ((pq)->handles[(pq)->nodes[1].handle].key)
#define pqHeapIsEmpty(pq) ((pq)->size == 0)
/* really pqHeapNewPriorityQHeap */
PriorityQHeap *pqHeapNewPriorityQ( TESSalloc* alloc, int size, int (*leq)(PQkey key1, PQkey key2) )
{
PriorityQHeap *pq = (PriorityQHeap *)alloc->memalloc( alloc->userData, sizeof( PriorityQHeap ));
if (pq == NULL) return NULL;
pq->size = 0;
pq->max = size;
pq->nodes = (PQnode *)alloc->memalloc( alloc->userData, (size + 1) * sizeof(pq->nodes[0]) );
if (pq->nodes == NULL) {
alloc->memfree( alloc->userData, pq );
return NULL;
}
pq->handles = (PQhandleElem *)alloc->memalloc( alloc->userData, (size + 1) * sizeof(pq->handles[0]) );
if (pq->handles == NULL) {
alloc->memfree( alloc->userData, pq->nodes );
alloc->memfree( alloc->userData, pq );
return NULL;
}
pq->initialized = FALSE;
pq->freeList = 0;
pq->leq = leq;
pq->nodes[1].handle = 1; /* so that Minimum() returns NULL */
pq->handles[1].key = NULL;
return pq;
}
/* really pqHeapDeletePriorityQHeap */
void pqHeapDeletePriorityQ( TESSalloc* alloc, PriorityQHeap *pq )
{
alloc->memfree( alloc->userData, pq->handles );
alloc->memfree( alloc->userData, pq->nodes );
alloc->memfree( alloc->userData, pq );
}
static void FloatDown( PriorityQHeap *pq, int curr )
{
PQnode *n = pq->nodes;
PQhandleElem *h = pq->handles;
PQhandle hCurr, hChild;
int child;
hCurr = n[curr].handle;
for( ;; ) {
child = curr << 1;
if( child < pq->size && LEQ( h[n[child+1].handle].key,
h[n[child].handle].key )) {
++child;
}
assert(child <= pq->max);
hChild = n[child].handle;
if( child > pq->size || LEQ( h[hCurr].key, h[hChild].key )) {
n[curr].handle = hCurr;
h[hCurr].node = curr;
break;
}
n[curr].handle = hChild;
h[hChild].node = curr;
curr = child;
}
}
static void FloatUp( PriorityQHeap *pq, int curr )
{
PQnode *n = pq->nodes;
PQhandleElem *h = pq->handles;
PQhandle hCurr, hParent;
int parent;
hCurr = n[curr].handle;
for( ;; ) {
parent = curr >> 1;
hParent = n[parent].handle;
if( parent == 0 || LEQ( h[hParent].key, h[hCurr].key )) {
n[curr].handle = hCurr;
h[hCurr].node = curr;
break;
}
n[curr].handle = hParent;
h[hParent].node = curr;
curr = parent;
}
}
/* really pqHeapInit */
void pqHeapInit( PriorityQHeap *pq )
{
int i;
/* This method of building a heap is O(n), rather than O(n lg n). */
for( i = pq->size; i >= 1; --i ) {
FloatDown( pq, i );
}
pq->initialized = TRUE;
}
/* really pqHeapInsert */
/* returns INV_HANDLE iff out of memory */
PQhandle pqHeapInsert( TESSalloc* alloc, PriorityQHeap *pq, PQkey keyNew )
{
int curr;
PQhandle free;
curr = ++ pq->size;
if( (curr*2) > pq->max ) {
if (!alloc->memrealloc)
{
return INV_HANDLE;
}
else
{
PQnode *saveNodes= pq->nodes;
PQhandleElem *saveHandles= pq->handles;
// If the heap overflows, double its size.
pq->max <<= 1;
pq->nodes = (PQnode *)alloc->memrealloc( alloc->userData, pq->nodes,
(size_t)((pq->max + 1) * sizeof( pq->nodes[0] )));
if (pq->nodes == NULL) {
pq->nodes = saveNodes; // restore ptr to free upon return
return INV_HANDLE;
}
pq->handles = (PQhandleElem *)alloc->memrealloc( alloc->userData, pq->handles,
(size_t) ((pq->max + 1) * sizeof( pq->handles[0] )));
if (pq->handles == NULL) {
pq->handles = saveHandles; // restore ptr to free upon return
return INV_HANDLE;
}
}
}
if( pq->freeList == 0 ) {
free = curr;
} else {
free = pq->freeList;
pq->freeList = pq->handles[free].node;
}
pq->nodes[curr].handle = free;
pq->handles[free].node = curr;
pq->handles[free].key = keyNew;
if( pq->initialized ) {
FloatUp( pq, curr );
}
assert(free != INV_HANDLE);
return free;
}
/* really pqHeapExtractMin */
PQkey pqHeapExtractMin( PriorityQHeap *pq )
{
PQnode *n = pq->nodes;
PQhandleElem *h = pq->handles;
PQhandle hMin = n[1].handle;
PQkey min = h[hMin].key;
if( pq->size > 0 ) {
n[1].handle = n[pq->size].handle;
h[n[1].handle].node = 1;
h[hMin].key = NULL;
h[hMin].node = pq->freeList;
pq->freeList = hMin;
if( -- pq->size > 0 ) {
FloatDown( pq, 1 );
}
}
return min;
}
/* really pqHeapDelete */
void pqHeapDelete( PriorityQHeap *pq, PQhandle hCurr )
{
PQnode *n = pq->nodes;
PQhandleElem *h = pq->handles;
int curr;
assert( hCurr >= 1 && hCurr <= pq->max && h[hCurr].key != NULL );
curr = h[hCurr].node;
n[curr].handle = n[pq->size].handle;
h[n[curr].handle].node = curr;
if( curr <= -- pq->size ) {
if( curr <= 1 || LEQ( h[n[curr>>1].handle].key, h[n[curr].handle].key )) {
FloatDown( pq, curr );
} else {
FloatUp( pq, curr );
}
}
h[hCurr].key = NULL;
h[hCurr].node = pq->freeList;
pq->freeList = hCurr;
}
/* Now redefine all the function names to map to their "Sort" versions. */
/* really tessPqSortNewPriorityQ */
PriorityQ *pqNewPriorityQ( TESSalloc* alloc, int size, int (*leq)(PQkey key1, PQkey key2) )
{
PriorityQ *pq = (PriorityQ *)alloc->memalloc( alloc->userData, sizeof( PriorityQ ));
if (pq == NULL) return NULL;
pq->heap = pqHeapNewPriorityQ( alloc, size, leq );
if (pq->heap == NULL) {
alloc->memfree( alloc->userData, pq );
return NULL;
}
// pq->keys = (PQkey *)memAlloc( INIT_SIZE * sizeof(pq->keys[0]) );
pq->keys = (PQkey *)alloc->memalloc( alloc->userData, size * sizeof(pq->keys[0]) );
if (pq->keys == NULL) {
pqHeapDeletePriorityQ( alloc, pq->heap );
alloc->memfree( alloc->userData, pq );
return NULL;
}
pq->size = 0;
pq->max = size; //INIT_SIZE;
pq->initialized = FALSE;
pq->leq = leq;
return pq;
}
/* really tessPqSortDeletePriorityQ */
void pqDeletePriorityQ( TESSalloc* alloc, PriorityQ *pq )
{
assert(pq != NULL);
if (pq->heap != NULL) pqHeapDeletePriorityQ( alloc, pq->heap );
if (pq->order != NULL) alloc->memfree( alloc->userData, pq->order );
if (pq->keys != NULL) alloc->memfree( alloc->userData, pq->keys );
alloc->memfree( alloc->userData, pq );
}
#define LT(x,y) (! LEQ(y,x))
#define GT(x,y) (! LEQ(x,y))
#define Swap(a,b) if(1){PQkey *tmp = *a; *a = *b; *b = tmp;}else
/* really tessPqSortInit */
int pqInit( TESSalloc* alloc, PriorityQ *pq )
{
PQkey **p, **r, **i, **j, *piv;
struct { PQkey **p, **r; } Stack[50], *top = Stack;
unsigned int seed = 2016473283;
/* Create an array of indirect pointers to the keys, so that we
* the handles we have returned are still valid.
*/
/*
pq->order = (PQkey **)memAlloc( (size_t)
(pq->size * sizeof(pq->order[0])) );
*/
pq->order = (PQkey **)alloc->memalloc( alloc->userData,
(size_t)((pq->size+1) * sizeof(pq->order[0])) );
/* the previous line is a patch to compensate for the fact that IBM */
/* machines return a null on a malloc of zero bytes (unlike SGI), */
/* so we have to put in this defense to guard against a memory */
/* fault four lines down. from fossum@austin.ibm.com. */
if (pq->order == NULL) return 0;
p = pq->order;
r = p + pq->size - 1;
for( piv = pq->keys, i = p; i <= r; ++piv, ++i ) {
*i = piv;
}
/* Sort the indirect pointers in descending order,
* using randomized Quicksort
*/
top->p = p; top->r = r; ++top;
while( --top >= Stack ) {
p = top->p;
r = top->r;
while( r > p + 10 ) {
seed = seed * 1539415821 + 1;
i = p + seed % (r - p + 1);
piv = *i;
*i = *p;
*p = piv;
i = p - 1;
j = r + 1;
do {
do { ++i; } while( GT( **i, *piv ));
do { --j; } while( LT( **j, *piv ));
Swap( i, j );
} while( i < j );
Swap( i, j ); /* Undo last swap */
if( i - p < r - j ) {
top->p = j+1; top->r = r; ++top;
r = i-1;
} else {
top->p = p; top->r = i-1; ++top;
p = j+1;
}
}
/* Insertion sort small lists */
for( i = p+1; i <= r; ++i ) {
piv = *i;
for( j = i; j > p && LT( **(j-1), *piv ); --j ) {
*j = *(j-1);
}
*j = piv;
}
}
pq->max = pq->size;
pq->initialized = TRUE;
pqHeapInit( pq->heap ); /* always succeeds */
#ifndef NDEBUG
p = pq->order;
r = p + pq->size - 1;
for( i = p; i < r; ++i ) {
assert( LEQ( **(i+1), **i ));
}
#endif
return 1;
}
/* really tessPqSortInsert */
/* returns INV_HANDLE iff out of memory */
PQhandle pqInsert( TESSalloc* alloc, PriorityQ *pq, PQkey keyNew )
{
int curr;
if( pq->initialized ) {
return pqHeapInsert( alloc, pq->heap, keyNew );
}
curr = pq->size;
if( ++ pq->size >= pq->max ) {
if (!alloc->memrealloc)
{
return INV_HANDLE;
}
else
{
PQkey *saveKey= pq->keys;
// If the heap overflows, double its size.
pq->max <<= 1;
pq->keys = (PQkey *)alloc->memrealloc( alloc->userData, pq->keys,
(size_t)(pq->max * sizeof( pq->keys[0] )));
if (pq->keys == NULL) {
pq->keys = saveKey; // restore ptr to free upon return
return INV_HANDLE;
}
}
}
assert(curr != INV_HANDLE);
pq->keys[curr] = keyNew;
/* Negative handles index the sorted array. */
return -(curr+1);
}
/* really tessPqSortExtractMin */
PQkey pqExtractMin( PriorityQ *pq )
{
PQkey sortMin, heapMin;
if( pq->size == 0 ) {
return pqHeapExtractMin( pq->heap );
}
sortMin = *(pq->order[pq->size-1]);
if( ! pqHeapIsEmpty( pq->heap )) {
heapMin = pqHeapMinimum( pq->heap );
if( LEQ( heapMin, sortMin )) {
return pqHeapExtractMin( pq->heap );
}
}
do {
-- pq->size;
} while( pq->size > 0 && *(pq->order[pq->size-1]) == NULL );
return sortMin;
}
/* really tessPqSortMinimum */
PQkey pqMinimum( PriorityQ *pq )
{
PQkey sortMin, heapMin;
if( pq->size == 0 ) {
return pqHeapMinimum( pq->heap );
}
sortMin = *(pq->order[pq->size-1]);
if( ! pqHeapIsEmpty( pq->heap )) {
heapMin = pqHeapMinimum( pq->heap );
if( LEQ( heapMin, sortMin )) {
return heapMin;
}
}
return sortMin;
}
/* really tessPqSortIsEmpty */
int pqIsEmpty( PriorityQ *pq )
{
return (pq->size == 0) && pqHeapIsEmpty( pq->heap );
}
/* really tessPqSortDelete */
void pqDelete( PriorityQ *pq, PQhandle curr )
{
if( curr >= 0 ) {
pqHeapDelete( pq->heap, curr );
return;
}
curr = -(curr+1);
assert( curr < pq->max && pq->keys[curr] != NULL );
pq->keys[curr] = NULL;
while( pq->size > 0 && *(pq->order[pq->size-1]) == NULL ) {
-- pq->size;
}
}