blob: 4fe9e65252e3b5dbd98a030f730186021c89bb28 [file] [log] [blame]
/*
* Copyright © 2001 Stephen Williams (steve@icarus.com)
* Copyright © 2001-2002 David Brownell (dbrownell@users.sourceforge.net)
* Copyright © 2008 Roger Williams (rawqux@users.sourceforge.net)
* Copyright © 2012 Pete Batard (pete@akeo.ie)
* Copyright © 2013 Federico Manzan (f.manzan@gmail.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "libusb.h"
#include "ezusb.h"
extern void logerror(const char *format, ...)
__attribute__ ((format(printf, 1, 2)));
/*
* This file contains functions for uploading firmware into Cypress
* EZ-USB microcontrollers. These chips use control endpoint 0 and vendor
* specific commands to support writing into the on-chip SRAM. They also
* support writing into the CPUCS register, which is how we reset the
* processor after loading firmware (including the reset vector).
*
* These Cypress devices are 8-bit 8051 based microcontrollers with
* special support for USB I/O. They come in several packages, and
* some can be set up with external memory when device costs allow.
* Note that the design was originally by AnchorChips, so you may find
* references to that vendor (which was later merged into Cypress).
* The Cypress FX parts are largely compatible with the Anchorhip ones.
*/
int verbose = 1;
/*
* return true if [addr,addr+len] includes external RAM
* for Anchorchips EZ-USB or Cypress EZ-USB FX
*/
static bool fx_is_external(uint32_t addr, size_t len)
{
/* with 8KB RAM, 0x0000-0x1b3f can be written
* we can't tell if it's a 4KB device here
*/
if (addr <= 0x1b3f)
return ((addr + len) > 0x1b40);
/* there may be more RAM; unclear if we can write it.
* some bulk buffers may be unused, 0x1b3f-0x1f3f
* firmware can set ISODISAB for 2KB at 0x2000-0x27ff
*/
return true;
}
/*
* return true if [addr,addr+len] includes external RAM
* for Cypress EZ-USB FX2
*/
static bool fx2_is_external(uint32_t addr, size_t len)
{
/* 1st 8KB for data/code, 0x0000-0x1fff */
if (addr <= 0x1fff)
return ((addr + len) > 0x2000);
/* and 512 for data, 0xe000-0xe1ff */
else if (addr >= 0xe000 && addr <= 0xe1ff)
return ((addr + len) > 0xe200);
/* otherwise, it's certainly external */
else
return true;
}
/*
* return true if [addr,addr+len] includes external RAM
* for Cypress EZ-USB FX2LP
*/
static bool fx2lp_is_external(uint32_t addr, size_t len)
{
/* 1st 16KB for data/code, 0x0000-0x3fff */
if (addr <= 0x3fff)
return ((addr + len) > 0x4000);
/* and 512 for data, 0xe000-0xe1ff */
else if (addr >= 0xe000 && addr <= 0xe1ff)
return ((addr + len) > 0xe200);
/* otherwise, it's certainly external */
else
return true;
}
/*****************************************************************************/
/*
* These are the requests (bRequest) that the bootstrap loader is expected
* to recognize. The codes are reserved by Cypress, and these values match
* what EZ-USB hardware, or "Vend_Ax" firmware (2nd stage loader) uses.
* Cypress' "a3load" is nice because it supports both FX and FX2, although
* it doesn't have the EEPROM support (subset of "Vend_Ax").
*/
#define RW_INTERNAL 0xA0 /* hardware implements this one */
#define RW_MEMORY 0xA3
/*
* Issues the specified vendor-specific write request.
*/
static int ezusb_write(libusb_device_handle *device, const char *label,
uint8_t opcode, uint32_t addr, const unsigned char *data, size_t len)
{
int status;
if (verbose > 1)
logerror("%s, addr 0x%08x len %4u (0x%04x)\n", label, addr, (unsigned)len, (unsigned)len);
status = libusb_control_transfer(device,
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
opcode, addr & 0xFFFF, addr >> 16,
(unsigned char*)data, (uint16_t)len, 1000);
if (status != (signed)len) {
if (status < 0)
logerror("%s: %s\n", label, libusb_error_name(status));
else
logerror("%s ==> %d\n", label, status);
}
return (status < 0) ? -EIO : 0;
}
/*
* Issues the specified vendor-specific read request.
*/
static int ezusb_read(libusb_device_handle *device, const char *label,
uint8_t opcode, uint32_t addr, const unsigned char *data, size_t len)
{
int status;
if (verbose > 1)
logerror("%s, addr 0x%08x len %4u (0x%04x)\n", label, addr, (unsigned)len, (unsigned)len);
status = libusb_control_transfer(device,
LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
opcode, addr & 0xFFFF, addr >> 16,
(unsigned char*)data, (uint16_t)len, 1000);
if (status != (signed)len) {
if (status < 0)
logerror("%s: %s\n", label, libusb_error_name(status));
else
logerror("%s ==> %d\n", label, status);
}
return (status < 0) ? -EIO : 0;
}
/*
* Modifies the CPUCS register to stop or reset the CPU.
* Returns false on error.
*/
static bool ezusb_cpucs(libusb_device_handle *device, uint32_t addr, bool doRun)
{
int status;
uint8_t data = doRun ? 0x00 : 0x01;
if (verbose)
logerror("%s\n", data ? "stop CPU" : "reset CPU");
status = libusb_control_transfer(device,
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
RW_INTERNAL, addr & 0xFFFF, addr >> 16,
&data, 1, 1000);
if ((status != 1) &&
/* We may get an I/O error from libusb as the device disappears */
((!doRun) || (status != LIBUSB_ERROR_IO)))
{
const char *mesg = "can't modify CPUCS";
if (status < 0)
logerror("%s: %s\n", mesg, libusb_error_name(status));
else
logerror("%s\n", mesg);
return false;
} else
return true;
}
/*
* Send an FX3 jumpt to address command
* Returns false on error.
*/
static bool ezusb_fx3_jump(libusb_device_handle *device, uint32_t addr)
{
int status;
if (verbose)
logerror("transfer execution to Program Entry at 0x%08x\n", addr);
status = libusb_control_transfer(device,
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
RW_INTERNAL, addr & 0xFFFF, addr >> 16,
NULL, 0, 1000);
/* We may get an I/O error from libusb as the device disappears */
if ((status != 0) && (status != LIBUSB_ERROR_IO))
{
const char *mesg = "failed to send jump command";
if (status < 0)
logerror("%s: %s\n", mesg, libusb_error_name(status));
else
logerror("%s\n", mesg);
return false;
} else
return true;
}
/*****************************************************************************/
/*
* Parse an Intel HEX image file and invoke the poke() function on the
* various segments to implement policies such as writing to RAM (with
* a one or two stage loader setup, depending on the firmware) or to
* EEPROM (two stages required).
*
* image - the hex image file
* context - for use by poke()
* is_external - if non-null, used to check which segments go into
* external memory (writable only by software loader)
* poke - called with each memory segment; errors indicated
* by returning negative values.
*
* Caller is responsible for halting CPU as needed, such as when
* overwriting a second stage loader.
*/
static int parse_ihex(FILE *image, void *context,
bool (*is_external)(uint32_t addr, size_t len),
int (*poke) (void *context, uint32_t addr, bool external,
const unsigned char *data, size_t len))
{
unsigned char data[1023];
uint32_t data_addr = 0;
size_t data_len = 0;
int rc;
int first_line = 1;
bool external = false;
/* Read the input file as an IHEX file, and report the memory segments
* as we go. Each line holds a max of 16 bytes, but uploading is
* faster (and EEPROM space smaller) if we merge those lines into larger
* chunks. Most hex files keep memory segments together, which makes
* such merging all but free. (But it may still be worth sorting the
* hex files to make up for undesirable behavior from tools.)
*
* Note that EEPROM segments max out at 1023 bytes; the upload protocol
* allows segments of up to 64 KBytes (more than a loader could handle).
*/
for (;;) {
char buf[512], *cp;
char tmp, type;
size_t len;
unsigned idx, off;
cp = fgets(buf, sizeof(buf), image);
if (cp == NULL) {
logerror("EOF without EOF record!\n");
break;
}
/* EXTENSION: "# comment-till-end-of-line", for copyrights etc */
if (buf[0] == '#')
continue;
if (buf[0] != ':') {
logerror("not an ihex record: %s", buf);
return -2;
}
/* ignore any newline */
cp = strchr(buf, '\n');
if (cp)
*cp = 0;
if (verbose >= 3)
logerror("** LINE: %s\n", buf);
/* Read the length field (up to 16 bytes) */
tmp = buf[3];
buf[3] = 0;
len = strtoul(buf+1, NULL, 16);
buf[3] = tmp;
/* Read the target offset (address up to 64KB) */
tmp = buf[7];
buf[7] = 0;
off = (unsigned int)strtoul(buf+3, NULL, 16);
buf[7] = tmp;
/* Initialize data_addr */
if (first_line) {
data_addr = off;
first_line = 0;
}
/* Read the record type */
tmp = buf[9];
buf[9] = 0;
type = (char)strtoul(buf+7, NULL, 16);
buf[9] = tmp;
/* If this is an EOF record, then make it so. */
if (type == 1) {
if (verbose >= 2)
logerror("EOF on hexfile\n");
break;
}
if (type != 0) {
logerror("unsupported record type: %u\n", type);
return -3;
}
if ((len * 2) + 11 > strlen(buf)) {
logerror("record too short?\n");
return -4;
}
/* FIXME check for _physically_ contiguous not just virtually
* e.g. on FX2 0x1f00-0x2100 includes both on-chip and external
* memory so it's not really contiguous */
/* flush the saved data if it's not contiguous,
* or when we've buffered as much as we can.
*/
if (data_len != 0
&& (off != (data_addr + data_len)
/* || !merge */
|| (data_len + len) > sizeof(data))) {
if (is_external)
external = is_external(data_addr, data_len);
rc = poke(context, data_addr, external, data, data_len);
if (rc < 0)
return -1;
data_addr = off;
data_len = 0;
}
/* append to saved data, flush later */
for (idx = 0, cp = buf+9 ; idx < len ; idx += 1, cp += 2) {
tmp = cp[2];
cp[2] = 0;
data[data_len + idx] = (uint8_t)strtoul(cp, NULL, 16);
cp[2] = tmp;
}
data_len += len;
}
/* flush any data remaining */
if (data_len != 0) {
if (is_external)
external = is_external(data_addr, data_len);
rc = poke(context, data_addr, external, data, data_len);
if (rc < 0)
return -1;
}
return 0;
}
/*
* Parse a binary image file and write it as is to the target.
* Applies to Cypress BIX images for RAM or Cypress IIC images
* for EEPROM.
*
* image - the BIX image file
* context - for use by poke()
* is_external - if non-null, used to check which segments go into
* external memory (writable only by software loader)
* poke - called with each memory segment; errors indicated
* by returning negative values.
*
* Caller is responsible for halting CPU as needed, such as when
* overwriting a second stage loader.
*/
static int parse_bin(FILE *image, void *context,
bool (*is_external)(uint32_t addr, size_t len), int (*poke)(void *context,
uint32_t addr, bool external, const unsigned char *data, size_t len))
{
unsigned char data[4096];
uint32_t data_addr = 0;
size_t data_len = 0;
int rc;
bool external = false;
for (;;) {
data_len = fread(data, 1, 4096, image);
if (data_len == 0)
break;
if (is_external)
external = is_external(data_addr, data_len);
rc = poke(context, data_addr, external, data, data_len);
if (rc < 0)
return -1;
data_addr += (uint32_t)data_len;
}
return feof(image)?0:-1;
}
/*
* Parse a Cypress IIC image file and invoke the poke() function on the
* various segments for writing to RAM
*
* image - the IIC image file
* context - for use by poke()
* is_external - if non-null, used to check which segments go into
* external memory (writable only by software loader)
* poke - called with each memory segment; errors indicated
* by returning negative values.
*
* Caller is responsible for halting CPU as needed, such as when
* overwriting a second stage loader.
*/
static int parse_iic(FILE *image, void *context,
bool (*is_external)(uint32_t addr, size_t len),
int (*poke)(void *context, uint32_t addr, bool external, const unsigned char *data, size_t len))
{
unsigned char data[4096];
uint32_t data_addr = 0;
size_t data_len = 0, read_len;
uint8_t block_header[4];
int rc;
bool external = false;
long file_size, initial_pos;
initial_pos = ftell(image);
if (initial_pos < 0)
return -1;
if (fseek(image, 0L, SEEK_END) != 0)
return -1;
file_size = ftell(image);
if (fseek(image, initial_pos, SEEK_SET) != 0)
return -1;
for (;;) {
/* Ignore the trailing reset IIC data (5 bytes) */
if (ftell(image) >= (file_size - 5))
break;
if (fread(&block_header, 1, sizeof(block_header), image) != 4) {
logerror("unable to read IIC block header\n");
return -1;
}
data_len = (block_header[0] << 8) + block_header[1];
data_addr = (block_header[2] << 8) + block_header[3];
if (data_len > sizeof(data)) {
/* If this is ever reported as an error, switch to using malloc/realloc */
logerror("IIC data block too small - please report this error to libusb.info\n");
return -1;
}
read_len = fread(data, 1, data_len, image);
if (read_len != data_len) {
logerror("read error\n");
return -1;
}
if (is_external)
external = is_external(data_addr, data_len);
rc = poke(context, data_addr, external, data, data_len);
if (rc < 0)
return -1;
}
return 0;
}
/* the parse call will be selected according to the image type */
static int (*parse[IMG_TYPE_MAX])(FILE *image, void *context, bool (*is_external)(uint32_t addr, size_t len),
int (*poke)(void *context, uint32_t addr, bool external, const unsigned char *data, size_t len))
= { parse_ihex, parse_iic, parse_bin };
/*****************************************************************************/
/*
* For writing to RAM using a first (hardware) or second (software)
* stage loader and 0xA0 or 0xA3 vendor requests
*/
typedef enum {
_undef = 0,
internal_only, /* hardware first-stage loader */
skip_internal, /* first phase, second-stage loader */
skip_external /* second phase, second-stage loader */
} ram_mode;
struct ram_poke_context {
libusb_device_handle *device;
ram_mode mode;
size_t total, count;
};
#define RETRY_LIMIT 5
static int ram_poke(void *context, uint32_t addr, bool external,
const unsigned char *data, size_t len)
{
struct ram_poke_context *ctx = (struct ram_poke_context*)context;
int rc;
unsigned retry = 0;
switch (ctx->mode) {
case internal_only: /* CPU should be stopped */
if (external) {
logerror("can't write %u bytes external memory at 0x%08x\n",
(unsigned)len, addr);
return -EINVAL;
}
break;
case skip_internal: /* CPU must be running */
if (!external) {
if (verbose >= 2) {
logerror("SKIP on-chip RAM, %u bytes at 0x%08x\n",
(unsigned)len, addr);
}
return 0;
}
break;
case skip_external: /* CPU should be stopped */
if (external) {
if (verbose >= 2) {
logerror("SKIP external RAM, %u bytes at 0x%08x\n",
(unsigned)len, addr);
}
return 0;
}
break;
case _undef:
default:
logerror("bug\n");
return -EDOM;
}
ctx->total += len;
ctx->count++;
/* Retry this till we get a real error. Control messages are not
* NAKed (just dropped) so time out means is a real problem.
*/
while ((rc = ezusb_write(ctx->device,
external ? "write external" : "write on-chip",
external ? RW_MEMORY : RW_INTERNAL,
addr, data, len)) < 0
&& retry < RETRY_LIMIT) {
if (rc != LIBUSB_ERROR_TIMEOUT)
break;
retry += 1;
}
return rc;
}
/*
* Load a Cypress Image file into target RAM.
* See http://www.cypress.com/?docID=41351 (AN76405 PDF) for more info.
*/
static int fx3_load_ram(libusb_device_handle *device, const char *path)
{
uint32_t dCheckSum, dExpectedCheckSum, dAddress, i, dLen, dLength;
uint32_t* dImageBuf;
unsigned char *bBuf, hBuf[4], blBuf[4], rBuf[4096];
FILE *image;
int ret = 0;
image = fopen(path, "rb");
if (image == NULL) {
logerror("unable to open '%s' for input\n", path);
return -2;
} else if (verbose)
logerror("open firmware image %s for RAM upload\n", path);
// Read header
if (fread(hBuf, sizeof(char), sizeof(hBuf), image) != sizeof(hBuf)) {
logerror("could not read image header");
ret = -3;
goto exit;
}
// check "CY" signature byte and format
if ((hBuf[0] != 'C') || (hBuf[1] != 'Y')) {
logerror("image doesn't have a CYpress signature\n");
ret = -3;
goto exit;
}
// Check bImageType
switch(hBuf[3]) {
case 0xB0:
if (verbose)
logerror("normal FW binary %s image with checksum\n", (hBuf[2]&0x01)?"data":"executable");
break;
case 0xB1:
logerror("security binary image is not currently supported\n");
ret = -3;
goto exit;
case 0xB2:
logerror("VID:PID image is not currently supported\n");
ret = -3;
goto exit;
default:
logerror("invalid image type 0x%02X\n", hBuf[3]);
ret = -3;
goto exit;
}
// Read the bootloader version
if (verbose) {
if ((ezusb_read(device, "read bootloader version", RW_INTERNAL, 0xFFFF0020, blBuf, 4) < 0)) {
logerror("Could not read bootloader version\n");
ret = -8;
goto exit;
}
logerror("FX3 bootloader version: 0x%02X%02X%02X%02X\n", blBuf[3], blBuf[2], blBuf[1], blBuf[0]);
}
dCheckSum = 0;
if (verbose)
logerror("writing image...\n");
while (1) {
if ((fread(&dLength, sizeof(uint32_t), 1, image) != 1) || // read dLength
(fread(&dAddress, sizeof(uint32_t), 1, image) != 1)) { // read dAddress
logerror("could not read image");
ret = -3;
goto exit;
}
if (dLength == 0)
break; // done
// coverity[tainted_data]
dImageBuf = (uint32_t*)calloc(dLength, sizeof(uint32_t));
if (dImageBuf == NULL) {
logerror("could not allocate buffer for image chunk\n");
ret = -4;
goto exit;
}
// read sections
if (fread(dImageBuf, sizeof(uint32_t), dLength, image) != dLength) {
logerror("could not read image");
free(dImageBuf);
ret = -3;
goto exit;
}
for (i = 0; i < dLength; i++)
dCheckSum += dImageBuf[i];
dLength <<= 2; // convert to Byte length
bBuf = (unsigned char*) dImageBuf;
while (dLength > 0) {
dLen = 4096; // 4K max
if (dLen > dLength)
dLen = dLength;
if ((ezusb_write(device, "write firmware", RW_INTERNAL, dAddress, bBuf, dLen) < 0) ||
(ezusb_read(device, "read firmware", RW_INTERNAL, dAddress, rBuf, dLen) < 0)) {
logerror("R/W error\n");
free(dImageBuf);
ret = -5;
goto exit;
}
// Verify data: rBuf with bBuf
for (i = 0; i < dLen; i++) {
if (rBuf[i] != bBuf[i]) {
logerror("verify error");
free(dImageBuf);
ret = -6;
goto exit;
}
}
dLength -= dLen;
bBuf += dLen;
dAddress += dLen;
}
free(dImageBuf);
}
// read pre-computed checksum data
if ((fread(&dExpectedCheckSum, sizeof(uint32_t), 1, image) != 1) ||
(dCheckSum != dExpectedCheckSum)) {
logerror("checksum error\n");
ret = -7;
goto exit;
}
// transfer execution to Program Entry
if (!ezusb_fx3_jump(device, dAddress)) {
ret = -6;
}
exit:
fclose(image);
return ret;
}
/*
* Load a firmware file into target RAM. device is the open libusb
* device, and the path is the name of the source file. Open the file,
* parse the bytes, and write them in one or two phases.
*
* If stage == 0, this uses the first stage loader, built into EZ-USB
* hardware but limited to writing on-chip memory or CPUCS. Everything
* is written during one stage, unless there's an error such as the image
* holding data that needs to be written to external memory.
*
* Otherwise, things are written in two stages. First the external
* memory is written, expecting a second stage loader to have already
* been loaded. Then file is re-parsed and on-chip memory is written.
*/
int ezusb_load_ram(libusb_device_handle *device, const char *path, int fx_type, int img_type, int stage)
{
FILE *image;
uint32_t cpucs_addr;
bool (*is_external)(uint32_t off, size_t len);
struct ram_poke_context ctx;
int status;
uint8_t iic_header[8] = { 0 };
int ret = 0;
if (fx_type == FX_TYPE_FX3)
return fx3_load_ram(device, path);
image = fopen(path, "rb");
if (image == NULL) {
logerror("%s: unable to open for input.\n", path);
return -2;
} else if (verbose > 1)
logerror("open firmware image %s for RAM upload\n", path);
if (img_type == IMG_TYPE_IIC) {
if ( (fread(iic_header, 1, sizeof(iic_header), image) != sizeof(iic_header))
|| (((fx_type == FX_TYPE_FX2LP) || (fx_type == FX_TYPE_FX2)) && (iic_header[0] != 0xC2))
|| ((fx_type == FX_TYPE_AN21) && (iic_header[0] != 0xB2))
|| ((fx_type == FX_TYPE_FX1) && (iic_header[0] != 0xB6)) ) {
logerror("IIC image does not contain executable code - cannot load to RAM.\n");
ret = -1;
goto exit;
}
}
/* EZ-USB original/FX and FX2 devices differ, apart from the 8051 core */
switch(fx_type) {
case FX_TYPE_FX2LP:
cpucs_addr = 0xe600;
is_external = fx2lp_is_external;
break;
case FX_TYPE_FX2:
cpucs_addr = 0xe600;
is_external = fx2_is_external;
break;
default:
cpucs_addr = 0x7f92;
is_external = fx_is_external;
break;
}
/* use only first stage loader? */
if (stage == 0) {
ctx.mode = internal_only;
/* if required, halt the CPU while we overwrite its code/data */
if (cpucs_addr && !ezusb_cpucs(device, cpucs_addr, false))
{
ret = -1;
goto exit;
}
/* 2nd stage, first part? loader was already uploaded */
} else {
ctx.mode = skip_internal;
/* let CPU run; overwrite the 2nd stage loader later */
if (verbose)
logerror("2nd stage: write external memory\n");
}
/* scan the image, first (maybe only) time */
ctx.device = device;
ctx.total = ctx.count = 0;
status = parse[img_type](image, &ctx, is_external, ram_poke);
if (status < 0) {
logerror("unable to upload %s\n", path);
ret = status;
goto exit;
}
/* second part of 2nd stage: rescan */
// TODO: what should we do for non HEX images there?
if (stage) {
ctx.mode = skip_external;
/* if needed, halt the CPU while we overwrite the 1st stage loader */
if (cpucs_addr && !ezusb_cpucs(device, cpucs_addr, false))
{
ret = -1;
goto exit;
}
/* at least write the interrupt vectors (at 0x0000) for reset! */
rewind(image);
if (verbose)
logerror("2nd stage: write on-chip memory\n");
status = parse_ihex(image, &ctx, is_external, ram_poke);
if (status < 0) {
logerror("unable to completely upload %s\n", path);
ret = status;
goto exit;
}
}
if (verbose && (ctx.count != 0)) {
logerror("... WROTE: %d bytes, %d segments, avg %d\n",
(int)ctx.total, (int)ctx.count, (int)(ctx.total/ctx.count));
}
/* if required, reset the CPU so it runs what we just uploaded */
if (cpucs_addr && !ezusb_cpucs(device, cpucs_addr, true))
ret = -1;
exit:
fclose(image);
return ret;
}