| /* |
| * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdio.h> |
| #include "internal/cryptlib.h" |
| #include "bn_local.h" |
| |
| #ifndef OPENSSL_NO_EC2M |
| |
| /* |
| * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should |
| * fail. |
| */ |
| # define MAX_ITERATIONS 50 |
| |
| # define SQR_nibble(w) ((((w) & 8) << 3) \ |
| | (((w) & 4) << 2) \ |
| | (((w) & 2) << 1) \ |
| | ((w) & 1)) |
| |
| |
| /* Platform-specific macros to accelerate squaring. */ |
| # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
| # define SQR1(w) \ |
| SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \ |
| SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \ |
| SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \ |
| SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32) |
| # define SQR0(w) \ |
| SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \ |
| SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \ |
| SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ |
| SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) |
| # endif |
| # ifdef THIRTY_TWO_BIT |
| # define SQR1(w) \ |
| SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \ |
| SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16) |
| # define SQR0(w) \ |
| SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ |
| SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) |
| # endif |
| |
| # if !defined(OPENSSL_BN_ASM_GF2m) |
| /* |
| * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is |
| * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that |
| * the variables have the right amount of space allocated. |
| */ |
| # ifdef THIRTY_TWO_BIT |
| static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
| const BN_ULONG b) |
| { |
| register BN_ULONG h, l, s; |
| BN_ULONG tab[8], top2b = a >> 30; |
| register BN_ULONG a1, a2, a4; |
| |
| a1 = a & (0x3FFFFFFF); |
| a2 = a1 << 1; |
| a4 = a2 << 1; |
| |
| tab[0] = 0; |
| tab[1] = a1; |
| tab[2] = a2; |
| tab[3] = a1 ^ a2; |
| tab[4] = a4; |
| tab[5] = a1 ^ a4; |
| tab[6] = a2 ^ a4; |
| tab[7] = a1 ^ a2 ^ a4; |
| |
| s = tab[b & 0x7]; |
| l = s; |
| s = tab[b >> 3 & 0x7]; |
| l ^= s << 3; |
| h = s >> 29; |
| s = tab[b >> 6 & 0x7]; |
| l ^= s << 6; |
| h ^= s >> 26; |
| s = tab[b >> 9 & 0x7]; |
| l ^= s << 9; |
| h ^= s >> 23; |
| s = tab[b >> 12 & 0x7]; |
| l ^= s << 12; |
| h ^= s >> 20; |
| s = tab[b >> 15 & 0x7]; |
| l ^= s << 15; |
| h ^= s >> 17; |
| s = tab[b >> 18 & 0x7]; |
| l ^= s << 18; |
| h ^= s >> 14; |
| s = tab[b >> 21 & 0x7]; |
| l ^= s << 21; |
| h ^= s >> 11; |
| s = tab[b >> 24 & 0x7]; |
| l ^= s << 24; |
| h ^= s >> 8; |
| s = tab[b >> 27 & 0x7]; |
| l ^= s << 27; |
| h ^= s >> 5; |
| s = tab[b >> 30]; |
| l ^= s << 30; |
| h ^= s >> 2; |
| |
| /* compensate for the top two bits of a */ |
| |
| if (top2b & 01) { |
| l ^= b << 30; |
| h ^= b >> 2; |
| } |
| if (top2b & 02) { |
| l ^= b << 31; |
| h ^= b >> 1; |
| } |
| |
| *r1 = h; |
| *r0 = l; |
| } |
| # endif |
| # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
| static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
| const BN_ULONG b) |
| { |
| register BN_ULONG h, l, s; |
| BN_ULONG tab[16], top3b = a >> 61; |
| register BN_ULONG a1, a2, a4, a8; |
| |
| a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
| a2 = a1 << 1; |
| a4 = a2 << 1; |
| a8 = a4 << 1; |
| |
| tab[0] = 0; |
| tab[1] = a1; |
| tab[2] = a2; |
| tab[3] = a1 ^ a2; |
| tab[4] = a4; |
| tab[5] = a1 ^ a4; |
| tab[6] = a2 ^ a4; |
| tab[7] = a1 ^ a2 ^ a4; |
| tab[8] = a8; |
| tab[9] = a1 ^ a8; |
| tab[10] = a2 ^ a8; |
| tab[11] = a1 ^ a2 ^ a8; |
| tab[12] = a4 ^ a8; |
| tab[13] = a1 ^ a4 ^ a8; |
| tab[14] = a2 ^ a4 ^ a8; |
| tab[15] = a1 ^ a2 ^ a4 ^ a8; |
| |
| s = tab[b & 0xF]; |
| l = s; |
| s = tab[b >> 4 & 0xF]; |
| l ^= s << 4; |
| h = s >> 60; |
| s = tab[b >> 8 & 0xF]; |
| l ^= s << 8; |
| h ^= s >> 56; |
| s = tab[b >> 12 & 0xF]; |
| l ^= s << 12; |
| h ^= s >> 52; |
| s = tab[b >> 16 & 0xF]; |
| l ^= s << 16; |
| h ^= s >> 48; |
| s = tab[b >> 20 & 0xF]; |
| l ^= s << 20; |
| h ^= s >> 44; |
| s = tab[b >> 24 & 0xF]; |
| l ^= s << 24; |
| h ^= s >> 40; |
| s = tab[b >> 28 & 0xF]; |
| l ^= s << 28; |
| h ^= s >> 36; |
| s = tab[b >> 32 & 0xF]; |
| l ^= s << 32; |
| h ^= s >> 32; |
| s = tab[b >> 36 & 0xF]; |
| l ^= s << 36; |
| h ^= s >> 28; |
| s = tab[b >> 40 & 0xF]; |
| l ^= s << 40; |
| h ^= s >> 24; |
| s = tab[b >> 44 & 0xF]; |
| l ^= s << 44; |
| h ^= s >> 20; |
| s = tab[b >> 48 & 0xF]; |
| l ^= s << 48; |
| h ^= s >> 16; |
| s = tab[b >> 52 & 0xF]; |
| l ^= s << 52; |
| h ^= s >> 12; |
| s = tab[b >> 56 & 0xF]; |
| l ^= s << 56; |
| h ^= s >> 8; |
| s = tab[b >> 60]; |
| l ^= s << 60; |
| h ^= s >> 4; |
| |
| /* compensate for the top three bits of a */ |
| |
| if (top3b & 01) { |
| l ^= b << 61; |
| h ^= b >> 3; |
| } |
| if (top3b & 02) { |
| l ^= b << 62; |
| h ^= b >> 2; |
| } |
| if (top3b & 04) { |
| l ^= b << 63; |
| h ^= b >> 1; |
| } |
| |
| *r1 = h; |
| *r0 = l; |
| } |
| # endif |
| |
| /* |
| * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
| * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST |
| * ensure that the variables have the right amount of space allocated. |
| */ |
| static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, |
| const BN_ULONG b1, const BN_ULONG b0) |
| { |
| BN_ULONG m1, m0; |
| /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
| bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); |
| bn_GF2m_mul_1x1(r + 1, r, a0, b0); |
| bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
| /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
| r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
| r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
| } |
| # else |
| void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, |
| BN_ULONG b0); |
| # endif |
| |
| /* |
| * Add polynomials a and b and store result in r; r could be a or b, a and b |
| * could be equal; r is the bitwise XOR of a and b. |
| */ |
| int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
| { |
| int i; |
| const BIGNUM *at, *bt; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| |
| if (a->top < b->top) { |
| at = b; |
| bt = a; |
| } else { |
| at = a; |
| bt = b; |
| } |
| |
| if (bn_wexpand(r, at->top) == NULL) |
| return 0; |
| |
| for (i = 0; i < bt->top; i++) { |
| r->d[i] = at->d[i] ^ bt->d[i]; |
| } |
| for (; i < at->top; i++) { |
| r->d[i] = at->d[i]; |
| } |
| |
| r->top = at->top; |
| bn_correct_top(r); |
| |
| return 1; |
| } |
| |
| /*- |
| * Some functions allow for representation of the irreducible polynomials |
| * as an int[], say p. The irreducible f(t) is then of the form: |
| * t^p[0] + t^p[1] + ... + t^p[k] |
| * where m = p[0] > p[1] > ... > p[k] = 0. |
| */ |
| |
| /* Performs modular reduction of a and store result in r. r could be a. */ |
| int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
| { |
| int j, k; |
| int n, dN, d0, d1; |
| BN_ULONG zz, *z; |
| |
| bn_check_top(a); |
| |
| if (p[0] == 0) { |
| /* reduction mod 1 => return 0 */ |
| BN_zero(r); |
| return 1; |
| } |
| |
| /* |
| * Since the algorithm does reduction in the r value, if a != r, copy the |
| * contents of a into r so we can do reduction in r. |
| */ |
| if (a != r) { |
| if (!bn_wexpand(r, a->top)) |
| return 0; |
| for (j = 0; j < a->top; j++) { |
| r->d[j] = a->d[j]; |
| } |
| r->top = a->top; |
| } |
| z = r->d; |
| |
| /* start reduction */ |
| dN = p[0] / BN_BITS2; |
| for (j = r->top - 1; j > dN;) { |
| zz = z[j]; |
| if (z[j] == 0) { |
| j--; |
| continue; |
| } |
| z[j] = 0; |
| |
| for (k = 1; p[k] != 0; k++) { |
| /* reducing component t^p[k] */ |
| n = p[0] - p[k]; |
| d0 = n % BN_BITS2; |
| d1 = BN_BITS2 - d0; |
| n /= BN_BITS2; |
| z[j - n] ^= (zz >> d0); |
| if (d0) |
| z[j - n - 1] ^= (zz << d1); |
| } |
| |
| /* reducing component t^0 */ |
| n = dN; |
| d0 = p[0] % BN_BITS2; |
| d1 = BN_BITS2 - d0; |
| z[j - n] ^= (zz >> d0); |
| if (d0) |
| z[j - n - 1] ^= (zz << d1); |
| } |
| |
| /* final round of reduction */ |
| while (j == dN) { |
| |
| d0 = p[0] % BN_BITS2; |
| zz = z[dN] >> d0; |
| if (zz == 0) |
| break; |
| d1 = BN_BITS2 - d0; |
| |
| /* clear up the top d1 bits */ |
| if (d0) |
| z[dN] = (z[dN] << d1) >> d1; |
| else |
| z[dN] = 0; |
| z[0] ^= zz; /* reduction t^0 component */ |
| |
| for (k = 1; p[k] != 0; k++) { |
| BN_ULONG tmp_ulong; |
| |
| /* reducing component t^p[k] */ |
| n = p[k] / BN_BITS2; |
| d0 = p[k] % BN_BITS2; |
| d1 = BN_BITS2 - d0; |
| z[n] ^= (zz << d0); |
| if (d0 && (tmp_ulong = zz >> d1)) |
| z[n + 1] ^= tmp_ulong; |
| } |
| |
| } |
| |
| bn_correct_top(r); |
| return 1; |
| } |
| |
| /* |
| * Performs modular reduction of a by p and store result in r. r could be a. |
| * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_arr function. |
| */ |
| int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
| { |
| int ret = 0; |
| int arr[6]; |
| bn_check_top(a); |
| bn_check_top(p); |
| ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr)); |
| if (!ret || ret > (int)OSSL_NELEM(arr)) { |
| ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
| return 0; |
| } |
| ret = BN_GF2m_mod_arr(r, a, arr); |
| bn_check_top(r); |
| return ret; |
| } |
| |
| /* |
| * Compute the product of two polynomials a and b, reduce modulo p, and store |
| * the result in r. r could be a or b; a could be b. |
| */ |
| int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const int p[], BN_CTX *ctx) |
| { |
| int zlen, i, j, k, ret = 0; |
| BIGNUM *s; |
| BN_ULONG x1, x0, y1, y0, zz[4]; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| |
| if (a == b) { |
| return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
| } |
| |
| BN_CTX_start(ctx); |
| if ((s = BN_CTX_get(ctx)) == NULL) |
| goto err; |
| |
| zlen = a->top + b->top + 4; |
| if (!bn_wexpand(s, zlen)) |
| goto err; |
| s->top = zlen; |
| |
| for (i = 0; i < zlen; i++) |
| s->d[i] = 0; |
| |
| for (j = 0; j < b->top; j += 2) { |
| y0 = b->d[j]; |
| y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; |
| for (i = 0; i < a->top; i += 2) { |
| x0 = a->d[i]; |
| x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; |
| bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
| for (k = 0; k < 4; k++) |
| s->d[i + j + k] ^= zz[k]; |
| } |
| } |
| |
| bn_correct_top(s); |
| if (BN_GF2m_mod_arr(r, s, p)) |
| ret = 1; |
| bn_check_top(r); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Compute the product of two polynomials a and b, reduce modulo p, and store |
| * the result in r. r could be a or b; a could equal b. This function calls |
| * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is |
| * only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_mul_arr function. |
| */ |
| int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| bn_check_top(p); |
| |
| arr = OPENSSL_malloc(sizeof(*arr) * max); |
| if (arr == NULL) { |
| ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) { |
| ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
| bn_check_top(r); |
| err: |
| OPENSSL_free(arr); |
| return ret; |
| } |
| |
| /* Square a, reduce the result mod p, and store it in a. r could be a. */ |
| int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
| BN_CTX *ctx) |
| { |
| int i, ret = 0; |
| BIGNUM *s; |
| |
| bn_check_top(a); |
| BN_CTX_start(ctx); |
| if ((s = BN_CTX_get(ctx)) == NULL) |
| goto err; |
| if (!bn_wexpand(s, 2 * a->top)) |
| goto err; |
| |
| for (i = a->top - 1; i >= 0; i--) { |
| s->d[2 * i + 1] = SQR1(a->d[i]); |
| s->d[2 * i] = SQR0(a->d[i]); |
| } |
| |
| s->top = 2 * a->top; |
| bn_correct_top(s); |
| if (!BN_GF2m_mod_arr(r, s, p)) |
| goto err; |
| bn_check_top(r); |
| ret = 1; |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Square a, reduce the result mod p, and store it in a. r could be a. This |
| * function calls down to the BN_GF2m_mod_sqr_arr implementation; this |
| * wrapper function is only provided for convenience; for best performance, |
| * use the BN_GF2m_mod_sqr_arr function. |
| */ |
| int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr; |
| |
| bn_check_top(a); |
| bn_check_top(p); |
| |
| arr = OPENSSL_malloc(sizeof(*arr) * max); |
| if (arr == NULL) { |
| ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) { |
| ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
| bn_check_top(r); |
| err: |
| OPENSSL_free(arr); |
| return ret; |
| } |
| |
| /* |
| * Invert a, reduce modulo p, and store the result in r. r could be a. Uses |
| * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., |
| * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic |
| * Curve Cryptography Over Binary Fields". |
| */ |
| static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *p, BN_CTX *ctx) |
| { |
| BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
| int ret = 0; |
| |
| bn_check_top(a); |
| bn_check_top(p); |
| |
| BN_CTX_start(ctx); |
| |
| b = BN_CTX_get(ctx); |
| c = BN_CTX_get(ctx); |
| u = BN_CTX_get(ctx); |
| v = BN_CTX_get(ctx); |
| if (v == NULL) |
| goto err; |
| |
| if (!BN_GF2m_mod(u, a, p)) |
| goto err; |
| if (BN_is_zero(u)) |
| goto err; |
| |
| if (!BN_copy(v, p)) |
| goto err; |
| # if 0 |
| if (!BN_one(b)) |
| goto err; |
| |
| while (1) { |
| while (!BN_is_odd(u)) { |
| if (BN_is_zero(u)) |
| goto err; |
| if (!BN_rshift1(u, u)) |
| goto err; |
| if (BN_is_odd(b)) { |
| if (!BN_GF2m_add(b, b, p)) |
| goto err; |
| } |
| if (!BN_rshift1(b, b)) |
| goto err; |
| } |
| |
| if (BN_abs_is_word(u, 1)) |
| break; |
| |
| if (BN_num_bits(u) < BN_num_bits(v)) { |
| tmp = u; |
| u = v; |
| v = tmp; |
| tmp = b; |
| b = c; |
| c = tmp; |
| } |
| |
| if (!BN_GF2m_add(u, u, v)) |
| goto err; |
| if (!BN_GF2m_add(b, b, c)) |
| goto err; |
| } |
| # else |
| { |
| int i; |
| int ubits = BN_num_bits(u); |
| int vbits = BN_num_bits(v); /* v is copy of p */ |
| int top = p->top; |
| BN_ULONG *udp, *bdp, *vdp, *cdp; |
| |
| if (!bn_wexpand(u, top)) |
| goto err; |
| udp = u->d; |
| for (i = u->top; i < top; i++) |
| udp[i] = 0; |
| u->top = top; |
| if (!bn_wexpand(b, top)) |
| goto err; |
| bdp = b->d; |
| bdp[0] = 1; |
| for (i = 1; i < top; i++) |
| bdp[i] = 0; |
| b->top = top; |
| if (!bn_wexpand(c, top)) |
| goto err; |
| cdp = c->d; |
| for (i = 0; i < top; i++) |
| cdp[i] = 0; |
| c->top = top; |
| vdp = v->d; /* It pays off to "cache" *->d pointers, |
| * because it allows optimizer to be more |
| * aggressive. But we don't have to "cache" |
| * p->d, because *p is declared 'const'... */ |
| while (1) { |
| while (ubits && !(udp[0] & 1)) { |
| BN_ULONG u0, u1, b0, b1, mask; |
| |
| u0 = udp[0]; |
| b0 = bdp[0]; |
| mask = (BN_ULONG)0 - (b0 & 1); |
| b0 ^= p->d[0] & mask; |
| for (i = 0; i < top - 1; i++) { |
| u1 = udp[i + 1]; |
| udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; |
| u0 = u1; |
| b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); |
| bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; |
| b0 = b1; |
| } |
| udp[i] = u0 >> 1; |
| bdp[i] = b0 >> 1; |
| ubits--; |
| } |
| |
| if (ubits <= BN_BITS2) { |
| if (udp[0] == 0) /* poly was reducible */ |
| goto err; |
| if (udp[0] == 1) |
| break; |
| } |
| |
| if (ubits < vbits) { |
| i = ubits; |
| ubits = vbits; |
| vbits = i; |
| tmp = u; |
| u = v; |
| v = tmp; |
| tmp = b; |
| b = c; |
| c = tmp; |
| udp = vdp; |
| vdp = v->d; |
| bdp = cdp; |
| cdp = c->d; |
| } |
| for (i = 0; i < top; i++) { |
| udp[i] ^= vdp[i]; |
| bdp[i] ^= cdp[i]; |
| } |
| if (ubits == vbits) { |
| BN_ULONG ul; |
| int utop = (ubits - 1) / BN_BITS2; |
| |
| while ((ul = udp[utop]) == 0 && utop) |
| utop--; |
| ubits = utop * BN_BITS2 + BN_num_bits_word(ul); |
| } |
| } |
| bn_correct_top(b); |
| } |
| # endif |
| |
| if (!BN_copy(r, b)) |
| goto err; |
| bn_check_top(r); |
| ret = 1; |
| |
| err: |
| # ifdef BN_DEBUG |
| /* BN_CTX_end would complain about the expanded form */ |
| bn_correct_top(c); |
| bn_correct_top(u); |
| bn_correct_top(v); |
| # endif |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /*- |
| * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling. |
| * This is not constant time. |
| * But it does eliminate first order deduction on the input. |
| */ |
| int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| { |
| BIGNUM *b = NULL; |
| int ret = 0; |
| |
| BN_CTX_start(ctx); |
| if ((b = BN_CTX_get(ctx)) == NULL) |
| goto err; |
| |
| /* generate blinding value */ |
| do { |
| if (!BN_priv_rand_ex(b, BN_num_bits(p) - 1, |
| BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) |
| goto err; |
| } while (BN_is_zero(b)); |
| |
| /* r := a * b */ |
| if (!BN_GF2m_mod_mul(r, a, b, p, ctx)) |
| goto err; |
| |
| /* r := 1/(a * b) */ |
| if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx)) |
| goto err; |
| |
| /* r := b/(a * b) = 1/a */ |
| if (!BN_GF2m_mod_mul(r, r, b, p, ctx)) |
| goto err; |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Invert xx, reduce modulo p, and store the result in r. r could be xx. |
| * This function calls down to the BN_GF2m_mod_inv implementation; this |
| * wrapper function is only provided for convenience; for best performance, |
| * use the BN_GF2m_mod_inv function. |
| */ |
| int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], |
| BN_CTX *ctx) |
| { |
| BIGNUM *field; |
| int ret = 0; |
| |
| bn_check_top(xx); |
| BN_CTX_start(ctx); |
| if ((field = BN_CTX_get(ctx)) == NULL) |
| goto err; |
| if (!BN_GF2m_arr2poly(p, field)) |
| goto err; |
| |
| ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
| bn_check_top(r); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Divide y by x, reduce modulo p, and store the result in r. r could be x |
| * or y, x could equal y. |
| */ |
| int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, |
| const BIGNUM *p, BN_CTX *ctx) |
| { |
| BIGNUM *xinv = NULL; |
| int ret = 0; |
| |
| bn_check_top(y); |
| bn_check_top(x); |
| bn_check_top(p); |
| |
| BN_CTX_start(ctx); |
| xinv = BN_CTX_get(ctx); |
| if (xinv == NULL) |
| goto err; |
| |
| if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) |
| goto err; |
| if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) |
| goto err; |
| bn_check_top(r); |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
| * * or yy, xx could equal yy. This function calls down to the |
| * BN_GF2m_mod_div implementation; this wrapper function is only provided for |
| * convenience; for best performance, use the BN_GF2m_mod_div function. |
| */ |
| int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, |
| const int p[], BN_CTX *ctx) |
| { |
| BIGNUM *field; |
| int ret = 0; |
| |
| bn_check_top(yy); |
| bn_check_top(xx); |
| |
| BN_CTX_start(ctx); |
| if ((field = BN_CTX_get(ctx)) == NULL) |
| goto err; |
| if (!BN_GF2m_arr2poly(p, field)) |
| goto err; |
| |
| ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
| bn_check_top(r); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Compute the bth power of a, reduce modulo p, and store the result in r. r |
| * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE |
| * P1363. |
| */ |
| int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const int p[], BN_CTX *ctx) |
| { |
| int ret = 0, i, n; |
| BIGNUM *u; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| |
| if (BN_is_zero(b)) |
| return BN_one(r); |
| |
| if (BN_abs_is_word(b, 1)) |
| return (BN_copy(r, a) != NULL); |
| |
| BN_CTX_start(ctx); |
| if ((u = BN_CTX_get(ctx)) == NULL) |
| goto err; |
| |
| if (!BN_GF2m_mod_arr(u, a, p)) |
| goto err; |
| |
| n = BN_num_bits(b) - 1; |
| for (i = n - 1; i >= 0; i--) { |
| if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) |
| goto err; |
| if (BN_is_bit_set(b, i)) { |
| if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) |
| goto err; |
| } |
| } |
| if (!BN_copy(r, u)) |
| goto err; |
| bn_check_top(r); |
| ret = 1; |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Compute the bth power of a, reduce modulo p, and store the result in r. r |
| * could be a. This function calls down to the BN_GF2m_mod_exp_arr |
| * implementation; this wrapper function is only provided for convenience; |
| * for best performance, use the BN_GF2m_mod_exp_arr function. |
| */ |
| int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| bn_check_top(p); |
| |
| arr = OPENSSL_malloc(sizeof(*arr) * max); |
| if (arr == NULL) { |
| ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) { |
| ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
| bn_check_top(r); |
| err: |
| OPENSSL_free(arr); |
| return ret; |
| } |
| |
| /* |
| * Compute the square root of a, reduce modulo p, and store the result in r. |
| * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
| */ |
| int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
| BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *u; |
| |
| bn_check_top(a); |
| |
| if (p[0] == 0) { |
| /* reduction mod 1 => return 0 */ |
| BN_zero(r); |
| return 1; |
| } |
| |
| BN_CTX_start(ctx); |
| if ((u = BN_CTX_get(ctx)) == NULL) |
| goto err; |
| |
| if (!BN_set_bit(u, p[0] - 1)) |
| goto err; |
| ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
| bn_check_top(r); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Compute the square root of a, reduce modulo p, and store the result in r. |
| * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr |
| * implementation; this wrapper function is only provided for convenience; |
| * for best performance, use the BN_GF2m_mod_sqrt_arr function. |
| */ |
| int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr; |
| |
| bn_check_top(a); |
| bn_check_top(p); |
| |
| arr = OPENSSL_malloc(sizeof(*arr) * max); |
| if (arr == NULL) { |
| ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) { |
| ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
| bn_check_top(r); |
| err: |
| OPENSSL_free(arr); |
| return ret; |
| } |
| |
| /* |
| * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
| * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
| */ |
| int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], |
| BN_CTX *ctx) |
| { |
| int ret = 0, count = 0, j; |
| BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
| |
| bn_check_top(a_); |
| |
| if (p[0] == 0) { |
| /* reduction mod 1 => return 0 */ |
| BN_zero(r); |
| return 1; |
| } |
| |
| BN_CTX_start(ctx); |
| a = BN_CTX_get(ctx); |
| z = BN_CTX_get(ctx); |
| w = BN_CTX_get(ctx); |
| if (w == NULL) |
| goto err; |
| |
| if (!BN_GF2m_mod_arr(a, a_, p)) |
| goto err; |
| |
| if (BN_is_zero(a)) { |
| BN_zero(r); |
| ret = 1; |
| goto err; |
| } |
| |
| if (p[0] & 0x1) { /* m is odd */ |
| /* compute half-trace of a */ |
| if (!BN_copy(z, a)) |
| goto err; |
| for (j = 1; j <= (p[0] - 1) / 2; j++) { |
| if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
| goto err; |
| if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
| goto err; |
| if (!BN_GF2m_add(z, z, a)) |
| goto err; |
| } |
| |
| } else { /* m is even */ |
| |
| rho = BN_CTX_get(ctx); |
| w2 = BN_CTX_get(ctx); |
| tmp = BN_CTX_get(ctx); |
| if (tmp == NULL) |
| goto err; |
| do { |
| if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, |
| 0, ctx)) |
| goto err; |
| if (!BN_GF2m_mod_arr(rho, rho, p)) |
| goto err; |
| BN_zero(z); |
| if (!BN_copy(w, rho)) |
| goto err; |
| for (j = 1; j <= p[0] - 1; j++) { |
| if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
| goto err; |
| if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) |
| goto err; |
| if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) |
| goto err; |
| if (!BN_GF2m_add(z, z, tmp)) |
| goto err; |
| if (!BN_GF2m_add(w, w2, rho)) |
| goto err; |
| } |
| count++; |
| } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
| if (BN_is_zero(w)) { |
| ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS); |
| goto err; |
| } |
| } |
| |
| if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) |
| goto err; |
| if (!BN_GF2m_add(w, z, w)) |
| goto err; |
| if (BN_GF2m_cmp(w, a)) { |
| ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION); |
| goto err; |
| } |
| |
| if (!BN_copy(r, z)) |
| goto err; |
| bn_check_top(r); |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
| * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr |
| * implementation; this wrapper function is only provided for convenience; |
| * for best performance, use the BN_GF2m_mod_solve_quad_arr function. |
| */ |
| int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr; |
| |
| bn_check_top(a); |
| bn_check_top(p); |
| |
| arr = OPENSSL_malloc(sizeof(*arr) * max); |
| if (arr == NULL) { |
| ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) { |
| ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
| bn_check_top(r); |
| err: |
| OPENSSL_free(arr); |
| return ret; |
| } |
| |
| /* |
| * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * |
| * x^i) into an array of integers corresponding to the bits with non-zero |
| * coefficient. Array is terminated with -1. Up to max elements of the array |
| * will be filled. Return value is total number of array elements that would |
| * be filled if array was large enough. |
| */ |
| int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
| { |
| int i, j, k = 0; |
| BN_ULONG mask; |
| |
| if (BN_is_zero(a)) |
| return 0; |
| |
| for (i = a->top - 1; i >= 0; i--) { |
| if (!a->d[i]) |
| /* skip word if a->d[i] == 0 */ |
| continue; |
| mask = BN_TBIT; |
| for (j = BN_BITS2 - 1; j >= 0; j--) { |
| if (a->d[i] & mask) { |
| if (k < max) |
| p[k] = BN_BITS2 * i + j; |
| k++; |
| } |
| mask >>= 1; |
| } |
| } |
| |
| if (k < max) { |
| p[k] = -1; |
| k++; |
| } |
| |
| return k; |
| } |
| |
| /* |
| * Convert the coefficient array representation of a polynomial to a |
| * bit-string. The array must be terminated by -1. |
| */ |
| int BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
| { |
| int i; |
| |
| bn_check_top(a); |
| BN_zero(a); |
| for (i = 0; p[i] != -1; i++) { |
| if (BN_set_bit(a, p[i]) == 0) |
| return 0; |
| } |
| bn_check_top(a); |
| |
| return 1; |
| } |
| |
| #endif |