| /* ==================================================================== |
| * Copyright (c) 2001-2014 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| */ |
| |
| #include <openssl/opensslconf.h> |
| #ifndef OPENSSL_NO_AES |
| # include <openssl/evp.h> |
| # include <openssl/err.h> |
| # include <string.h> |
| # include <assert.h> |
| # include <openssl/aes.h> |
| # include "evp_locl.h" |
| # include "modes_lcl.h" |
| # include <openssl/rand.h> |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| block128_f block; |
| union { |
| cbc128_f cbc; |
| ctr128_f ctr; |
| } stream; |
| } EVP_AES_KEY; |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; /* AES key schedule to use */ |
| int key_set; /* Set if key initialised */ |
| int iv_set; /* Set if an iv is set */ |
| GCM128_CONTEXT gcm; |
| unsigned char *iv; /* Temporary IV store */ |
| int ivlen; /* IV length */ |
| int taglen; |
| int iv_gen; /* It is OK to generate IVs */ |
| int tls_aad_len; /* TLS AAD length */ |
| ctr128_f ctr; |
| } EVP_AES_GCM_CTX; |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks1, ks2; /* AES key schedules to use */ |
| XTS128_CONTEXT xts; |
| void (*stream) (const unsigned char *in, |
| unsigned char *out, size_t length, |
| const AES_KEY *key1, const AES_KEY *key2, |
| const unsigned char iv[16]); |
| } EVP_AES_XTS_CTX; |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; /* AES key schedule to use */ |
| int key_set; /* Set if key initialised */ |
| int iv_set; /* Set if an iv is set */ |
| int tag_set; /* Set if tag is valid */ |
| int len_set; /* Set if message length set */ |
| int L, M; /* L and M parameters from RFC3610 */ |
| CCM128_CONTEXT ccm; |
| ccm128_f str; |
| } EVP_AES_CCM_CTX; |
| |
| # ifndef OPENSSL_NO_OCB |
| typedef struct { |
| AES_KEY ksenc; /* AES key schedule to use for encryption */ |
| AES_KEY ksdec; /* AES key schedule to use for decryption */ |
| int key_set; /* Set if key initialised */ |
| int iv_set; /* Set if an iv is set */ |
| OCB128_CONTEXT ocb; |
| unsigned char *iv; /* Temporary IV store */ |
| unsigned char tag[16]; |
| unsigned char data_buf[16]; /* Store partial data blocks */ |
| unsigned char aad_buf[16]; /* Store partial AAD blocks */ |
| int data_buf_len; |
| int aad_buf_len; |
| int ivlen; /* IV length */ |
| int taglen; |
| } EVP_AES_OCB_CTX; |
| # endif |
| |
| # define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) |
| |
| # ifdef VPAES_ASM |
| int vpaes_set_encrypt_key(const unsigned char *userKey, int bits, |
| AES_KEY *key); |
| int vpaes_set_decrypt_key(const unsigned char *userKey, int bits, |
| AES_KEY *key); |
| |
| void vpaes_encrypt(const unsigned char *in, unsigned char *out, |
| const AES_KEY *key); |
| void vpaes_decrypt(const unsigned char *in, unsigned char *out, |
| const AES_KEY *key); |
| |
| void vpaes_cbc_encrypt(const unsigned char *in, |
| unsigned char *out, |
| size_t length, |
| const AES_KEY *key, unsigned char *ivec, int enc); |
| # endif |
| # ifdef BSAES_ASM |
| void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| size_t length, const AES_KEY *key, |
| unsigned char ivec[16], int enc); |
| void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, |
| size_t len, const AES_KEY *key, |
| const unsigned char ivec[16]); |
| void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out, |
| size_t len, const AES_KEY *key1, |
| const AES_KEY *key2, const unsigned char iv[16]); |
| void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out, |
| size_t len, const AES_KEY *key1, |
| const AES_KEY *key2, const unsigned char iv[16]); |
| # endif |
| # ifdef AES_CTR_ASM |
| void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, |
| size_t blocks, const AES_KEY *key, |
| const unsigned char ivec[AES_BLOCK_SIZE]); |
| # endif |
| # ifdef AES_XTS_ASM |
| void AES_xts_encrypt(const char *inp, char *out, size_t len, |
| const AES_KEY *key1, const AES_KEY *key2, |
| const unsigned char iv[16]); |
| void AES_xts_decrypt(const char *inp, char *out, size_t len, |
| const AES_KEY *key1, const AES_KEY *key2, |
| const unsigned char iv[16]); |
| # endif |
| |
| # if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) |
| # include "ppc_arch.h" |
| # ifdef VPAES_ASM |
| # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC) |
| # endif |
| # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207) |
| # define HWAES_set_encrypt_key aes_p8_set_encrypt_key |
| # define HWAES_set_decrypt_key aes_p8_set_decrypt_key |
| # define HWAES_encrypt aes_p8_encrypt |
| # define HWAES_decrypt aes_p8_decrypt |
| # define HWAES_cbc_encrypt aes_p8_cbc_encrypt |
| # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks |
| # endif |
| |
| # if defined(AES_ASM) && !defined(I386_ONLY) && ( \ |
| ((defined(__i386) || defined(__i386__) || \ |
| defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \ |
| defined(__x86_64) || defined(__x86_64__) || \ |
| defined(_M_AMD64) || defined(_M_X64) || \ |
| defined(__INTEL__) ) |
| |
| extern unsigned int OPENSSL_ia32cap_P[]; |
| |
| # ifdef VPAES_ASM |
| # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) |
| # endif |
| # ifdef BSAES_ASM |
| # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) |
| # endif |
| /* |
| * AES-NI section |
| */ |
| # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32))) |
| |
| int aesni_set_encrypt_key(const unsigned char *userKey, int bits, |
| AES_KEY *key); |
| int aesni_set_decrypt_key(const unsigned char *userKey, int bits, |
| AES_KEY *key); |
| |
| void aesni_encrypt(const unsigned char *in, unsigned char *out, |
| const AES_KEY *key); |
| void aesni_decrypt(const unsigned char *in, unsigned char *out, |
| const AES_KEY *key); |
| |
| void aesni_ecb_encrypt(const unsigned char *in, |
| unsigned char *out, |
| size_t length, const AES_KEY *key, int enc); |
| void aesni_cbc_encrypt(const unsigned char *in, |
| unsigned char *out, |
| size_t length, |
| const AES_KEY *key, unsigned char *ivec, int enc); |
| |
| void aesni_ctr32_encrypt_blocks(const unsigned char *in, |
| unsigned char *out, |
| size_t blocks, |
| const void *key, const unsigned char *ivec); |
| |
| void aesni_xts_encrypt(const unsigned char *in, |
| unsigned char *out, |
| size_t length, |
| const AES_KEY *key1, const AES_KEY *key2, |
| const unsigned char iv[16]); |
| |
| void aesni_xts_decrypt(const unsigned char *in, |
| unsigned char *out, |
| size_t length, |
| const AES_KEY *key1, const AES_KEY *key2, |
| const unsigned char iv[16]); |
| |
| void aesni_ccm64_encrypt_blocks(const unsigned char *in, |
| unsigned char *out, |
| size_t blocks, |
| const void *key, |
| const unsigned char ivec[16], |
| unsigned char cmac[16]); |
| |
| void aesni_ccm64_decrypt_blocks(const unsigned char *in, |
| unsigned char *out, |
| size_t blocks, |
| const void *key, |
| const unsigned char ivec[16], |
| unsigned char cmac[16]); |
| |
| # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) |
| size_t aesni_gcm_encrypt(const unsigned char *in, |
| unsigned char *out, |
| size_t len, |
| const void *key, unsigned char ivec[16], u64 *Xi); |
| # define AES_gcm_encrypt aesni_gcm_encrypt |
| size_t aesni_gcm_decrypt(const unsigned char *in, |
| unsigned char *out, |
| size_t len, |
| const void *key, unsigned char ivec[16], u64 *Xi); |
| # define AES_gcm_decrypt aesni_gcm_decrypt |
| void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in, |
| size_t len); |
| # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \ |
| gctx->gcm.ghash==gcm_ghash_avx) |
| # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \ |
| gctx->gcm.ghash==gcm_ghash_avx) |
| # undef AES_GCM_ASM2 /* minor size optimization */ |
| # endif |
| |
| static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| int ret, mode; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| mode = ctx->cipher->flags & EVP_CIPH_MODE; |
| if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| && !enc) { |
| ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data); |
| dat->block = (block128_f) aesni_decrypt; |
| dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| (cbc128_f) aesni_cbc_encrypt : NULL; |
| } else { |
| ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data); |
| dat->block = (block128_f) aesni_encrypt; |
| if (mode == EVP_CIPH_CBC_MODE) |
| dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt; |
| else if (mode == EVP_CIPH_CTR_MODE) |
| dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; |
| else |
| dat->stream.cbc = NULL; |
| } |
| |
| if (ret < 0) { |
| EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt); |
| |
| return 1; |
| } |
| |
| static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| size_t bl = ctx->cipher->block_size; |
| |
| if (len < bl) |
| return 1; |
| |
| aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); |
| |
| return 1; |
| } |
| |
| # define aesni_ofb_cipher aes_ofb_cipher |
| static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aesni_cfb_cipher aes_cfb_cipher |
| static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aesni_cfb8_cipher aes_cfb8_cipher |
| static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aesni_cfb1_cipher aes_cfb1_cipher |
| static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aesni_ctr_cipher aes_ctr_cipher |
| static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_GCM_CTX *gctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt); |
| gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; |
| /* |
| * If we have an iv can set it directly, otherwise use saved IV. |
| */ |
| if (iv == NULL && gctx->iv_set) |
| iv = gctx->iv; |
| if (iv) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| } |
| gctx->key_set = 1; |
| } else { |
| /* If key set use IV, otherwise copy */ |
| if (gctx->key_set) |
| CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| else |
| memcpy(gctx->iv, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| gctx->iv_gen = 0; |
| } |
| return 1; |
| } |
| |
| # define aesni_gcm_cipher aes_gcm_cipher |
| static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_XTS_CTX *xctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| |
| if (key) { |
| /* key_len is two AES keys */ |
| if (enc) { |
| aesni_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) aesni_encrypt; |
| xctx->stream = aesni_xts_encrypt; |
| } else { |
| aesni_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) aesni_decrypt; |
| xctx->stream = aesni_xts_decrypt; |
| } |
| |
| aesni_set_encrypt_key(key + ctx->key_len / 2, |
| ctx->key_len * 4, &xctx->ks2.ks); |
| xctx->xts.block2 = (block128_f) aesni_encrypt; |
| |
| xctx->xts.key1 = &xctx->ks1; |
| } |
| |
| if (iv) { |
| xctx->xts.key2 = &xctx->ks2; |
| memcpy(ctx->iv, iv, 16); |
| } |
| |
| return 1; |
| } |
| |
| # define aesni_xts_cipher aes_xts_cipher |
| static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_CCM_CTX *cctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); |
| CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| &cctx->ks, (block128_f) aesni_encrypt); |
| cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks : |
| (ccm128_f) aesni_ccm64_decrypt_blocks; |
| cctx->key_set = 1; |
| } |
| if (iv) { |
| memcpy(ctx->iv, iv, 15 - cctx->L); |
| cctx->iv_set = 1; |
| } |
| return 1; |
| } |
| |
| # define aesni_ccm_cipher aes_ccm_cipher |
| static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # ifndef OPENSSL_NO_OCB |
| static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_OCB_CTX *octx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| do { |
| /* |
| * We set both the encrypt and decrypt key here because decrypt |
| * needs both. We could possibly optimise to remove setting the |
| * decrypt for an encryption operation. |
| */ |
| aesni_set_encrypt_key(key, ctx->key_len * 8, &octx->ksenc); |
| aesni_set_decrypt_key(key, ctx->key_len * 8, &octx->ksdec); |
| if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc, &octx->ksdec, |
| (block128_f) aesni_encrypt, |
| (block128_f) aesni_decrypt)) |
| return 0; |
| } |
| while (0); |
| |
| /* |
| * If we have an iv we can set it directly, otherwise use saved IV. |
| */ |
| if (iv == NULL && octx->iv_set) |
| iv = octx->iv; |
| if (iv) { |
| if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| != 1) |
| return 0; |
| octx->iv_set = 1; |
| } |
| octx->key_set = 1; |
| } else { |
| /* If key set use IV, otherwise copy */ |
| if (octx->key_set) |
| CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| else |
| memcpy(octx->iv, iv, octx->ivlen); |
| octx->iv_set = 1; |
| } |
| return 1; |
| } |
| |
| # define aesni_ocb_cipher aes_ocb_cipher |
| static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| # endif /* OPENSSL_NO_OCB */ |
| |
| # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| static const EVP_CIPHER aesni_##keylen##_##mode = { \ |
| nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aesni_init_key, \ |
| aesni_##mode##_cipher, \ |
| NULL, \ |
| sizeof(EVP_AES_KEY), \ |
| NULL,NULL,NULL,NULL }; \ |
| static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| nid##_##keylen##_##nmode,blocksize, \ |
| keylen/8,ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aes_init_key, \ |
| aes_##mode##_cipher, \ |
| NULL, \ |
| sizeof(EVP_AES_KEY), \ |
| NULL,NULL,NULL,NULL }; \ |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } |
| |
| # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| static const EVP_CIPHER aesni_##keylen##_##mode = { \ |
| nid##_##keylen##_##mode,blocksize, \ |
| (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aesni_##mode##_init_key, \ |
| aesni_##mode##_cipher, \ |
| aes_##mode##_cleanup, \ |
| sizeof(EVP_AES_##MODE##_CTX), \ |
| NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| nid##_##keylen##_##mode,blocksize, \ |
| (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aes_##mode##_init_key, \ |
| aes_##mode##_cipher, \ |
| aes_##mode##_cleanup, \ |
| sizeof(EVP_AES_##MODE##_CTX), \ |
| NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } |
| |
| # elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) |
| |
| # include "sparc_arch.h" |
| |
| extern unsigned int OPENSSL_sparcv9cap_P[]; |
| |
| # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES) |
| |
| void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks); |
| void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks); |
| void aes_t4_encrypt(const unsigned char *in, unsigned char *out, |
| const AES_KEY *key); |
| void aes_t4_decrypt(const unsigned char *in, unsigned char *out, |
| const AES_KEY *key); |
| /* |
| * Key-length specific subroutines were chosen for following reason. |
| * Each SPARC T4 core can execute up to 8 threads which share core's |
| * resources. Loading as much key material to registers allows to |
| * minimize references to shared memory interface, as well as amount |
| * of instructions in inner loops [much needed on T4]. But then having |
| * non-key-length specific routines would require conditional branches |
| * either in inner loops or on subroutines' entries. Former is hardly |
| * acceptable, while latter means code size increase to size occupied |
| * by multiple key-length specfic subroutines, so why fight? |
| */ |
| void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| size_t len, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, |
| size_t len, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| size_t len, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, |
| size_t len, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| size_t len, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, |
| size_t len, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, |
| size_t blocks, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, |
| size_t blocks, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, |
| size_t blocks, const AES_KEY *key, |
| unsigned char *ivec); |
| void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out, |
| size_t blocks, const AES_KEY *key1, |
| const AES_KEY *key2, const unsigned char *ivec); |
| void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out, |
| size_t blocks, const AES_KEY *key1, |
| const AES_KEY *key2, const unsigned char *ivec); |
| void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out, |
| size_t blocks, const AES_KEY *key1, |
| const AES_KEY *key2, const unsigned char *ivec); |
| void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out, |
| size_t blocks, const AES_KEY *key1, |
| const AES_KEY *key2, const unsigned char *ivec); |
| |
| static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| int ret, mode, bits; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| mode = ctx->cipher->flags & EVP_CIPH_MODE; |
| bits = ctx->key_len * 8; |
| if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| && !enc) { |
| ret = 0; |
| aes_t4_set_decrypt_key(key, bits, ctx->cipher_data); |
| dat->block = (block128_f) aes_t4_decrypt; |
| switch (bits) { |
| case 128: |
| dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| (cbc128_f) aes128_t4_cbc_decrypt : NULL; |
| break; |
| case 192: |
| dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| (cbc128_f) aes192_t4_cbc_decrypt : NULL; |
| break; |
| case 256: |
| dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| (cbc128_f) aes256_t4_cbc_decrypt : NULL; |
| break; |
| default: |
| ret = -1; |
| } |
| } else { |
| ret = 0; |
| aes_t4_set_encrypt_key(key, bits, ctx->cipher_data); |
| dat->block = (block128_f) aes_t4_encrypt; |
| switch (bits) { |
| case 128: |
| if (mode == EVP_CIPH_CBC_MODE) |
| dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt; |
| else if (mode == EVP_CIPH_CTR_MODE) |
| dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt; |
| else |
| dat->stream.cbc = NULL; |
| break; |
| case 192: |
| if (mode == EVP_CIPH_CBC_MODE) |
| dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt; |
| else if (mode == EVP_CIPH_CTR_MODE) |
| dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt; |
| else |
| dat->stream.cbc = NULL; |
| break; |
| case 256: |
| if (mode == EVP_CIPH_CBC_MODE) |
| dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt; |
| else if (mode == EVP_CIPH_CTR_MODE) |
| dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt; |
| else |
| dat->stream.cbc = NULL; |
| break; |
| default: |
| ret = -1; |
| } |
| } |
| |
| if (ret < 0) { |
| EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| # define aes_t4_cbc_cipher aes_cbc_cipher |
| static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aes_t4_ecb_cipher aes_ecb_cipher |
| static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aes_t4_ofb_cipher aes_ofb_cipher |
| static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aes_t4_cfb_cipher aes_cfb_cipher |
| static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aes_t4_cfb8_cipher aes_cfb8_cipher |
| static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aes_t4_cfb1_cipher aes_cfb1_cipher |
| static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # define aes_t4_ctr_cipher aes_ctr_cipher |
| static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_GCM_CTX *gctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| int bits = ctx->key_len * 8; |
| aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); |
| CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| (block128_f) aes_t4_encrypt); |
| switch (bits) { |
| case 128: |
| gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt; |
| break; |
| case 192: |
| gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt; |
| break; |
| case 256: |
| gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt; |
| break; |
| default: |
| return 0; |
| } |
| /* |
| * If we have an iv can set it directly, otherwise use saved IV. |
| */ |
| if (iv == NULL && gctx->iv_set) |
| iv = gctx->iv; |
| if (iv) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| } |
| gctx->key_set = 1; |
| } else { |
| /* If key set use IV, otherwise copy */ |
| if (gctx->key_set) |
| CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| else |
| memcpy(gctx->iv, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| gctx->iv_gen = 0; |
| } |
| return 1; |
| } |
| |
| # define aes_t4_gcm_cipher aes_gcm_cipher |
| static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_XTS_CTX *xctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| |
| if (key) { |
| int bits = ctx->key_len * 4; |
| xctx->stream = NULL; |
| /* key_len is two AES keys */ |
| if (enc) { |
| aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) aes_t4_encrypt; |
| switch (bits) { |
| case 128: |
| xctx->stream = aes128_t4_xts_encrypt; |
| break; |
| # if 0 /* not yet */ |
| case 192: |
| xctx->stream = aes192_t4_xts_encrypt; |
| break; |
| # endif |
| case 256: |
| xctx->stream = aes256_t4_xts_encrypt; |
| break; |
| default: |
| return 0; |
| } |
| } else { |
| aes_t4_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) aes_t4_decrypt; |
| switch (bits) { |
| case 128: |
| xctx->stream = aes128_t4_xts_decrypt; |
| break; |
| # if 0 /* not yet */ |
| case 192: |
| xctx->stream = aes192_t4_xts_decrypt; |
| break; |
| # endif |
| case 256: |
| xctx->stream = aes256_t4_xts_decrypt; |
| break; |
| default: |
| return 0; |
| } |
| } |
| |
| aes_t4_set_encrypt_key(key + ctx->key_len / 2, |
| ctx->key_len * 4, &xctx->ks2.ks); |
| xctx->xts.block2 = (block128_f) aes_t4_encrypt; |
| |
| xctx->xts.key1 = &xctx->ks1; |
| } |
| |
| if (iv) { |
| xctx->xts.key2 = &xctx->ks2; |
| memcpy(ctx->iv, iv, 16); |
| } |
| |
| return 1; |
| } |
| |
| # define aes_t4_xts_cipher aes_xts_cipher |
| static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_CCM_CTX *cctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| int bits = ctx->key_len * 8; |
| aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); |
| CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| &cctx->ks, (block128_f) aes_t4_encrypt); |
| # if 0 /* not yet */ |
| switch (bits) { |
| case 128: |
| cctx->str = enc ? (ccm128_f) aes128_t4_ccm64_encrypt : |
| (ccm128_f) ae128_t4_ccm64_decrypt; |
| break; |
| case 192: |
| cctx->str = enc ? (ccm128_f) aes192_t4_ccm64_encrypt : |
| (ccm128_f) ae192_t4_ccm64_decrypt; |
| break; |
| case 256: |
| cctx->str = enc ? (ccm128_f) aes256_t4_ccm64_encrypt : |
| (ccm128_f) ae256_t4_ccm64_decrypt; |
| break; |
| default: |
| return 0; |
| } |
| # endif |
| cctx->key_set = 1; |
| } |
| if (iv) { |
| memcpy(ctx->iv, iv, 15 - cctx->L); |
| cctx->iv_set = 1; |
| } |
| return 1; |
| } |
| |
| # define aes_t4_ccm_cipher aes_ccm_cipher |
| static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| |
| # ifndef OPENSSL_NO_OCB |
| static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_OCB_CTX *octx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| do { |
| /* |
| * We set both the encrypt and decrypt key here because decrypt |
| * needs both. We could possibly optimise to remove setting the |
| * decrypt for an encryption operation. |
| */ |
| aes_t4_set_encrypt_key(key, ctx->key_len * 8, &octx->ksenc); |
| aes_t4_set_decrypt_key(key, ctx->key_len * 8, &octx->ksdec); |
| if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc, &octx->ksdec, |
| (block128_f) aes_t4_encrypt, |
| (block128_f) aes_t4_decrypt)) |
| return 0; |
| } |
| while (0); |
| |
| /* |
| * If we have an iv we can set it directly, otherwise use saved IV. |
| */ |
| if (iv == NULL && octx->iv_set) |
| iv = octx->iv; |
| if (iv) { |
| if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| != 1) |
| return 0; |
| octx->iv_set = 1; |
| } |
| octx->key_set = 1; |
| } else { |
| /* If key set use IV, otherwise copy */ |
| if (octx->key_set) |
| CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| else |
| memcpy(octx->iv, iv, octx->ivlen); |
| octx->iv_set = 1; |
| } |
| return 1; |
| } |
| |
| # define aes_t4_ocb_cipher aes_ocb_cipher |
| static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len); |
| # endif /* OPENSSL_NO_OCB */ |
| |
| # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ |
| nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aes_t4_init_key, \ |
| aes_t4_##mode##_cipher, \ |
| NULL, \ |
| sizeof(EVP_AES_KEY), \ |
| NULL,NULL,NULL,NULL }; \ |
| static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| nid##_##keylen##_##nmode,blocksize, \ |
| keylen/8,ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aes_init_key, \ |
| aes_##mode##_cipher, \ |
| NULL, \ |
| sizeof(EVP_AES_KEY), \ |
| NULL,NULL,NULL,NULL }; \ |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } |
| |
| # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ |
| nid##_##keylen##_##mode,blocksize, \ |
| (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aes_t4_##mode##_init_key, \ |
| aes_t4_##mode##_cipher, \ |
| aes_##mode##_cleanup, \ |
| sizeof(EVP_AES_##MODE##_CTX), \ |
| NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| nid##_##keylen##_##mode,blocksize, \ |
| (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aes_##mode##_init_key, \ |
| aes_##mode##_cipher, \ |
| aes_##mode##_cleanup, \ |
| sizeof(EVP_AES_##MODE##_CTX), \ |
| NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } |
| |
| # else |
| |
| # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aes_init_key, \ |
| aes_##mode##_cipher, \ |
| NULL, \ |
| sizeof(EVP_AES_KEY), \ |
| NULL,NULL,NULL,NULL }; \ |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| { return &aes_##keylen##_##mode; } |
| |
| # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| nid##_##keylen##_##mode,blocksize, \ |
| (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| flags|EVP_CIPH_##MODE##_MODE, \ |
| aes_##mode##_init_key, \ |
| aes_##mode##_cipher, \ |
| aes_##mode##_cleanup, \ |
| sizeof(EVP_AES_##MODE##_CTX), \ |
| NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| { return &aes_##keylen##_##mode; } |
| |
| # endif |
| |
| # if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__)) |
| # include "arm_arch.h" |
| # if __ARM_MAX_ARCH__>=7 |
| # if defined(BSAES_ASM) |
| # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) |
| # endif |
| # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES) |
| # define HWAES_set_encrypt_key aes_v8_set_encrypt_key |
| # define HWAES_set_decrypt_key aes_v8_set_decrypt_key |
| # define HWAES_encrypt aes_v8_encrypt |
| # define HWAES_decrypt aes_v8_decrypt |
| # define HWAES_cbc_encrypt aes_v8_cbc_encrypt |
| # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks |
| # endif |
| # endif |
| |
| # if defined(HWAES_CAPABLE) |
| int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits, |
| AES_KEY *key); |
| int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits, |
| AES_KEY *key); |
| void HWAES_encrypt(const unsigned char *in, unsigned char *out, |
| const AES_KEY *key); |
| void HWAES_decrypt(const unsigned char *in, unsigned char *out, |
| const AES_KEY *key); |
| void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| size_t length, const AES_KEY *key, |
| unsigned char *ivec, const int enc); |
| void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, |
| size_t len, const AES_KEY *key, |
| const unsigned char ivec[16]); |
| # endif |
| |
| # define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ |
| BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ |
| BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ |
| BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) |
| |
| static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| int ret, mode; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| mode = ctx->cipher->flags & EVP_CIPH_MODE; |
| if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| && !enc) |
| # ifdef HWAES_CAPABLE |
| if (HWAES_CAPABLE) { |
| ret = HWAES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f) HWAES_decrypt; |
| dat->stream.cbc = NULL; |
| # ifdef HWAES_cbc_encrypt |
| if (mode == EVP_CIPH_CBC_MODE) |
| dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; |
| # endif |
| } else |
| # endif |
| # ifdef BSAES_CAPABLE |
| if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { |
| ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f) AES_decrypt; |
| dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt; |
| } else |
| # endif |
| # ifdef VPAES_CAPABLE |
| if (VPAES_CAPABLE) { |
| ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f) vpaes_decrypt; |
| dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| (cbc128_f) vpaes_cbc_encrypt : NULL; |
| } else |
| # endif |
| { |
| ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f) AES_decrypt; |
| dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| (cbc128_f) AES_cbc_encrypt : NULL; |
| } else |
| # ifdef HWAES_CAPABLE |
| if (HWAES_CAPABLE) { |
| ret = HWAES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f) HWAES_encrypt; |
| dat->stream.cbc = NULL; |
| # ifdef HWAES_cbc_encrypt |
| if (mode == EVP_CIPH_CBC_MODE) |
| dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; |
| else |
| # endif |
| # ifdef HWAES_ctr32_encrypt_blocks |
| if (mode == EVP_CIPH_CTR_MODE) |
| dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; |
| else |
| # endif |
| (void)0; /* terminate potentially open 'else' */ |
| } else |
| # endif |
| # ifdef BSAES_CAPABLE |
| if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { |
| ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f) AES_encrypt; |
| dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; |
| } else |
| # endif |
| # ifdef VPAES_CAPABLE |
| if (VPAES_CAPABLE) { |
| ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f) vpaes_encrypt; |
| dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| (cbc128_f) vpaes_cbc_encrypt : NULL; |
| } else |
| # endif |
| { |
| ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f) AES_encrypt; |
| dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| (cbc128_f) AES_cbc_encrypt : NULL; |
| # ifdef AES_CTR_ASM |
| if (mode == EVP_CIPH_CTR_MODE) |
| dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt; |
| # endif |
| } |
| |
| if (ret < 0) { |
| EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| if (dat->stream.cbc) |
| (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv, ctx->encrypt); |
| else if (ctx->encrypt) |
| CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); |
| else |
| CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); |
| |
| return 1; |
| } |
| |
| static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| size_t bl = ctx->cipher->block_size; |
| size_t i; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| if (len < bl) |
| return 1; |
| |
| for (i = 0, len -= bl; i <= len; i += bl) |
| (*dat->block) (in + i, out + i, &dat->ks); |
| |
| return 1; |
| } |
| |
| static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, |
| ctx->iv, &ctx->num, dat->block); |
| return 1; |
| } |
| |
| static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, |
| ctx->iv, &ctx->num, ctx->encrypt, dat->block); |
| return 1; |
| } |
| |
| static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, |
| ctx->iv, &ctx->num, ctx->encrypt, dat->block); |
| return 1; |
| } |
| |
| static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| if (ctx->flags & EVP_CIPH_FLAG_LENGTH_BITS) { |
| CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, |
| ctx->iv, &ctx->num, ctx->encrypt, dat->block); |
| return 1; |
| } |
| |
| while (len >= MAXBITCHUNK) { |
| CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, |
| ctx->iv, &ctx->num, ctx->encrypt, dat->block); |
| len -= MAXBITCHUNK; |
| } |
| if (len) |
| CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, |
| ctx->iv, &ctx->num, ctx->encrypt, dat->block); |
| |
| return 1; |
| } |
| |
| static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| unsigned int num = ctx->num; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; |
| |
| if (dat->stream.ctr) |
| CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, |
| ctx->iv, ctx->buf, &num, dat->stream.ctr); |
| else |
| CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, |
| ctx->iv, ctx->buf, &num, dat->block); |
| ctx->num = (size_t)num; |
| return 1; |
| } |
| |
| BLOCK_CIPHER_generic_pack(NID_aes, 128, 0) |
| BLOCK_CIPHER_generic_pack(NID_aes, 192, 0) |
| BLOCK_CIPHER_generic_pack(NID_aes, 256, 0) |
| |
| static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) |
| { |
| EVP_AES_GCM_CTX *gctx = c->cipher_data; |
| OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); |
| if (gctx->iv != c->iv) |
| OPENSSL_free(gctx->iv); |
| return 1; |
| } |
| |
| /* increment counter (64-bit int) by 1 */ |
| static void ctr64_inc(unsigned char *counter) |
| { |
| int n = 8; |
| unsigned char c; |
| |
| do { |
| --n; |
| c = counter[n]; |
| ++c; |
| counter[n] = c; |
| if (c) |
| return; |
| } while (n); |
| } |
| |
| static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| { |
| EVP_AES_GCM_CTX *gctx = c->cipher_data; |
| switch (type) { |
| case EVP_CTRL_INIT: |
| gctx->key_set = 0; |
| gctx->iv_set = 0; |
| gctx->ivlen = c->cipher->iv_len; |
| gctx->iv = c->iv; |
| gctx->taglen = -1; |
| gctx->iv_gen = 0; |
| gctx->tls_aad_len = -1; |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_IVLEN: |
| if (arg <= 0) |
| return 0; |
| /* Allocate memory for IV if needed */ |
| if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { |
| if (gctx->iv != c->iv) |
| OPENSSL_free(gctx->iv); |
| gctx->iv = OPENSSL_malloc(arg); |
| if (!gctx->iv) |
| return 0; |
| } |
| gctx->ivlen = arg; |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_TAG: |
| if (arg <= 0 || arg > 16 || c->encrypt) |
| return 0; |
| memcpy(c->buf, ptr, arg); |
| gctx->taglen = arg; |
| return 1; |
| |
| case EVP_CTRL_GCM_GET_TAG: |
| if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) |
| return 0; |
| memcpy(ptr, c->buf, arg); |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_IV_FIXED: |
| /* Special case: -1 length restores whole IV */ |
| if (arg == -1) { |
| memcpy(gctx->iv, ptr, gctx->ivlen); |
| gctx->iv_gen = 1; |
| return 1; |
| } |
| /* |
| * Fixed field must be at least 4 bytes and invocation field at least |
| * 8. |
| */ |
| if ((arg < 4) || (gctx->ivlen - arg) < 8) |
| return 0; |
| if (arg) |
| memcpy(gctx->iv, ptr, arg); |
| if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) |
| return 0; |
| gctx->iv_gen = 1; |
| return 1; |
| |
| case EVP_CTRL_GCM_IV_GEN: |
| if (gctx->iv_gen == 0 || gctx->key_set == 0) |
| return 0; |
| CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
| if (arg <= 0 || arg > gctx->ivlen) |
| arg = gctx->ivlen; |
| memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| /* |
| * Invocation field will be at least 8 bytes in size and so no need |
| * to check wrap around or increment more than last 8 bytes. |
| */ |
| ctr64_inc(gctx->iv + gctx->ivlen - 8); |
| gctx->iv_set = 1; |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_IV_INV: |
| if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) |
| return 0; |
| memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| return 1; |
| |
| case EVP_CTRL_AEAD_TLS1_AAD: |
| /* Save the AAD for later use */ |
| if (arg != 13) |
| return 0; |
| memcpy(c->buf, ptr, arg); |
| gctx->tls_aad_len = arg; |
| { |
| unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; |
| /* Correct length for explicit IV */ |
| len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| /* If decrypting correct for tag too */ |
| if (!c->encrypt) |
| len -= EVP_GCM_TLS_TAG_LEN; |
| c->buf[arg - 2] = len >> 8; |
| c->buf[arg - 1] = len & 0xff; |
| } |
| /* Extra padding: tag appended to record */ |
| return EVP_GCM_TLS_TAG_LEN; |
| |
| case EVP_CTRL_COPY: |
| { |
| EVP_CIPHER_CTX *out = ptr; |
| EVP_AES_GCM_CTX *gctx_out = out->cipher_data; |
| if (gctx->gcm.key) { |
| if (gctx->gcm.key != &gctx->ks) |
| return 0; |
| gctx_out->gcm.key = &gctx_out->ks; |
| } |
| if (gctx->iv == c->iv) |
| gctx_out->iv = out->iv; |
| else { |
| gctx_out->iv = OPENSSL_malloc(gctx->ivlen); |
| if (!gctx_out->iv) |
| return 0; |
| memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); |
| } |
| return 1; |
| } |
| |
| default: |
| return -1; |
| |
| } |
| } |
| |
| static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_GCM_CTX *gctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| do { |
| # ifdef HWAES_CAPABLE |
| if (HWAES_CAPABLE) { |
| HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| (block128_f) HWAES_encrypt); |
| # ifdef HWAES_ctr32_encrypt_blocks |
| gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; |
| # else |
| gctx->ctr = NULL; |
| # endif |
| break; |
| } else |
| # endif |
| # ifdef BSAES_CAPABLE |
| if (BSAES_CAPABLE) { |
| AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| (block128_f) AES_encrypt); |
| gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; |
| break; |
| } else |
| # endif |
| # ifdef VPAES_CAPABLE |
| if (VPAES_CAPABLE) { |
| vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| (block128_f) vpaes_encrypt); |
| gctx->ctr = NULL; |
| break; |
| } else |
| # endif |
| (void)0; /* terminate potentially open 'else' */ |
| |
| AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| (block128_f) AES_encrypt); |
| # ifdef AES_CTR_ASM |
| gctx->ctr = (ctr128_f) AES_ctr32_encrypt; |
| # else |
| gctx->ctr = NULL; |
| # endif |
| } while (0); |
| |
| /* |
| * If we have an iv can set it directly, otherwise use saved IV. |
| */ |
| if (iv == NULL && gctx->iv_set) |
| iv = gctx->iv; |
| if (iv) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| } |
| gctx->key_set = 1; |
| } else { |
| /* If key set use IV, otherwise copy */ |
| if (gctx->key_set) |
| CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| else |
| memcpy(gctx->iv, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| gctx->iv_gen = 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Handle TLS GCM packet format. This consists of the last portion of the IV |
| * followed by the payload and finally the tag. On encrypt generate IV, |
| * encrypt payload and write the tag. On verify retrieve IV, decrypt payload |
| * and verify tag. |
| */ |
| |
| static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_GCM_CTX *gctx = ctx->cipher_data; |
| int rv = -1; |
| /* Encrypt/decrypt must be performed in place */ |
| if (out != in |
| || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) |
| return -1; |
| /* |
| * Set IV from start of buffer or generate IV and write to start of |
| * buffer. |
| */ |
| if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? |
| EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, |
| EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) |
| goto err; |
| /* Use saved AAD */ |
| if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) |
| goto err; |
| /* Fix buffer and length to point to payload */ |
| in += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| out += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| if (ctx->encrypt) { |
| /* Encrypt payload */ |
| if (gctx->ctr) { |
| size_t bulk = 0; |
| # if defined(AES_GCM_ASM) |
| if (len >= 32 && AES_GCM_ASM(gctx)) { |
| if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) |
| return -1; |
| |
| bulk = AES_gcm_encrypt(in, out, len, |
| gctx->gcm.key, |
| gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| gctx->gcm.len.u[1] += bulk; |
| } |
| # endif |
| if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, |
| in + bulk, |
| out + bulk, |
| len - bulk, gctx->ctr)) |
| goto err; |
| } else { |
| size_t bulk = 0; |
| # if defined(AES_GCM_ASM2) |
| if (len >= 32 && AES_GCM_ASM2(gctx)) { |
| if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) |
| return -1; |
| |
| bulk = AES_gcm_encrypt(in, out, len, |
| gctx->gcm.key, |
| gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| gctx->gcm.len.u[1] += bulk; |
| } |
| # endif |
| if (CRYPTO_gcm128_encrypt(&gctx->gcm, |
| in + bulk, out + bulk, len - bulk)) |
| goto err; |
| } |
| out += len; |
| /* Finally write tag */ |
| CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); |
| rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| } else { |
| /* Decrypt */ |
| if (gctx->ctr) { |
| size_t bulk = 0; |
| # if defined(AES_GCM_ASM) |
| if (len >= 16 && AES_GCM_ASM(gctx)) { |
| if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) |
| return -1; |
| |
| bulk = AES_gcm_decrypt(in, out, len, |
| gctx->gcm.key, |
| gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| gctx->gcm.len.u[1] += bulk; |
| } |
| # endif |
| if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, |
| in + bulk, |
| out + bulk, |
| len - bulk, gctx->ctr)) |
| goto err; |
| } else { |
| size_t bulk = 0; |
| # if defined(AES_GCM_ASM2) |
| if (len >= 16 && AES_GCM_ASM2(gctx)) { |
| if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) |
| return -1; |
| |
| bulk = AES_gcm_decrypt(in, out, len, |
| gctx->gcm.key, |
| gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| gctx->gcm.len.u[1] += bulk; |
| } |
| # endif |
| if (CRYPTO_gcm128_decrypt(&gctx->gcm, |
| in + bulk, out + bulk, len - bulk)) |
| goto err; |
| } |
| /* Retrieve tag */ |
| CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); |
| /* If tag mismatch wipe buffer */ |
| if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { |
| OPENSSL_cleanse(out, len); |
| goto err; |
| } |
| rv = len; |
| } |
| |
| err: |
| gctx->iv_set = 0; |
| gctx->tls_aad_len = -1; |
| return rv; |
| } |
| |
| static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_GCM_CTX *gctx = ctx->cipher_data; |
| /* If not set up, return error */ |
| if (!gctx->key_set) |
| return -1; |
| |
| if (gctx->tls_aad_len >= 0) |
| return aes_gcm_tls_cipher(ctx, out, in, len); |
| |
| if (!gctx->iv_set) |
| return -1; |
| if (in) { |
| if (out == NULL) { |
| if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) |
| return -1; |
| } else if (ctx->encrypt) { |
| if (gctx->ctr) { |
| size_t bulk = 0; |
| # if defined(AES_GCM_ASM) |
| if (len >= 32 && AES_GCM_ASM(gctx)) { |
| size_t res = (16 - gctx->gcm.mres) % 16; |
| |
| if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) |
| return -1; |
| |
| bulk = AES_gcm_encrypt(in + res, |
| out + res, len - res, |
| gctx->gcm.key, gctx->gcm.Yi.c, |
| gctx->gcm.Xi.u); |
| gctx->gcm.len.u[1] += bulk; |
| bulk += res; |
| } |
| # endif |
| if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, |
| in + bulk, |
| out + bulk, |
| len - bulk, gctx->ctr)) |
| return -1; |
| } else { |
| size_t bulk = 0; |
| # if defined(AES_GCM_ASM2) |
| if (len >= 32 && AES_GCM_ASM2(gctx)) { |
| size_t res = (16 - gctx->gcm.mres) % 16; |
| |
| if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) |
| return -1; |
| |
| bulk = AES_gcm_encrypt(in + res, |
| out + res, len - res, |
| gctx->gcm.key, gctx->gcm.Yi.c, |
| gctx->gcm.Xi.u); |
| gctx->gcm.len.u[1] += bulk; |
| bulk += res; |
| } |
| # endif |
| if (CRYPTO_gcm128_encrypt(&gctx->gcm, |
| in + bulk, out + bulk, len - bulk)) |
| return -1; |
| } |
| } else { |
| if (gctx->ctr) { |
| size_t bulk = 0; |
| # if defined(AES_GCM_ASM) |
| if (len >= 16 && AES_GCM_ASM(gctx)) { |
| size_t res = (16 - gctx->gcm.mres) % 16; |
| |
| if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) |
| return -1; |
| |
| bulk = AES_gcm_decrypt(in + res, |
| out + res, len - res, |
| gctx->gcm.key, |
| gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| gctx->gcm.len.u[1] += bulk; |
| bulk += res; |
| } |
| # endif |
| if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, |
| in + bulk, |
| out + bulk, |
| len - bulk, gctx->ctr)) |
| return -1; |
| } else { |
| size_t bulk = 0; |
| # if defined(AES_GCM_ASM2) |
| if (len >= 16 && AES_GCM_ASM2(gctx)) { |
| size_t res = (16 - gctx->gcm.mres) % 16; |
| |
| if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) |
| return -1; |
| |
| bulk = AES_gcm_decrypt(in + res, |
| out + res, len - res, |
| gctx->gcm.key, |
| gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| gctx->gcm.len.u[1] += bulk; |
| bulk += res; |
| } |
| # endif |
| if (CRYPTO_gcm128_decrypt(&gctx->gcm, |
| in + bulk, out + bulk, len - bulk)) |
| return -1; |
| } |
| } |
| return len; |
| } else { |
| if (!ctx->encrypt) { |
| if (gctx->taglen < 0) |
| return -1; |
| if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) |
| return -1; |
| gctx->iv_set = 0; |
| return 0; |
| } |
| CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); |
| gctx->taglen = 16; |
| /* Don't reuse the IV */ |
| gctx->iv_set = 0; |
| return 0; |
| } |
| |
| } |
| |
| # define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ |
| | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
| | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ |
| | EVP_CIPH_CUSTOM_COPY) |
| |
| BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, |
| EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, |
| EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, |
| EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| |
| static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| { |
| EVP_AES_XTS_CTX *xctx = c->cipher_data; |
| if (type == EVP_CTRL_COPY) { |
| EVP_CIPHER_CTX *out = ptr; |
| EVP_AES_XTS_CTX *xctx_out = out->cipher_data; |
| if (xctx->xts.key1) { |
| if (xctx->xts.key1 != &xctx->ks1) |
| return 0; |
| xctx_out->xts.key1 = &xctx_out->ks1; |
| } |
| if (xctx->xts.key2) { |
| if (xctx->xts.key2 != &xctx->ks2) |
| return 0; |
| xctx_out->xts.key2 = &xctx_out->ks2; |
| } |
| return 1; |
| } else if (type != EVP_CTRL_INIT) |
| return -1; |
| /* key1 and key2 are used as an indicator both key and IV are set */ |
| xctx->xts.key1 = NULL; |
| xctx->xts.key2 = NULL; |
| return 1; |
| } |
| |
| static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_XTS_CTX *xctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| |
| if (key) |
| do { |
| # ifdef AES_XTS_ASM |
| xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; |
| # else |
| xctx->stream = NULL; |
| # endif |
| /* key_len is two AES keys */ |
| # ifdef HWAES_CAPABLE |
| if (HWAES_CAPABLE) { |
| if (enc) { |
| HWAES_set_encrypt_key(key, ctx->key_len * 4, |
| &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) HWAES_encrypt; |
| } else { |
| HWAES_set_decrypt_key(key, ctx->key_len * 4, |
| &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) HWAES_decrypt; |
| } |
| |
| HWAES_set_encrypt_key(key + ctx->key_len / 2, |
| ctx->key_len * 4, &xctx->ks2.ks); |
| xctx->xts.block2 = (block128_f) HWAES_encrypt; |
| |
| xctx->xts.key1 = &xctx->ks1; |
| break; |
| } else |
| # endif |
| # ifdef BSAES_CAPABLE |
| if (BSAES_CAPABLE) |
| xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt; |
| else |
| # endif |
| # ifdef VPAES_CAPABLE |
| if (VPAES_CAPABLE) { |
| if (enc) { |
| vpaes_set_encrypt_key(key, ctx->key_len * 4, |
| &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) vpaes_encrypt; |
| } else { |
| vpaes_set_decrypt_key(key, ctx->key_len * 4, |
| &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) vpaes_decrypt; |
| } |
| |
| vpaes_set_encrypt_key(key + ctx->key_len / 2, |
| ctx->key_len * 4, &xctx->ks2.ks); |
| xctx->xts.block2 = (block128_f) vpaes_encrypt; |
| |
| xctx->xts.key1 = &xctx->ks1; |
| break; |
| } else |
| # endif |
| (void)0; /* terminate potentially open 'else' */ |
| |
| if (enc) { |
| AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) AES_encrypt; |
| } else { |
| AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); |
| xctx->xts.block1 = (block128_f) AES_decrypt; |
| } |
| |
| AES_set_encrypt_key(key + ctx->key_len / 2, |
| ctx->key_len * 4, &xctx->ks2.ks); |
| xctx->xts.block2 = (block128_f) AES_encrypt; |
| |
| xctx->xts.key1 = &xctx->ks1; |
| } while (0); |
| |
| if (iv) { |
| xctx->xts.key2 = &xctx->ks2; |
| memcpy(ctx->iv, iv, 16); |
| } |
| |
| return 1; |
| } |
| |
| static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_XTS_CTX *xctx = ctx->cipher_data; |
| if (!xctx->xts.key1 || !xctx->xts.key2) |
| return 0; |
| if (!out || !in || len < AES_BLOCK_SIZE) |
| return 0; |
| if (xctx->stream) |
| (*xctx->stream) (in, out, len, |
| xctx->xts.key1, xctx->xts.key2, ctx->iv); |
| else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, |
| ctx->encrypt)) |
| return 0; |
| return 1; |
| } |
| |
| # define aes_xts_cleanup NULL |
| |
| # define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ |
| | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ |
| | EVP_CIPH_CUSTOM_COPY) |
| |
| BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS) |
| BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS) |
| |
| static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| { |
| EVP_AES_CCM_CTX *cctx = c->cipher_data; |
| switch (type) { |
| case EVP_CTRL_INIT: |
| cctx->key_set = 0; |
| cctx->iv_set = 0; |
| cctx->L = 8; |
| cctx->M = 12; |
| cctx->tag_set = 0; |
| cctx->len_set = 0; |
| return 1; |
| |
| case EVP_CTRL_CCM_SET_IVLEN: |
| arg = 15 - arg; |
| case EVP_CTRL_CCM_SET_L: |
| if (arg < 2 || arg > 8) |
| return 0; |
| cctx->L = arg; |
| return 1; |
| |
| case EVP_CTRL_CCM_SET_TAG: |
| if ((arg & 1) || arg < 4 || arg > 16) |
| return 0; |
| if ((c->encrypt && ptr) || (!c->encrypt && !ptr)) |
| return 0; |
| if (ptr) { |
| cctx->tag_set = 1; |
| memcpy(c->buf, ptr, arg); |
| } |
| cctx->M = arg; |
| return 1; |
| |
| case EVP_CTRL_CCM_GET_TAG: |
| if (!c->encrypt || !cctx->tag_set) |
| return 0; |
| if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) |
| return 0; |
| cctx->tag_set = 0; |
| cctx->iv_set = 0; |
| cctx->len_set = 0; |
| return 1; |
| |
| case EVP_CTRL_COPY: |
| { |
| EVP_CIPHER_CTX *out = ptr; |
| EVP_AES_CCM_CTX *cctx_out = out->cipher_data; |
| if (cctx->ccm.key) { |
| if (cctx->ccm.key != &cctx->ks) |
| return 0; |
| cctx_out->ccm.key = &cctx_out->ks; |
| } |
| return 1; |
| } |
| |
| default: |
| return -1; |
| |
| } |
| } |
| |
| static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_CCM_CTX *cctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) |
| do { |
| # ifdef HWAES_CAPABLE |
| if (HWAES_CAPABLE) { |
| HWAES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); |
| |
| CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| &cctx->ks, (block128_f) HWAES_encrypt); |
| cctx->str = NULL; |
| cctx->key_set = 1; |
| break; |
| } else |
| # endif |
| # ifdef VPAES_CAPABLE |
| if (VPAES_CAPABLE) { |
| vpaes_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); |
| CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| &cctx->ks, (block128_f) vpaes_encrypt); |
| cctx->str = NULL; |
| cctx->key_set = 1; |
| break; |
| } |
| # endif |
| AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); |
| CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| &cctx->ks, (block128_f) AES_encrypt); |
| cctx->str = NULL; |
| cctx->key_set = 1; |
| } while (0); |
| if (iv) { |
| memcpy(ctx->iv, iv, 15 - cctx->L); |
| cctx->iv_set = 1; |
| } |
| return 1; |
| } |
| |
| static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_CCM_CTX *cctx = ctx->cipher_data; |
| CCM128_CONTEXT *ccm = &cctx->ccm; |
| /* If not set up, return error */ |
| if (!cctx->iv_set && !cctx->key_set) |
| return -1; |
| if (!ctx->encrypt && !cctx->tag_set) |
| return -1; |
| if (!out) { |
| if (!in) { |
| if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) |
| return -1; |
| cctx->len_set = 1; |
| return len; |
| } |
| /* If have AAD need message length */ |
| if (!cctx->len_set && len) |
| return -1; |
| CRYPTO_ccm128_aad(ccm, in, len); |
| return len; |
| } |
| /* EVP_*Final() doesn't return any data */ |
| if (!in) |
| return 0; |
| /* If not set length yet do it */ |
| if (!cctx->len_set) { |
| if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) |
| return -1; |
| cctx->len_set = 1; |
| } |
| if (ctx->encrypt) { |
| if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, |
| cctx->str) : |
| CRYPTO_ccm128_encrypt(ccm, in, out, len)) |
| return -1; |
| cctx->tag_set = 1; |
| return len; |
| } else { |
| int rv = -1; |
| if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, |
| cctx->str) : |
| !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { |
| unsigned char tag[16]; |
| if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { |
| if (!memcmp(tag, ctx->buf, cctx->M)) |
| rv = len; |
| } |
| } |
| if (rv == -1) |
| OPENSSL_cleanse(out, len); |
| cctx->iv_set = 0; |
| cctx->tag_set = 0; |
| cctx->len_set = 0; |
| return rv; |
| } |
| |
| } |
| |
| # define aes_ccm_cleanup NULL |
| |
| BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, CUSTOM_FLAGS) |
| BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, CUSTOM_FLAGS) |
| BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, CUSTOM_FLAGS) |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| /* Indicates if IV has been set */ |
| unsigned char *iv; |
| } EVP_AES_WRAP_CTX; |
| |
| static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_WRAP_CTX *wctx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| if (ctx->encrypt) |
| AES_set_encrypt_key(key, ctx->key_len * 8, &wctx->ks.ks); |
| else |
| AES_set_decrypt_key(key, ctx->key_len * 8, &wctx->ks.ks); |
| if (!iv) |
| wctx->iv = NULL; |
| } |
| if (iv) { |
| memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| wctx->iv = ctx->iv; |
| } |
| return 1; |
| } |
| |
| static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inlen) |
| { |
| EVP_AES_WRAP_CTX *wctx = ctx->cipher_data; |
| size_t rv; |
| /* AES wrap with padding has IV length of 4, without padding 8 */ |
| int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4; |
| /* No final operation so always return zero length */ |
| if (!in) |
| return 0; |
| /* Input length must always be non-zero */ |
| if (!inlen) |
| return -1; |
| /* If decrypting need at least 16 bytes and multiple of 8 */ |
| if (!ctx->encrypt && (inlen < 16 || inlen & 0x7)) |
| return -1; |
| /* If not padding input must be multiple of 8 */ |
| if (!pad && inlen & 0x7) |
| return -1; |
| if (!out) { |
| if (ctx->encrypt) { |
| /* If padding round up to multiple of 8 */ |
| if (pad) |
| inlen = (inlen + 7) / 8 * 8; |
| /* 8 byte prefix */ |
| return inlen + 8; |
| } else { |
| /* |
| * If not padding output will be exactly 8 bytes smaller than |
| * input. If padding it will be at least 8 bytes smaller but we |
| * don't know how much. |
| */ |
| return inlen - 8; |
| } |
| } |
| if (pad) { |
| if (ctx->encrypt) |
| rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv, |
| out, in, inlen, |
| (block128_f) AES_encrypt); |
| else |
| rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv, |
| out, in, inlen, |
| (block128_f) AES_decrypt); |
| } else { |
| if (ctx->encrypt) |
| rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, |
| out, in, inlen, (block128_f) AES_encrypt); |
| else |
| rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, |
| out, in, inlen, (block128_f) AES_decrypt); |
| } |
| return rv ? (int)rv : -1; |
| } |
| |
| # define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \ |
| | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
| | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) |
| |
| static const EVP_CIPHER aes_128_wrap = { |
| NID_id_aes128_wrap, |
| 8, 16, 8, WRAP_FLAGS, |
| aes_wrap_init_key, aes_wrap_cipher, |
| NULL, |
| sizeof(EVP_AES_WRAP_CTX), |
| NULL, NULL, NULL, NULL |
| }; |
| |
| const EVP_CIPHER *EVP_aes_128_wrap(void) |
| { |
| return &aes_128_wrap; |
| } |
| |
| static const EVP_CIPHER aes_192_wrap = { |
| NID_id_aes192_wrap, |
| 8, 24, 8, WRAP_FLAGS, |
| aes_wrap_init_key, aes_wrap_cipher, |
| NULL, |
| sizeof(EVP_AES_WRAP_CTX), |
| NULL, NULL, NULL, NULL |
| }; |
| |
| const EVP_CIPHER *EVP_aes_192_wrap(void) |
| { |
| return &aes_192_wrap; |
| } |
| |
| static const EVP_CIPHER aes_256_wrap = { |
| NID_id_aes256_wrap, |
| 8, 32, 8, WRAP_FLAGS, |
| aes_wrap_init_key, aes_wrap_cipher, |
| NULL, |
| sizeof(EVP_AES_WRAP_CTX), |
| NULL, NULL, NULL, NULL |
| }; |
| |
| const EVP_CIPHER *EVP_aes_256_wrap(void) |
| { |
| return &aes_256_wrap; |
| } |
| |
| static const EVP_CIPHER aes_128_wrap_pad = { |
| NID_id_aes128_wrap_pad, |
| 8, 16, 4, WRAP_FLAGS, |
| aes_wrap_init_key, aes_wrap_cipher, |
| NULL, |
| sizeof(EVP_AES_WRAP_CTX), |
| NULL, NULL, NULL, NULL |
| }; |
| |
| const EVP_CIPHER *EVP_aes_128_wrap_pad(void) |
| { |
| return &aes_128_wrap_pad; |
| } |
| |
| static const EVP_CIPHER aes_192_wrap_pad = { |
| NID_id_aes192_wrap_pad, |
| 8, 24, 4, WRAP_FLAGS, |
| aes_wrap_init_key, aes_wrap_cipher, |
| NULL, |
| sizeof(EVP_AES_WRAP_CTX), |
| NULL, NULL, NULL, NULL |
| }; |
| |
| const EVP_CIPHER *EVP_aes_192_wrap_pad(void) |
| { |
| return &aes_192_wrap_pad; |
| } |
| |
| static const EVP_CIPHER aes_256_wrap_pad = { |
| NID_id_aes256_wrap_pad, |
| 8, 32, 4, WRAP_FLAGS, |
| aes_wrap_init_key, aes_wrap_cipher, |
| NULL, |
| sizeof(EVP_AES_WRAP_CTX), |
| NULL, NULL, NULL, NULL |
| }; |
| |
| const EVP_CIPHER *EVP_aes_256_wrap_pad(void) |
| { |
| return &aes_256_wrap_pad; |
| } |
| |
| # ifndef OPENSSL_NO_OCB |
| static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| { |
| EVP_AES_OCB_CTX *octx = c->cipher_data; |
| EVP_CIPHER_CTX *newc; |
| EVP_AES_OCB_CTX *new_octx; |
| |
| switch (type) { |
| case EVP_CTRL_INIT: |
| octx->key_set = 0; |
| octx->iv_set = 0; |
| octx->ivlen = c->cipher->iv_len; |
| octx->iv = c->iv; |
| octx->taglen = 16; |
| octx->data_buf_len = 0; |
| octx->aad_buf_len = 0; |
| return 1; |
| |
| case EVP_CTRL_SET_IVLEN: |
| /* IV len must be 1 to 15 */ |
| if (arg <= 0 || arg > 15) |
| return 0; |
| |
| octx->ivlen = arg; |
| return 1; |
| |
| case EVP_CTRL_OCB_SET_TAGLEN: |
| /* Tag len must be 0 to 16 */ |
| if (arg < 0 || arg > 16) |
| return 0; |
| |
| octx->taglen = arg; |
| return 1; |
| |
| case EVP_CTRL_SET_TAG: |
| if (arg != octx->taglen || c->encrypt) |
| return 0; |
| memcpy(octx->tag, ptr, arg); |
| return 1; |
| |
| case EVP_CTRL_GET_TAG: |
| if (arg != octx->taglen || !c->encrypt) |
| return 0; |
| |
| memcpy(ptr, octx->tag, arg); |
| return 1; |
| |
| case EVP_CTRL_COPY: |
| newc = (EVP_CIPHER_CTX *)ptr; |
| new_octx = newc->cipher_data; |
| return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb, |
| &new_octx->ksenc, &new_octx->ksdec); |
| |
| default: |
| return -1; |
| |
| } |
| } |
| |
| static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_OCB_CTX *octx = ctx->cipher_data; |
| if (!iv && !key) |
| return 1; |
| if (key) { |
| do { |
| /* |
| * We set both the encrypt and decrypt key here because decrypt |
| * needs both. We could possibly optimise to remove setting the |
| * decrypt for an encryption operation. |
| */ |
| # ifdef VPAES_CAPABLE |
| if (VPAES_CAPABLE) { |
| vpaes_set_encrypt_key(key, ctx->key_len * 8, &octx->ksenc); |
| vpaes_set_decrypt_key(key, ctx->key_len * 8, &octx->ksdec); |
| if (!CRYPTO_ocb128_init |
| (&octx->ocb, &octx->ksenc, &octx->ksdec, |
| (block128_f) vpaes_encrypt, (block128_f) vpaes_decrypt)) |
| return 0; |
| break; |
| } |
| # endif |
| AES_set_encrypt_key(key, ctx->key_len * 8, &octx->ksenc); |
| AES_set_decrypt_key(key, ctx->key_len * 8, &octx->ksdec); |
| if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc, &octx->ksdec, |
| (block128_f) AES_encrypt, |
| (block128_f) AES_decrypt)) |
| return 0; |
| } |
| while (0); |
| |
| /* |
| * If we have an iv we can set it directly, otherwise use saved IV. |
| */ |
| if (iv == NULL && octx->iv_set) |
| iv = octx->iv; |
| if (iv) { |
| if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| != 1) |
| return 0; |
| octx->iv_set = 1; |
| } |
| octx->key_set = 1; |
| } else { |
| /* If key set use IV, otherwise copy */ |
| if (octx->key_set) |
| CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| else |
| memcpy(octx->iv, iv, octx->ivlen); |
| octx->iv_set = 1; |
| } |
| return 1; |
| } |
| |
| static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| unsigned char *buf; |
| int *buf_len; |
| int written_len = 0; |
| size_t trailing_len; |
| EVP_AES_OCB_CTX *octx = ctx->cipher_data; |
| |
| /* If IV or Key not set then return error */ |
| if (!octx->iv_set) |
| return -1; |
| |
| if (!octx->key_set) |
| return -1; |
| |
| if (in) { |
| /* |
| * Need to ensure we are only passing full blocks to low level OCB |
| * routines. We do it here rather than in EVP_EncryptUpdate/ |
| * EVP_DecryptUpdate because we need to pass full blocks of AAD too |
| * and those routines don't support that |
| */ |
| |
| /* Are we dealing with AAD or normal data here? */ |
| if (out == NULL) { |
| buf = octx->aad_buf; |
| buf_len = &(octx->aad_buf_len); |
| } else { |
| buf = octx->data_buf; |
| buf_len = &(octx->data_buf_len); |
| } |
| |
| /* |
| * If we've got a partially filled buffer from a previous call then |
| * use that data first |
| */ |
| if (*buf_len) { |
| unsigned int remaining; |
| |
| remaining = 16 - (*buf_len); |
| if (remaining > len) { |
| memcpy(buf + (*buf_len), in, len); |
| *(buf_len) += len; |
| return 0; |
| } |
| memcpy(buf + (*buf_len), in, remaining); |
| |
| /* |
| * If we get here we've filled the buffer, so process it |
| */ |
| len -= remaining; |
| in += remaining; |
| if (out == NULL) { |
| if (!CRYPTO_ocb128_aad(&octx->ocb, buf, 16)) |
| return -1; |
| } else if (ctx->encrypt) { |
| if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out, 16)) |
| return -1; |
| } else { |
| if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out, 16)) |
| return -1; |
| } |
| written_len = 16; |
| *buf_len = 0; |
| } |
| |
| /* Do we have a partial block to handle at the end? */ |
| trailing_len = len % 16; |
| |
| /* |
| * If we've got some full blocks to handle, then process these first |
| */ |
| if (len != trailing_len) { |
| if (out == NULL) { |
| if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len)) |
| return -1; |
| } else if (ctx->encrypt) { |
| if (!CRYPTO_ocb128_encrypt |
| (&octx->ocb, in, out, len - trailing_len)) |
| return -1; |
| } else { |
| if (!CRYPTO_ocb128_decrypt |
| (&octx->ocb, in, out, len - trailing_len)) |
| return -1; |
| } |
| written_len += len - trailing_len; |
| in += len - trailing_len; |
| } |
| |
| /* Handle any trailing partial block */ |
| if (trailing_len) { |
| memcpy(buf, in, trailing_len); |
| *buf_len = trailing_len; |
| } |
| |
| return written_len; |
| } else { |
| /* |
| * First of all empty the buffer of any partial block that we might |
| * have been provided - both for data and AAD |
| */ |
| if (octx->data_buf_len) { |
| if (ctx->encrypt) { |
| if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out, |
| octx->data_buf_len)) |
| return -1; |
| } else { |
| if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out, |
| octx->data_buf_len)) |
| return -1; |
| } |
| written_len = octx->data_buf_len; |
| octx->data_buf_len = 0; |
| } |
| if (octx->aad_buf_len) { |
| if (!CRYPTO_ocb128_aad |
| (&octx->ocb, octx->aad_buf, octx->aad_buf_len)) |
| return -1; |
| octx->aad_buf_len = 0; |
| } |
| /* If decrypting then verify */ |
| if (!ctx->encrypt) { |
| if (octx->taglen < 0) |
| return -1; |
| if (CRYPTO_ocb128_finish(&octx->ocb, |
| octx->tag, octx->taglen) != 0) |
| return -1; |
| octx->iv_set = 0; |
| return written_len; |
| } |
| /* If encrypting then just get the tag */ |
| if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1) |
| return -1; |
| /* Don't reuse the IV */ |
| octx->iv_set = 0; |
| return written_len; |
| } |
| } |
| |
| static int aes_ocb_cleanup(EVP_CIPHER_CTX *c) |
| { |
| EVP_AES_OCB_CTX *octx = c->cipher_data; |
| CRYPTO_ocb128_cleanup(&octx->ocb); |
| return 1; |
| } |
| |
| BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB, CUSTOM_FLAGS) |
| BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB, CUSTOM_FLAGS) |
| BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB, CUSTOM_FLAGS) |
| # endif /* OPENSSL_NO_OCB */ |
| #endif |