| /* |
| * Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/crypto.h> |
| #include "modes_lcl.h" |
| #include <string.h> |
| |
| #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) |
| /* redefine, because alignment is ensured */ |
| # undef GETU32 |
| # define GETU32(p) BSWAP4(*(const u32 *)(p)) |
| # undef PUTU32 |
| # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) |
| #endif |
| |
| #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) |
| #define REDUCE1BIT(V) do { \ |
| if (sizeof(size_t)==8) { \ |
| u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ |
| V.lo = (V.hi<<63)|(V.lo>>1); \ |
| V.hi = (V.hi>>1 )^T; \ |
| } \ |
| else { \ |
| u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ |
| V.lo = (V.hi<<63)|(V.lo>>1); \ |
| V.hi = (V.hi>>1 )^((u64)T<<32); \ |
| } \ |
| } while(0) |
| |
| /*- |
| * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should |
| * never be set to 8. 8 is effectively reserved for testing purposes. |
| * TABLE_BITS>1 are lookup-table-driven implementations referred to as |
| * "Shoup's" in GCM specification. In other words OpenSSL does not cover |
| * whole spectrum of possible table driven implementations. Why? In |
| * non-"Shoup's" case memory access pattern is segmented in such manner, |
| * that it's trivial to see that cache timing information can reveal |
| * fair portion of intermediate hash value. Given that ciphertext is |
| * always available to attacker, it's possible for him to attempt to |
| * deduce secret parameter H and if successful, tamper with messages |
| * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's |
| * not as trivial, but there is no reason to believe that it's resistant |
| * to cache-timing attack. And the thing about "8-bit" implementation is |
| * that it consumes 16 (sixteen) times more memory, 4KB per individual |
| * key + 1KB shared. Well, on pros side it should be twice as fast as |
| * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version |
| * was observed to run ~75% faster, closer to 100% for commercial |
| * compilers... Yet "4-bit" procedure is preferred, because it's |
| * believed to provide better security-performance balance and adequate |
| * all-round performance. "All-round" refers to things like: |
| * |
| * - shorter setup time effectively improves overall timing for |
| * handling short messages; |
| * - larger table allocation can become unbearable because of VM |
| * subsystem penalties (for example on Windows large enough free |
| * results in VM working set trimming, meaning that consequent |
| * malloc would immediately incur working set expansion); |
| * - larger table has larger cache footprint, which can affect |
| * performance of other code paths (not necessarily even from same |
| * thread in Hyper-Threading world); |
| * |
| * Value of 1 is not appropriate for performance reasons. |
| */ |
| #if TABLE_BITS==8 |
| |
| static void gcm_init_8bit(u128 Htable[256], u64 H[2]) |
| { |
| int i, j; |
| u128 V; |
| |
| Htable[0].hi = 0; |
| Htable[0].lo = 0; |
| V.hi = H[0]; |
| V.lo = H[1]; |
| |
| for (Htable[128] = V, i = 64; i > 0; i >>= 1) { |
| REDUCE1BIT(V); |
| Htable[i] = V; |
| } |
| |
| for (i = 2; i < 256; i <<= 1) { |
| u128 *Hi = Htable + i, H0 = *Hi; |
| for (j = 1; j < i; ++j) { |
| Hi[j].hi = H0.hi ^ Htable[j].hi; |
| Hi[j].lo = H0.lo ^ Htable[j].lo; |
| } |
| } |
| } |
| |
| static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) |
| { |
| u128 Z = { 0, 0 }; |
| const u8 *xi = (const u8 *)Xi + 15; |
| size_t rem, n = *xi; |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| static const size_t rem_8bit[256] = { |
| PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), |
| PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), |
| PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), |
| PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), |
| PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), |
| PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), |
| PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), |
| PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), |
| PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), |
| PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), |
| PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), |
| PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), |
| PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), |
| PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), |
| PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), |
| PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), |
| PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), |
| PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), |
| PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), |
| PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), |
| PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), |
| PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), |
| PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), |
| PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), |
| PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), |
| PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), |
| PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), |
| PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), |
| PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), |
| PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), |
| PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), |
| PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), |
| PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), |
| PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), |
| PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), |
| PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), |
| PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), |
| PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), |
| PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), |
| PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), |
| PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), |
| PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), |
| PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), |
| PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), |
| PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), |
| PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), |
| PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), |
| PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), |
| PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), |
| PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), |
| PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), |
| PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), |
| PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), |
| PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), |
| PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), |
| PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), |
| PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), |
| PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), |
| PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), |
| PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), |
| PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), |
| PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), |
| PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), |
| PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) |
| }; |
| |
| while (1) { |
| Z.hi ^= Htable[n].hi; |
| Z.lo ^= Htable[n].lo; |
| |
| if ((u8 *)Xi == xi) |
| break; |
| |
| n = *(--xi); |
| |
| rem = (size_t)Z.lo & 0xff; |
| Z.lo = (Z.hi << 56) | (Z.lo >> 8); |
| Z.hi = (Z.hi >> 8); |
| if (sizeof(size_t) == 8) |
| Z.hi ^= rem_8bit[rem]; |
| else |
| Z.hi ^= (u64)rem_8bit[rem] << 32; |
| } |
| |
| if (is_endian.little) { |
| # ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| # else |
| u8 *p = (u8 *)Xi; |
| u32 v; |
| v = (u32)(Z.hi >> 32); |
| PUTU32(p, v); |
| v = (u32)(Z.hi); |
| PUTU32(p + 4, v); |
| v = (u32)(Z.lo >> 32); |
| PUTU32(p + 8, v); |
| v = (u32)(Z.lo); |
| PUTU32(p + 12, v); |
| # endif |
| } else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } |
| |
| # define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) |
| |
| #elif TABLE_BITS==4 |
| |
| static void gcm_init_4bit(u128 Htable[16], u64 H[2]) |
| { |
| u128 V; |
| # if defined(OPENSSL_SMALL_FOOTPRINT) |
| int i; |
| # endif |
| |
| Htable[0].hi = 0; |
| Htable[0].lo = 0; |
| V.hi = H[0]; |
| V.lo = H[1]; |
| |
| # if defined(OPENSSL_SMALL_FOOTPRINT) |
| for (Htable[8] = V, i = 4; i > 0; i >>= 1) { |
| REDUCE1BIT(V); |
| Htable[i] = V; |
| } |
| |
| for (i = 2; i < 16; i <<= 1) { |
| u128 *Hi = Htable + i; |
| int j; |
| for (V = *Hi, j = 1; j < i; ++j) { |
| Hi[j].hi = V.hi ^ Htable[j].hi; |
| Hi[j].lo = V.lo ^ Htable[j].lo; |
| } |
| } |
| # else |
| Htable[8] = V; |
| REDUCE1BIT(V); |
| Htable[4] = V; |
| REDUCE1BIT(V); |
| Htable[2] = V; |
| REDUCE1BIT(V); |
| Htable[1] = V; |
| Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; |
| V = Htable[4]; |
| Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; |
| Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; |
| Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; |
| V = Htable[8]; |
| Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; |
| Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; |
| Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; |
| Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; |
| Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; |
| Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; |
| Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; |
| # endif |
| # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) |
| /* |
| * ARM assembler expects specific dword order in Htable. |
| */ |
| { |
| int j; |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| |
| if (is_endian.little) |
| for (j = 0; j < 16; ++j) { |
| V = Htable[j]; |
| Htable[j].hi = V.lo; |
| Htable[j].lo = V.hi; |
| } else |
| for (j = 0; j < 16; ++j) { |
| V = Htable[j]; |
| Htable[j].hi = V.lo << 32 | V.lo >> 32; |
| Htable[j].lo = V.hi << 32 | V.hi >> 32; |
| } |
| } |
| # endif |
| } |
| |
| # ifndef GHASH_ASM |
| static const size_t rem_4bit[16] = { |
| PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), |
| PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), |
| PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), |
| PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) |
| }; |
| |
| static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) |
| { |
| u128 Z; |
| int cnt = 15; |
| size_t rem, nlo, nhi; |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| |
| nlo = ((const u8 *)Xi)[15]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| Z.hi = Htable[nlo].hi; |
| Z.lo = Htable[nlo].lo; |
| |
| while (1) { |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) |
| Z.hi ^= rem_4bit[rem]; |
| else |
| Z.hi ^= (u64)rem_4bit[rem] << 32; |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| |
| if (--cnt < 0) |
| break; |
| |
| nlo = ((const u8 *)Xi)[cnt]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) |
| Z.hi ^= rem_4bit[rem]; |
| else |
| Z.hi ^= (u64)rem_4bit[rem] << 32; |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| } |
| |
| if (is_endian.little) { |
| # ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| # else |
| u8 *p = (u8 *)Xi; |
| u32 v; |
| v = (u32)(Z.hi >> 32); |
| PUTU32(p, v); |
| v = (u32)(Z.hi); |
| PUTU32(p + 4, v); |
| v = (u32)(Z.lo >> 32); |
| PUTU32(p + 8, v); |
| v = (u32)(Z.lo); |
| PUTU32(p + 12, v); |
| # endif |
| } else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } |
| |
| # if !defined(OPENSSL_SMALL_FOOTPRINT) |
| /* |
| * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for |
| * details... Compiler-generated code doesn't seem to give any |
| * performance improvement, at least not on x86[_64]. It's here |
| * mostly as reference and a placeholder for possible future |
| * non-trivial optimization[s]... |
| */ |
| static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], |
| const u8 *inp, size_t len) |
| { |
| u128 Z; |
| int cnt; |
| size_t rem, nlo, nhi; |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| |
| # if 1 |
| do { |
| cnt = 15; |
| nlo = ((const u8 *)Xi)[15]; |
| nlo ^= inp[15]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| Z.hi = Htable[nlo].hi; |
| Z.lo = Htable[nlo].lo; |
| |
| while (1) { |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) |
| Z.hi ^= rem_4bit[rem]; |
| else |
| Z.hi ^= (u64)rem_4bit[rem] << 32; |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| |
| if (--cnt < 0) |
| break; |
| |
| nlo = ((const u8 *)Xi)[cnt]; |
| nlo ^= inp[cnt]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) |
| Z.hi ^= rem_4bit[rem]; |
| else |
| Z.hi ^= (u64)rem_4bit[rem] << 32; |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| } |
| # else |
| /* |
| * Extra 256+16 bytes per-key plus 512 bytes shared tables |
| * [should] give ~50% improvement... One could have PACK()-ed |
| * the rem_8bit even here, but the priority is to minimize |
| * cache footprint... |
| */ |
| u128 Hshr4[16]; /* Htable shifted right by 4 bits */ |
| u8 Hshl4[16]; /* Htable shifted left by 4 bits */ |
| static const unsigned short rem_8bit[256] = { |
| 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, |
| 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, |
| 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, |
| 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, |
| 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, |
| 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, |
| 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, |
| 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, |
| 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, |
| 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, |
| 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, |
| 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, |
| 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, |
| 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, |
| 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, |
| 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, |
| 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, |
| 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, |
| 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, |
| 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, |
| 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, |
| 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, |
| 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, |
| 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, |
| 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, |
| 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, |
| 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, |
| 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, |
| 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, |
| 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, |
| 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, |
| 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE |
| }; |
| /* |
| * This pre-processing phase slows down procedure by approximately |
| * same time as it makes each loop spin faster. In other words |
| * single block performance is approximately same as straightforward |
| * "4-bit" implementation, and then it goes only faster... |
| */ |
| for (cnt = 0; cnt < 16; ++cnt) { |
| Z.hi = Htable[cnt].hi; |
| Z.lo = Htable[cnt].lo; |
| Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4); |
| Hshr4[cnt].hi = (Z.hi >> 4); |
| Hshl4[cnt] = (u8)(Z.lo << 4); |
| } |
| |
| do { |
| for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) { |
| nlo = ((const u8 *)Xi)[cnt]; |
| nlo ^= inp[cnt]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| |
| rem = (size_t)Z.lo & 0xff; |
| |
| Z.lo = (Z.hi << 56) | (Z.lo >> 8); |
| Z.hi = (Z.hi >> 8); |
| |
| Z.hi ^= Hshr4[nhi].hi; |
| Z.lo ^= Hshr4[nhi].lo; |
| Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48; |
| } |
| |
| nlo = ((const u8 *)Xi)[0]; |
| nlo ^= inp[0]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| |
| rem = (size_t)Z.lo & 0xf; |
| |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48; |
| # endif |
| |
| if (is_endian.little) { |
| # ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| # else |
| u8 *p = (u8 *)Xi; |
| u32 v; |
| v = (u32)(Z.hi >> 32); |
| PUTU32(p, v); |
| v = (u32)(Z.hi); |
| PUTU32(p + 4, v); |
| v = (u32)(Z.lo >> 32); |
| PUTU32(p + 8, v); |
| v = (u32)(Z.lo); |
| PUTU32(p + 12, v); |
| # endif |
| } else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } while (inp += 16, len -= 16); |
| } |
| # endif |
| # else |
| void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| # endif |
| |
| # define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) |
| # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) |
| # define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) |
| /* |
| * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing |
| * effect. In other words idea is to hash data while it's still in L1 cache |
| * after encryption pass... |
| */ |
| # define GHASH_CHUNK (3*1024) |
| # endif |
| |
| #else /* TABLE_BITS */ |
| |
| static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) |
| { |
| u128 V, Z = { 0, 0 }; |
| long X; |
| int i, j; |
| const long *xi = (const long *)Xi; |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| |
| V.hi = H[0]; /* H is in host byte order, no byte swapping */ |
| V.lo = H[1]; |
| |
| for (j = 0; j < 16 / sizeof(long); ++j) { |
| if (is_endian.little) { |
| if (sizeof(long) == 8) { |
| # ifdef BSWAP8 |
| X = (long)(BSWAP8(xi[j])); |
| # else |
| const u8 *p = (const u8 *)(xi + j); |
| X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4)); |
| # endif |
| } else { |
| const u8 *p = (const u8 *)(xi + j); |
| X = (long)GETU32(p); |
| } |
| } else |
| X = xi[j]; |
| |
| for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) { |
| u64 M = (u64)(X >> (8 * sizeof(long) - 1)); |
| Z.hi ^= V.hi & M; |
| Z.lo ^= V.lo & M; |
| |
| REDUCE1BIT(V); |
| } |
| } |
| |
| if (is_endian.little) { |
| # ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| # else |
| u8 *p = (u8 *)Xi; |
| u32 v; |
| v = (u32)(Z.hi >> 32); |
| PUTU32(p, v); |
| v = (u32)(Z.hi); |
| PUTU32(p + 4, v); |
| v = (u32)(Z.lo >> 32); |
| PUTU32(p + 8, v); |
| v = (u32)(Z.lo); |
| PUTU32(p + 12, v); |
| # endif |
| } else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } |
| |
| # define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) |
| |
| #endif |
| |
| #if TABLE_BITS==4 && (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) |
| # if !defined(I386_ONLY) && \ |
| (defined(__i386) || defined(__i386__) || \ |
| defined(__x86_64) || defined(__x86_64__) || \ |
| defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) |
| # define GHASH_ASM_X86_OR_64 |
| # define GCM_FUNCREF_4BIT |
| extern unsigned int OPENSSL_ia32cap_P[]; |
| |
| void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); |
| void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| |
| # if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
| # define gcm_init_avx gcm_init_clmul |
| # define gcm_gmult_avx gcm_gmult_clmul |
| # define gcm_ghash_avx gcm_ghash_clmul |
| # else |
| void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); |
| void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| # endif |
| |
| # if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
| # define GHASH_ASM_X86 |
| void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| |
| void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| # endif |
| # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) |
| # include "arm_arch.h" |
| # if __ARM_MAX_ARCH__>=7 |
| # define GHASH_ASM_ARM |
| # define GCM_FUNCREF_4BIT |
| # define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL) |
| # if defined(__arm__) || defined(__arm) |
| # define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) |
| # endif |
| void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); |
| void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); |
| void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| # endif |
| # elif defined(__sparc__) || defined(__sparc) |
| # include "sparc_arch.h" |
| # define GHASH_ASM_SPARC |
| # define GCM_FUNCREF_4BIT |
| extern unsigned int OPENSSL_sparcv9cap_P[]; |
| void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); |
| void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) |
| # include "ppc_arch.h" |
| # define GHASH_ASM_PPC |
| # define GCM_FUNCREF_4BIT |
| void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); |
| void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); |
| void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
| size_t len); |
| # endif |
| #endif |
| |
| #ifdef GCM_FUNCREF_4BIT |
| # undef GCM_MUL |
| # define GCM_MUL(ctx,Xi) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) |
| # ifdef GHASH |
| # undef GHASH |
| # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) |
| # endif |
| #endif |
| |
| void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) |
| { |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| ctx->block = block; |
| ctx->key = key; |
| |
| (*block) (ctx->H.c, ctx->H.c, key); |
| |
| if (is_endian.little) { |
| /* H is stored in host byte order */ |
| #ifdef BSWAP8 |
| ctx->H.u[0] = BSWAP8(ctx->H.u[0]); |
| ctx->H.u[1] = BSWAP8(ctx->H.u[1]); |
| #else |
| u8 *p = ctx->H.c; |
| u64 hi, lo; |
| hi = (u64)GETU32(p) << 32 | GETU32(p + 4); |
| lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); |
| ctx->H.u[0] = hi; |
| ctx->H.u[1] = lo; |
| #endif |
| } |
| #if TABLE_BITS==8 |
| gcm_init_8bit(ctx->Htable, ctx->H.u); |
| #elif TABLE_BITS==4 |
| # if defined(GHASH) |
| # define CTX__GHASH(f) (ctx->ghash = (f)) |
| # else |
| # define CTX__GHASH(f) (ctx->ghash = NULL) |
| # endif |
| # if defined(GHASH_ASM_X86_OR_64) |
| # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) |
| if (OPENSSL_ia32cap_P[0] & (1 << 24) && /* check FXSR bit */ |
| OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ |
| if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ |
| gcm_init_avx(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_avx; |
| CTX__GHASH(gcm_ghash_avx); |
| } else { |
| gcm_init_clmul(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_clmul; |
| CTX__GHASH(gcm_ghash_clmul); |
| } |
| return; |
| } |
| # endif |
| gcm_init_4bit(ctx->Htable, ctx->H.u); |
| # if defined(GHASH_ASM_X86) /* x86 only */ |
| # if defined(OPENSSL_IA32_SSE2) |
| if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ |
| # else |
| if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ |
| # endif |
| ctx->gmult = gcm_gmult_4bit_mmx; |
| CTX__GHASH(gcm_ghash_4bit_mmx); |
| } else { |
| ctx->gmult = gcm_gmult_4bit_x86; |
| CTX__GHASH(gcm_ghash_4bit_x86); |
| } |
| # else |
| ctx->gmult = gcm_gmult_4bit; |
| CTX__GHASH(gcm_ghash_4bit); |
| # endif |
| # elif defined(GHASH_ASM_ARM) |
| # ifdef PMULL_CAPABLE |
| if (PMULL_CAPABLE) { |
| gcm_init_v8(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_v8; |
| CTX__GHASH(gcm_ghash_v8); |
| } else |
| # endif |
| # ifdef NEON_CAPABLE |
| if (NEON_CAPABLE) { |
| gcm_init_neon(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_neon; |
| CTX__GHASH(gcm_ghash_neon); |
| } else |
| # endif |
| { |
| gcm_init_4bit(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_4bit; |
| CTX__GHASH(gcm_ghash_4bit); |
| } |
| # elif defined(GHASH_ASM_SPARC) |
| if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { |
| gcm_init_vis3(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_vis3; |
| CTX__GHASH(gcm_ghash_vis3); |
| } else { |
| gcm_init_4bit(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_4bit; |
| CTX__GHASH(gcm_ghash_4bit); |
| } |
| # elif defined(GHASH_ASM_PPC) |
| if (OPENSSL_ppccap_P & PPC_CRYPTO207) { |
| gcm_init_p8(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_p8; |
| CTX__GHASH(gcm_ghash_p8); |
| } else { |
| gcm_init_4bit(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_4bit; |
| CTX__GHASH(gcm_ghash_4bit); |
| } |
| # else |
| gcm_init_4bit(ctx->Htable, ctx->H.u); |
| # endif |
| # undef CTX__GHASH |
| #endif |
| } |
| |
| void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, |
| size_t len) |
| { |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| unsigned int ctr; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #endif |
| |
| ctx->Yi.u[0] = 0; |
| ctx->Yi.u[1] = 0; |
| ctx->Xi.u[0] = 0; |
| ctx->Xi.u[1] = 0; |
| ctx->len.u[0] = 0; /* AAD length */ |
| ctx->len.u[1] = 0; /* message length */ |
| ctx->ares = 0; |
| ctx->mres = 0; |
| |
| if (len == 12) { |
| memcpy(ctx->Yi.c, iv, 12); |
| ctx->Yi.c[15] = 1; |
| ctr = 1; |
| } else { |
| size_t i; |
| u64 len0 = len; |
| |
| while (len >= 16) { |
| for (i = 0; i < 16; ++i) |
| ctx->Yi.c[i] ^= iv[i]; |
| GCM_MUL(ctx, Yi); |
| iv += 16; |
| len -= 16; |
| } |
| if (len) { |
| for (i = 0; i < len; ++i) |
| ctx->Yi.c[i] ^= iv[i]; |
| GCM_MUL(ctx, Yi); |
| } |
| len0 <<= 3; |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| ctx->Yi.u[1] ^= BSWAP8(len0); |
| #else |
| ctx->Yi.c[8] ^= (u8)(len0 >> 56); |
| ctx->Yi.c[9] ^= (u8)(len0 >> 48); |
| ctx->Yi.c[10] ^= (u8)(len0 >> 40); |
| ctx->Yi.c[11] ^= (u8)(len0 >> 32); |
| ctx->Yi.c[12] ^= (u8)(len0 >> 24); |
| ctx->Yi.c[13] ^= (u8)(len0 >> 16); |
| ctx->Yi.c[14] ^= (u8)(len0 >> 8); |
| ctx->Yi.c[15] ^= (u8)(len0); |
| #endif |
| } else |
| ctx->Yi.u[1] ^= len0; |
| |
| GCM_MUL(ctx, Yi); |
| |
| if (is_endian.little) |
| #ifdef BSWAP4 |
| ctr = BSWAP4(ctx->Yi.d[3]); |
| #else |
| ctr = GETU32(ctx->Yi.c + 12); |
| #endif |
| else |
| ctr = ctx->Yi.d[3]; |
| } |
| |
| (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); |
| ++ctr; |
| if (is_endian.little) |
| #ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| #else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| #endif |
| else |
| ctx->Yi.d[3] = ctr; |
| } |
| |
| int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, |
| size_t len) |
| { |
| size_t i; |
| unsigned int n; |
| u64 alen = ctx->len.u[0]; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| # ifdef GHASH |
| void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| const u8 *inp, size_t len) = ctx->ghash; |
| # endif |
| #endif |
| |
| if (ctx->len.u[1]) |
| return -2; |
| |
| alen += len; |
| if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) |
| return -1; |
| ctx->len.u[0] = alen; |
| |
| n = ctx->ares; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(aad++); |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) |
| GCM_MUL(ctx, Xi); |
| else { |
| ctx->ares = n; |
| return 0; |
| } |
| } |
| #ifdef GHASH |
| if ((i = (len & (size_t)-16))) { |
| GHASH(ctx, aad, i); |
| aad += i; |
| len -= i; |
| } |
| #else |
| while (len >= 16) { |
| for (i = 0; i < 16; ++i) |
| ctx->Xi.c[i] ^= aad[i]; |
| GCM_MUL(ctx, Xi); |
| aad += 16; |
| len -= 16; |
| } |
| #endif |
| if (len) { |
| n = (unsigned int)len; |
| for (i = 0; i < len; ++i) |
| ctx->Xi.c[i] ^= aad[i]; |
| } |
| |
| ctx->ares = n; |
| return 0; |
| } |
| |
| int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len) |
| { |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| unsigned int n, ctr; |
| size_t i; |
| u64 mlen = ctx->len.u[1]; |
| block128_f block = ctx->block; |
| void *key = ctx->key; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| const u8 *inp, size_t len) = ctx->ghash; |
| # endif |
| #endif |
| |
| mlen += len; |
| if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| return -1; |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to encrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) |
| #ifdef BSWAP4 |
| ctr = BSWAP4(ctx->Yi.d[3]); |
| #else |
| ctr = GETU32(ctx->Yi.c + 12); |
| #endif |
| else |
| ctr = ctx->Yi.d[3]; |
| |
| n = ctx->mres; |
| #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| if (16 % sizeof(size_t) == 0) { /* always true actually */ |
| do { |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) |
| GCM_MUL(ctx, Xi); |
| else { |
| ctx->mres = n; |
| return 0; |
| } |
| } |
| # if defined(STRICT_ALIGNMENT) |
| if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) |
| break; |
| # endif |
| # if defined(GHASH) |
| # if defined(GHASH_CHUNK) |
| while (len >= GHASH_CHUNK) { |
| size_t j = GHASH_CHUNK; |
| |
| while (j) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i = 0; i < 16 / sizeof(size_t); ++i) |
| out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| out += 16; |
| in += 16; |
| j -= 16; |
| } |
| GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); |
| len -= GHASH_CHUNK; |
| } |
| # endif |
| if ((i = (len & (size_t)-16))) { |
| size_t j = i; |
| |
| while (len >= 16) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i = 0; i < 16 / sizeof(size_t); ++i) |
| out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| GHASH(ctx, out - j, j); |
| } |
| # else |
| while (len >= 16) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i = 0; i < 16 / sizeof(size_t); ++i) |
| ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| GCM_MUL(ctx, Xi); |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| # endif |
| if (len) { |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| while (len--) { |
| ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } while (0); |
| } |
| #endif |
| for (i = 0; i < len; ++i) { |
| if (n == 0) { |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| #ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| #else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| #endif |
| else |
| ctx->Yi.d[3] = ctr; |
| } |
| ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; |
| n = (n + 1) % 16; |
| if (n == 0) |
| GCM_MUL(ctx, Xi); |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } |
| |
| int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len) |
| { |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| unsigned int n, ctr; |
| size_t i; |
| u64 mlen = ctx->len.u[1]; |
| block128_f block = ctx->block; |
| void *key = ctx->key; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| const u8 *inp, size_t len) = ctx->ghash; |
| # endif |
| #endif |
| |
| mlen += len; |
| if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| return -1; |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to decrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) |
| #ifdef BSWAP4 |
| ctr = BSWAP4(ctx->Yi.d[3]); |
| #else |
| ctr = GETU32(ctx->Yi.c + 12); |
| #endif |
| else |
| ctr = ctx->Yi.d[3]; |
| |
| n = ctx->mres; |
| #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| if (16 % sizeof(size_t) == 0) { /* always true actually */ |
| do { |
| if (n) { |
| while (n && len) { |
| u8 c = *(in++); |
| *(out++) = c ^ ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) |
| GCM_MUL(ctx, Xi); |
| else { |
| ctx->mres = n; |
| return 0; |
| } |
| } |
| # if defined(STRICT_ALIGNMENT) |
| if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) |
| break; |
| # endif |
| # if defined(GHASH) |
| # if defined(GHASH_CHUNK) |
| while (len >= GHASH_CHUNK) { |
| size_t j = GHASH_CHUNK; |
| |
| GHASH(ctx, in, GHASH_CHUNK); |
| while (j) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i = 0; i < 16 / sizeof(size_t); ++i) |
| out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| out += 16; |
| in += 16; |
| j -= 16; |
| } |
| len -= GHASH_CHUNK; |
| } |
| # endif |
| if ((i = (len & (size_t)-16))) { |
| GHASH(ctx, in, i); |
| while (len >= 16) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i = 0; i < 16 / sizeof(size_t); ++i) |
| out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| } |
| # else |
| while (len >= 16) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i = 0; i < 16 / sizeof(size_t); ++i) { |
| size_t c = in[i]; |
| out[i] = c ^ ctx->EKi.t[i]; |
| ctx->Xi.t[i] ^= c; |
| } |
| GCM_MUL(ctx, Xi); |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| # endif |
| if (len) { |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| while (len--) { |
| u8 c = in[n]; |
| ctx->Xi.c[n] ^= c; |
| out[n] = c ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } while (0); |
| } |
| #endif |
| for (i = 0; i < len; ++i) { |
| u8 c; |
| if (n == 0) { |
| (*block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| #ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| #else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| #endif |
| else |
| ctx->Yi.d[3] = ctr; |
| } |
| c = in[i]; |
| out[i] = c ^ ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| n = (n + 1) % 16; |
| if (n == 0) |
| GCM_MUL(ctx, Xi); |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } |
| |
| int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len, ctr128_f stream) |
| { |
| #if defined(OPENSSL_SMALL_FOOTPRINT) |
| return CRYPTO_gcm128_encrypt(ctx, in, out, len); |
| #else |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| unsigned int n, ctr; |
| size_t i; |
| u64 mlen = ctx->len.u[1]; |
| void *key = ctx->key; |
| # ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| # ifdef GHASH |
| void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| const u8 *inp, size_t len) = ctx->ghash; |
| # endif |
| # endif |
| |
| mlen += len; |
| if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| return -1; |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to encrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctr = BSWAP4(ctx->Yi.d[3]); |
| # else |
| ctr = GETU32(ctx->Yi.c + 12); |
| # endif |
| else |
| ctr = ctx->Yi.d[3]; |
| |
| n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) |
| GCM_MUL(ctx, Xi); |
| else { |
| ctx->mres = n; |
| return 0; |
| } |
| } |
| # if defined(GHASH) && defined(GHASH_CHUNK) |
| while (len >= GHASH_CHUNK) { |
| (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| ctr += GHASH_CHUNK / 16; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| GHASH(ctx, out, GHASH_CHUNK); |
| out += GHASH_CHUNK; |
| in += GHASH_CHUNK; |
| len -= GHASH_CHUNK; |
| } |
| # endif |
| if ((i = (len & (size_t)-16))) { |
| size_t j = i / 16; |
| |
| (*stream) (in, out, j, key, ctx->Yi.c); |
| ctr += (unsigned int)j; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| in += i; |
| len -= i; |
| # if defined(GHASH) |
| GHASH(ctx, out, i); |
| out += i; |
| # else |
| while (j--) { |
| for (i = 0; i < 16; ++i) |
| ctx->Xi.c[i] ^= out[i]; |
| GCM_MUL(ctx, Xi); |
| out += 16; |
| } |
| # endif |
| } |
| if (len) { |
| (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| while (len--) { |
| ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 0; |
| #endif |
| } |
| |
| int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len, ctr128_f stream) |
| { |
| #if defined(OPENSSL_SMALL_FOOTPRINT) |
| return CRYPTO_gcm128_decrypt(ctx, in, out, len); |
| #else |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| unsigned int n, ctr; |
| size_t i; |
| u64 mlen = ctx->len.u[1]; |
| void *key = ctx->key; |
| # ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| # ifdef GHASH |
| void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], |
| const u8 *inp, size_t len) = ctx->ghash; |
| # endif |
| # endif |
| |
| mlen += len; |
| if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| return -1; |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to decrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctr = BSWAP4(ctx->Yi.d[3]); |
| # else |
| ctr = GETU32(ctx->Yi.c + 12); |
| # endif |
| else |
| ctr = ctx->Yi.d[3]; |
| |
| n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| u8 c = *(in++); |
| *(out++) = c ^ ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) |
| GCM_MUL(ctx, Xi); |
| else { |
| ctx->mres = n; |
| return 0; |
| } |
| } |
| # if defined(GHASH) && defined(GHASH_CHUNK) |
| while (len >= GHASH_CHUNK) { |
| GHASH(ctx, in, GHASH_CHUNK); |
| (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| ctr += GHASH_CHUNK / 16; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| out += GHASH_CHUNK; |
| in += GHASH_CHUNK; |
| len -= GHASH_CHUNK; |
| } |
| # endif |
| if ((i = (len & (size_t)-16))) { |
| size_t j = i / 16; |
| |
| # if defined(GHASH) |
| GHASH(ctx, in, i); |
| # else |
| while (j--) { |
| size_t k; |
| for (k = 0; k < 16; ++k) |
| ctx->Xi.c[k] ^= in[k]; |
| GCM_MUL(ctx, Xi); |
| in += 16; |
| } |
| j = i / 16; |
| in -= i; |
| # endif |
| (*stream) (in, out, j, key, ctx->Yi.c); |
| ctr += (unsigned int)j; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| out += i; |
| in += i; |
| len -= i; |
| } |
| if (len) { |
| (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) |
| # ifdef BSWAP4 |
| ctx->Yi.d[3] = BSWAP4(ctr); |
| # else |
| PUTU32(ctx->Yi.c + 12, ctr); |
| # endif |
| else |
| ctx->Yi.d[3] = ctr; |
| while (len--) { |
| u8 c = in[n]; |
| ctx->Xi.c[n] ^= c; |
| out[n] = c ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 0; |
| #endif |
| } |
| |
| int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, |
| size_t len) |
| { |
| const union { |
| long one; |
| char little; |
| } is_endian = { 1 }; |
| u64 alen = ctx->len.u[0] << 3; |
| u64 clen = ctx->len.u[1] << 3; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #endif |
| |
| if (ctx->mres || ctx->ares) |
| GCM_MUL(ctx, Xi); |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| alen = BSWAP8(alen); |
| clen = BSWAP8(clen); |
| #else |
| u8 *p = ctx->len.c; |
| |
| ctx->len.u[0] = alen; |
| ctx->len.u[1] = clen; |
| |
| alen = (u64)GETU32(p) << 32 | GETU32(p + 4); |
| clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); |
| #endif |
| } |
| |
| ctx->Xi.u[0] ^= alen; |
| ctx->Xi.u[1] ^= clen; |
| GCM_MUL(ctx, Xi); |
| |
| ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
| ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
| |
| if (tag && len <= sizeof(ctx->Xi)) |
| return CRYPTO_memcmp(ctx->Xi.c, tag, len); |
| else |
| return -1; |
| } |
| |
| void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) |
| { |
| CRYPTO_gcm128_finish(ctx, NULL, 0); |
| memcpy(tag, ctx->Xi.c, |
| len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); |
| } |
| |
| GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) |
| { |
| GCM128_CONTEXT *ret; |
| |
| if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) |
| CRYPTO_gcm128_init(ret, key, block); |
| |
| return ret; |
| } |
| |
| void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) |
| { |
| OPENSSL_clear_free(ctx, sizeof(*ctx)); |
| } |