| /* |
| * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdint.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #define ROL64(a, offset) ((offset) ? (((a) << offset) | ((a) >> (64-offset))) \ |
| : a) |
| |
| #if defined(KECCAK_REF) |
| /* |
| * This is straightforward or "maximum clarity" implementation aiming |
| * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: |
| * Permutation-Based Hash and Extendible-Output Functions" as much as |
| * possible. With one caveat. Because of the way C stores matrices, |
| * references to A[x,y] in the specification are presented as A[y][x]. |
| * Implementation unrolls inner x-loops so that modulo 5 operations are |
| * explicitly pre-computed. |
| */ |
| static void Theta(uint64_t A[5][5]) |
| { |
| uint64_t C[5], D[5]; |
| size_t y; |
| |
| C[0] = A[0][0]; |
| C[1] = A[0][1]; |
| C[2] = A[0][2]; |
| C[3] = A[0][3]; |
| C[4] = A[0][4]; |
| |
| for (y = 1; y < 5; y++) { |
| C[0] ^= A[y][0]; |
| C[1] ^= A[y][1]; |
| C[2] ^= A[y][2]; |
| C[3] ^= A[y][3]; |
| C[4] ^= A[y][4]; |
| } |
| |
| D[0] = ROL64(C[1], 1) ^ C[4]; |
| D[1] = ROL64(C[2], 1) ^ C[0]; |
| D[2] = ROL64(C[3], 1) ^ C[1]; |
| D[3] = ROL64(C[4], 1) ^ C[2]; |
| D[4] = ROL64(C[0], 1) ^ C[3]; |
| |
| for (y = 0; y < 5; y++) { |
| A[y][0] ^= D[0]; |
| A[y][1] ^= D[1]; |
| A[y][2] ^= D[2]; |
| A[y][3] ^= D[3]; |
| A[y][4] ^= D[4]; |
| } |
| } |
| |
| static void Rho(uint64_t A[5][5]) |
| { |
| static const unsigned char rhotates[5][5] = { |
| { 0, 1, 62, 28, 27 }, |
| { 36, 44, 6, 55, 20 }, |
| { 3, 10, 43, 25, 39 }, |
| { 41, 45, 15, 21, 8 }, |
| { 18, 2, 61, 56, 14 } |
| }; |
| size_t y; |
| |
| for (y = 0; y < 5; y++) { |
| A[y][0] = ROL64(A[y][0], rhotates[y][0]); |
| A[y][1] = ROL64(A[y][1], rhotates[y][1]); |
| A[y][2] = ROL64(A[y][2], rhotates[y][2]); |
| A[y][3] = ROL64(A[y][3], rhotates[y][3]); |
| A[y][4] = ROL64(A[y][4], rhotates[y][4]); |
| } |
| } |
| |
| static void Pi(uint64_t A[5][5]) |
| { |
| uint64_t T[5][5]; |
| |
| /* |
| * T = A |
| * A[y][x] = T[x][(3*y+x)%5] |
| */ |
| memcpy(T, A, sizeof(T)); |
| |
| A[0][0] = T[0][0]; |
| A[0][1] = T[1][1]; |
| A[0][2] = T[2][2]; |
| A[0][3] = T[3][3]; |
| A[0][4] = T[4][4]; |
| |
| A[1][0] = T[0][3]; |
| A[1][1] = T[1][4]; |
| A[1][2] = T[2][0]; |
| A[1][3] = T[3][1]; |
| A[1][4] = T[4][2]; |
| |
| A[2][0] = T[0][1]; |
| A[2][1] = T[1][2]; |
| A[2][2] = T[2][3]; |
| A[2][3] = T[3][4]; |
| A[2][4] = T[4][0]; |
| |
| A[3][0] = T[0][4]; |
| A[3][1] = T[1][0]; |
| A[3][2] = T[2][1]; |
| A[3][3] = T[3][2]; |
| A[3][4] = T[4][3]; |
| |
| A[4][0] = T[0][2]; |
| A[4][1] = T[1][3]; |
| A[4][2] = T[2][4]; |
| A[4][3] = T[3][0]; |
| A[4][4] = T[4][1]; |
| } |
| |
| static void Chi(uint64_t A[5][5]) |
| { |
| uint64_t C[5]; |
| size_t y; |
| |
| for (y = 0; y < 5; y++) { |
| C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); |
| C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); |
| C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); |
| C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); |
| C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); |
| |
| A[y][0] = C[0]; |
| A[y][1] = C[1]; |
| A[y][2] = C[2]; |
| A[y][3] = C[3]; |
| A[y][4] = C[4]; |
| } |
| } |
| |
| static void Iota(uint64_t A[5][5], size_t i) |
| { |
| static const uint64_t iotas[] = { |
| 0x0000000000000001U, 0x0000000000008082U, 0x800000000000808aU, |
| 0x8000000080008000U, 0x000000000000808bU, 0x0000000080000001U, |
| 0x8000000080008081U, 0x8000000000008009U, 0x000000000000008aU, |
| 0x0000000000000088U, 0x0000000080008009U, 0x000000008000000aU, |
| 0x000000008000808bU, 0x800000000000008bU, 0x8000000000008089U, |
| 0x8000000000008003U, 0x8000000000008002U, 0x8000000000000080U, |
| 0x000000000000800aU, 0x800000008000000aU, 0x8000000080008081U, |
| 0x8000000000008080U, 0x0000000080000001U, 0x8000000080008008U |
| }; |
| |
| assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
| A[0][0] ^= iotas[i]; |
| } |
| |
| void KeccakF1600(uint64_t A[5][5]) |
| { |
| size_t i; |
| |
| for (i = 0; i < 24; i++) { |
| Theta(A); |
| Rho(A); |
| Pi(A); |
| Chi(A); |
| Iota(A, i); |
| } |
| } |
| |
| #elif defined(KECCAK_1X) |
| /* |
| * This implementation is optimization of above code featuring unroll |
| * of even y-loops, their fusion and code motion. It also minimizes |
| * temporary storage. Compiler would normally do all these things for |
| * you, purpose of manual optimization is to provide "unobscured" |
| * reference for assembly implementation [in case this approach is |
| * chosen for implementation on some platform]. In the nutshell it's |
| * equivalent of "plane-per-plane processing" approach discussed in |
| * section 2.4 of "Keccak implementation overview". |
| */ |
| static void Round(uint64_t A[5][5], size_t i) |
| { |
| uint64_t C[5], D[5], T[2][5]; |
| static const unsigned char rhotates[5][5] = { |
| { 0, 1, 62, 28, 27 }, |
| { 36, 44, 6, 55, 20 }, |
| { 3, 10, 43, 25, 39 }, |
| { 41, 45, 15, 21, 8 }, |
| { 18, 2, 61, 56, 14 } |
| }; |
| static const uint64_t iotas[] = { |
| 0x0000000000000001U, 0x0000000000008082U, 0x800000000000808aU, |
| 0x8000000080008000U, 0x000000000000808bU, 0x0000000080000001U, |
| 0x8000000080008081U, 0x8000000000008009U, 0x000000000000008aU, |
| 0x0000000000000088U, 0x0000000080008009U, 0x000000008000000aU, |
| 0x000000008000808bU, 0x800000000000008bU, 0x8000000000008089U, |
| 0x8000000000008003U, 0x8000000000008002U, 0x8000000000000080U, |
| 0x000000000000800aU, 0x800000008000000aU, 0x8000000080008081U, |
| 0x8000000000008080U, 0x0000000080000001U, 0x8000000080008008U |
| }; |
| |
| assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
| |
| C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
| C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
| C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
| C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
| C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
| |
| D[0] = ROL64(C[1], 1) ^ C[4]; |
| D[1] = ROL64(C[2], 1) ^ C[0]; |
| D[2] = ROL64(C[3], 1) ^ C[1]; |
| D[3] = ROL64(C[4], 1) ^ C[2]; |
| D[4] = ROL64(C[0], 1) ^ C[3]; |
| |
| C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
| C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
| C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
| C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
| |
| T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ |
| T[0][1] = A[0][1] ^ D[1]; |
| T[0][2] = A[0][2] ^ D[2]; |
| T[0][3] = A[0][3] ^ D[3]; |
| T[0][4] = A[0][4] ^ D[4]; |
| |
| A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
| A[0][1] = C[1] ^ (~C[2] & C[3]); |
| A[0][2] = C[2] ^ (~C[3] & C[4]); |
| A[0][3] = C[3] ^ (~C[4] & C[0]); |
| A[0][4] = C[4] ^ (~C[0] & C[1]); |
| |
| C[0] = ROL64(T[0][3], rhotates[0][3]); |
| C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
| C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
| C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
| |
| T[1][0] = A[1][0] ^ D[0]; |
| T[1][1] = A[2][1] ^ D[1]; /* borrow T[1][1] */ |
| T[1][2] = A[1][2] ^ D[2]; |
| T[1][3] = A[1][3] ^ D[3]; |
| T[1][4] = A[2][4] ^ D[4]; /* borrow T[1][4] */ |
| |
| A[1][0] = C[0] ^ (~C[1] & C[2]); |
| A[1][1] = C[1] ^ (~C[2] & C[3]); |
| A[1][2] = C[2] ^ (~C[3] & C[4]); |
| A[1][3] = C[3] ^ (~C[4] & C[0]); |
| A[1][4] = C[4] ^ (~C[0] & C[1]); |
| |
| C[0] = ROL64(T[0][1], rhotates[0][1]); |
| C[1] = ROL64(T[1][2], rhotates[1][2]); |
| C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
| C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
| |
| A[2][0] = C[0] ^ (~C[1] & C[2]); |
| A[2][1] = C[1] ^ (~C[2] & C[3]); |
| A[2][2] = C[2] ^ (~C[3] & C[4]); |
| A[2][3] = C[3] ^ (~C[4] & C[0]); |
| A[2][4] = C[4] ^ (~C[0] & C[1]); |
| |
| C[0] = ROL64(T[0][4], rhotates[0][4]); |
| C[1] = ROL64(T[1][0], rhotates[1][0]); |
| C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */ |
| C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
| |
| A[3][0] = C[0] ^ (~C[1] & C[2]); |
| A[3][1] = C[1] ^ (~C[2] & C[3]); |
| A[3][2] = C[2] ^ (~C[3] & C[4]); |
| A[3][3] = C[3] ^ (~C[4] & C[0]); |
| A[3][4] = C[4] ^ (~C[0] & C[1]); |
| |
| C[0] = ROL64(T[0][2], rhotates[0][2]); |
| C[1] = ROL64(T[1][3], rhotates[1][3]); |
| C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */ |
| C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */ |
| C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| |
| A[4][0] = C[0] ^ (~C[1] & C[2]); |
| A[4][1] = C[1] ^ (~C[2] & C[3]); |
| A[4][2] = C[2] ^ (~C[3] & C[4]); |
| A[4][3] = C[3] ^ (~C[4] & C[0]); |
| A[4][4] = C[4] ^ (~C[0] & C[1]); |
| } |
| |
| void KeccakF1600(uint64_t A[5][5]) |
| { |
| size_t i; |
| |
| for (i = 0; i < 24; i++) { |
| Round(A, i); |
| } |
| } |
| |
| #elif defined(KECCAK_2X) |
| /* |
| * This implementation is variant of KECCAK_1X above with outer-most |
| * round loop unrolled twice. This allows to take temporary storage |
| * out of round procedure and simplify references to it by alternating |
| * it with actual data (see round loop below). Just like original, it's |
| * rather meant as reference for an assembly implementation. It's likely |
| * to provide best instruction per processed byte ratio at minimal |
| * round unroll factor... |
| */ |
| static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) |
| { |
| uint64_t C[5], D[5]; |
| static const unsigned char rhotates[5][5] = { |
| { 0, 1, 62, 28, 27 }, |
| { 36, 44, 6, 55, 20 }, |
| { 3, 10, 43, 25, 39 }, |
| { 41, 45, 15, 21, 8 }, |
| { 18, 2, 61, 56, 14 } |
| }; |
| static const uint64_t iotas[] = { |
| 0x0000000000000001U, 0x0000000000008082U, 0x800000000000808aU, |
| 0x8000000080008000U, 0x000000000000808bU, 0x0000000080000001U, |
| 0x8000000080008081U, 0x8000000000008009U, 0x000000000000008aU, |
| 0x0000000000000088U, 0x0000000080008009U, 0x000000008000000aU, |
| 0x000000008000808bU, 0x800000000000008bU, 0x8000000000008089U, |
| 0x8000000000008003U, 0x8000000000008002U, 0x8000000000000080U, |
| 0x000000000000800aU, 0x800000008000000aU, 0x8000000080008081U, |
| 0x8000000000008080U, 0x0000000080000001U, 0x8000000080008008U |
| }; |
| |
| assert(i < (sizeof(iotas) / sizeof(iotas[0]))); |
| |
| C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
| C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
| C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
| C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
| C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
| |
| D[0] = ROL64(C[1], 1) ^ C[4]; |
| D[1] = ROL64(C[2], 1) ^ C[0]; |
| D[2] = ROL64(C[3], 1) ^ C[1]; |
| D[3] = ROL64(C[4], 1) ^ C[2]; |
| D[4] = ROL64(C[0], 1) ^ C[3]; |
| |
| C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
| C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
| C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
| C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
| |
| R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
| R[0][1] = C[1] ^ (~C[2] & C[3]); |
| R[0][2] = C[2] ^ (~C[3] & C[4]); |
| R[0][3] = C[3] ^ (~C[4] & C[0]); |
| R[0][4] = C[4] ^ (~C[0] & C[1]); |
| |
| C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
| C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
| C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
| C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
| |
| R[1][0] = C[0] ^ (~C[1] & C[2]); |
| R[1][1] = C[1] ^ (~C[2] & C[3]); |
| R[1][2] = C[2] ^ (~C[3] & C[4]); |
| R[1][3] = C[3] ^ (~C[4] & C[0]); |
| R[1][4] = C[4] ^ (~C[0] & C[1]); |
| |
| C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); |
| C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); |
| C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
| C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
| |
| R[2][0] = C[0] ^ (~C[1] & C[2]); |
| R[2][1] = C[1] ^ (~C[2] & C[3]); |
| R[2][2] = C[2] ^ (~C[3] & C[4]); |
| R[2][3] = C[3] ^ (~C[4] & C[0]); |
| R[2][4] = C[4] ^ (~C[0] & C[1]); |
| |
| C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); |
| C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); |
| C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); |
| C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
| |
| R[3][0] = C[0] ^ (~C[1] & C[2]); |
| R[3][1] = C[1] ^ (~C[2] & C[3]); |
| R[3][2] = C[2] ^ (~C[3] & C[4]); |
| R[3][3] = C[3] ^ (~C[4] & C[0]); |
| R[3][4] = C[4] ^ (~C[0] & C[1]); |
| |
| C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); |
| C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); |
| C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); |
| C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); |
| C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| |
| R[4][0] = C[0] ^ (~C[1] & C[2]); |
| R[4][1] = C[1] ^ (~C[2] & C[3]); |
| R[4][2] = C[2] ^ (~C[3] & C[4]); |
| R[4][3] = C[3] ^ (~C[4] & C[0]); |
| R[4][4] = C[4] ^ (~C[0] & C[1]); |
| } |
| |
| void KeccakF1600(uint64_t A[5][5]) |
| { |
| uint64_t T[5][5]; |
| size_t i; |
| |
| for (i = 0; i < 24; i += 2) { |
| Round(T, A, i); |
| Round(A, T, i + 1); |
| } |
| } |
| |
| #else |
| /* |
| * This implementation is KECCAK_1X from above combined 4 times with |
| * a twist that allows to omit temporary storage and perform in-place |
| * processing. It's discussed in section 2.5 of "Keccak implementation |
| * overview". It's likely to be best suited for processors with large |
| * register bank... |
| */ |
| static void FourRounds(uint64_t A[5][5], size_t i) |
| { |
| uint64_t B[5], C[5], D[5]; |
| static const unsigned char rhotates[5][5] = { |
| { 0, 1, 62, 28, 27 }, |
| { 36, 44, 6, 55, 20 }, |
| { 3, 10, 43, 25, 39 }, |
| { 41, 45, 15, 21, 8 }, |
| { 18, 2, 61, 56, 14 } |
| }; |
| static const uint64_t iotas[] = { |
| 0x0000000000000001U, 0x0000000000008082U, 0x800000000000808aU, |
| 0x8000000080008000U, 0x000000000000808bU, 0x0000000080000001U, |
| 0x8000000080008081U, 0x8000000000008009U, 0x000000000000008aU, |
| 0x0000000000000088U, 0x0000000080008009U, 0x000000008000000aU, |
| 0x000000008000808bU, 0x800000000000008bU, 0x8000000000008089U, |
| 0x8000000000008003U, 0x8000000000008002U, 0x8000000000000080U, |
| 0x000000000000800aU, 0x800000008000000aU, 0x8000000080008081U, |
| 0x8000000000008080U, 0x0000000080000001U, 0x8000000080008008U |
| }; |
| |
| assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4)); |
| |
| /* Round 4*n */ |
| C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; |
| C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; |
| C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; |
| C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; |
| C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; |
| |
| D[0] = ROL64(C[1], 1) ^ C[4]; |
| D[1] = ROL64(C[2], 1) ^ C[0]; |
| D[2] = ROL64(C[3], 1) ^ C[1]; |
| D[3] = ROL64(C[4], 1) ^ C[2]; |
| D[4] = ROL64(C[0], 1) ^ C[3]; |
| |
| B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
| B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); |
| B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); |
| B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); |
| |
| C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; |
| C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
| B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
| B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
| B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
| |
| C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); |
| B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); |
| B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); |
| B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); |
| |
| C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); |
| B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); |
| B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); |
| B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); |
| |
| C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); |
| B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); |
| B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); |
| B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); |
| B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| |
| C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); |
| |
| /* Round 4*n+1 */ |
| D[0] = ROL64(C[1], 1) ^ C[4]; |
| D[1] = ROL64(C[2], 1) ^ C[0]; |
| D[2] = ROL64(C[3], 1) ^ C[1]; |
| D[3] = ROL64(C[4], 1) ^ C[2]; |
| D[4] = ROL64(C[0], 1) ^ C[3]; |
| |
| B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); |
| B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); |
| B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); |
| B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); |
| |
| C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; |
| C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); |
| B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); |
| B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); |
| B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); |
| |
| C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); |
| B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); |
| B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); |
| B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); |
| |
| C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); |
| B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); |
| B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); |
| B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); |
| |
| C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); |
| B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); |
| B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); |
| B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); |
| B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| |
| C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); |
| |
| /* Round 4*n+2 */ |
| D[0] = ROL64(C[1], 1) ^ C[4]; |
| D[1] = ROL64(C[2], 1) ^ C[0]; |
| D[2] = ROL64(C[3], 1) ^ C[1]; |
| D[3] = ROL64(C[4], 1) ^ C[2]; |
| D[4] = ROL64(C[0], 1) ^ C[3]; |
| |
| B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); |
| B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); |
| B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); |
| B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); |
| |
| C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; |
| C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); |
| B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); |
| B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); |
| B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); |
| |
| C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); |
| B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); |
| B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); |
| B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); |
| |
| C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); |
| B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); |
| B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); |
| B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); |
| |
| C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); |
| B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); |
| B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); |
| B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); |
| B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| |
| C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); |
| C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); |
| C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); |
| C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); |
| C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); |
| |
| /* Round 4*n+3 */ |
| D[0] = ROL64(C[1], 1) ^ C[4]; |
| D[1] = ROL64(C[2], 1) ^ C[0]; |
| D[2] = ROL64(C[3], 1) ^ C[1]; |
| D[3] = ROL64(C[4], 1) ^ C[2]; |
| D[4] = ROL64(C[0], 1) ^ C[3]; |
| |
| B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ |
| B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); |
| B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); |
| B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); |
| B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); |
| |
| /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; |
| /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); |
| /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); |
| /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); |
| /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); |
| B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); |
| B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); |
| B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); |
| |
| /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); |
| /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); |
| /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); |
| /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); |
| /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); |
| B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); |
| B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); |
| B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); |
| B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); |
| |
| /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); |
| /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); |
| /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); |
| /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); |
| /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); |
| B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); |
| B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); |
| B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); |
| B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); |
| |
| /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); |
| /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); |
| /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); |
| /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); |
| /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); |
| |
| B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); |
| B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); |
| B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); |
| B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); |
| B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); |
| |
| /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); |
| /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); |
| /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); |
| /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); |
| /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); |
| } |
| |
| void KeccakF1600(uint64_t A[5][5]) |
| { |
| size_t i; |
| |
| for (i = 0; i < 24; i += 4) { |
| FourRounds(A, i); |
| } |
| } |
| |
| #endif |
| |
| /* |
| * SHA3_absorb can be called multiple times, but at each invocation |
| * largest multiple of |r| out of |len| bytes are processed. Then |
| * remaining amount of bytes are returned. This is done to spare caller |
| * trouble of calculating the largest multiple of |r|, effectively the |
| * blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, 72, |
| * but can also be (1600 - 448)/8 = 144. All this means that message |
| * padding and intermediate sub-block buffering, byte- or bitwise, is |
| * caller's reponsibility. |
| */ |
| size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, |
| size_t r) |
| { |
| uint64_t *A_flat = (uint64_t *)A; |
| size_t i, w = r / 8; |
| |
| assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); |
| |
| while (len >= r) { |
| for (i = 0; i < w; i++) { |
| A_flat[i] ^= (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | |
| (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | |
| (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | |
| (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; |
| inp += 8; |
| } |
| KeccakF1600(A); |
| len -= r; |
| } |
| |
| return len; |
| } |
| |
| /* |
| * SHA3_squeeze is called once at the end to generate |out| hash value |
| * of |len| bytes. |
| */ |
| void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) |
| { |
| uint64_t *A_flat = (uint64_t *)A; |
| size_t i, rem, w = r / 8; |
| |
| assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); |
| |
| while (len >= r) { |
| for (i = 0; i < w; i++) { |
| uint64_t Ai = A_flat[i]; |
| |
| out[0] = (unsigned char)(Ai); |
| out[1] = (unsigned char)(Ai >> 8); |
| out[2] = (unsigned char)(Ai >> 16); |
| out[3] = (unsigned char)(Ai >> 24); |
| out[4] = (unsigned char)(Ai >> 32); |
| out[5] = (unsigned char)(Ai >> 40); |
| out[6] = (unsigned char)(Ai >> 48); |
| out[7] = (unsigned char)(Ai >> 56); |
| out += 8; |
| } |
| len -= r; |
| if (len) |
| KeccakF1600(A); |
| } |
| |
| rem = len % 8; |
| len /= 8; |
| |
| for (i = 0; i < len; i++) { |
| uint64_t Ai = A_flat[i]; |
| |
| out[0] = (unsigned char)(Ai); |
| out[1] = (unsigned char)(Ai >> 8); |
| out[2] = (unsigned char)(Ai >> 16); |
| out[3] = (unsigned char)(Ai >> 24); |
| out[4] = (unsigned char)(Ai >> 32); |
| out[5] = (unsigned char)(Ai >> 40); |
| out[6] = (unsigned char)(Ai >> 48); |
| out[7] = (unsigned char)(Ai >> 56); |
| out += 8; |
| } |
| |
| if (rem) { |
| uint64_t Ai = A_flat[i]; |
| |
| for (i = 0; i < rem; i++) { |
| *out++ = (unsigned char)Ai; |
| Ai >>= 8; |
| } |
| } |
| } |
| |
| #ifdef SELFTEST |
| /* |
| * Post-padding one-shot implementations would look as following: |
| * |
| * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); |
| * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); |
| * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); |
| * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); |
| * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8); |
| * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8); |
| */ |
| |
| void SHA3_sponge(const unsigned char *inp, size_t len, |
| unsigned char *out, size_t d, size_t r) |
| { |
| uint64_t A[5][5]; |
| |
| memset(A, 0, sizeof(A)); |
| SHA3_absorb(A, inp, len, r); |
| SHA3_squeeze(A, out, d, r); |
| } |
| |
| # include <stdio.h> |
| |
| int main() |
| { |
| /* |
| * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing |
| */ |
| unsigned char test[168] = { '\xf3', '\x3' }; |
| unsigned char out[512]; |
| size_t i; |
| static const unsigned char result[512] = { |
| 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B, |
| 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF, |
| 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98, |
| 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA, |
| 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB, |
| 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C, |
| 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C, |
| 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D, |
| 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD, |
| 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F, |
| 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC, |
| 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C, |
| 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6, |
| 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE, |
| 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3, |
| 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64, |
| 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6, |
| 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5, |
| 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38, |
| 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05, |
| 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98, |
| 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2, |
| 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50, |
| 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75, |
| 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0, |
| 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04, |
| 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8, |
| 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03, |
| 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9, |
| 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B, |
| 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B, |
| 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73, |
| 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6, |
| 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C, |
| 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D, |
| 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20, |
| 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D, |
| 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F, |
| 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A, |
| 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15, |
| 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D, |
| 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6, |
| 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2, |
| 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D, |
| 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30, |
| 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C, |
| 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E, |
| 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28, |
| 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A, |
| 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25, |
| 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28, |
| 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C, |
| 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41, |
| 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B, |
| 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C, |
| 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C, |
| 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA, |
| 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F, |
| 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A, |
| 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60, |
| 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6, |
| 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50, |
| 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF, |
| 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9 |
| }; |
| |
| test[167] = '\x80'; |
| SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); |
| |
| /* |
| * Rationale behind keeping output [formatted as below] is that |
| * one should be able to redirect it to a file, then copy-n-paste |
| * final "output val" from official example to another file, and |
| * compare the two with diff(1). |
| */ |
| for (i = 0; i < sizeof(out);) { |
| printf("%02X", out[i]); |
| printf(++i % 16 && i != sizeof(out) ? " " : "\n"); |
| } |
| |
| if (memcmp(out,result,sizeof(out))) { |
| fprintf(stderr,"failure\n"); |
| return 1; |
| } else { |
| fprintf(stderr,"success\n"); |
| return 0; |
| } |
| } |
| #endif |