|  | /* | 
|  | * Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include "ssl_local.h" | 
|  | #include "internal/ktls.h" | 
|  | #include "record/record_local.h" | 
|  | #include "internal/cryptlib.h" | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/kdf.h> | 
|  | #include <openssl/core_names.h> | 
|  |  | 
|  | #define TLS13_MAX_LABEL_LEN     249 | 
|  |  | 
|  | /* Always filled with zeros */ | 
|  | static const unsigned char default_zeros[EVP_MAX_MD_SIZE]; | 
|  |  | 
|  | /* | 
|  | * Given a |secret|; a |label| of length |labellen|; and |data| of length | 
|  | * |datalen| (e.g. typically a hash of the handshake messages), derive a new | 
|  | * secret |outlen| bytes long and store it in the location pointed to be |out|. | 
|  | * The |data| value may be zero length. Any errors will be treated as fatal if | 
|  | * |fatal| is set. Returns 1 on success  0 on failure. | 
|  | */ | 
|  | int tls13_hkdf_expand(SSL *s, const EVP_MD *md, const unsigned char *secret, | 
|  | const unsigned char *label, size_t labellen, | 
|  | const unsigned char *data, size_t datalen, | 
|  | unsigned char *out, size_t outlen, int fatal) | 
|  | { | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const unsigned char label_prefix[] = { 0x74, 0x6C, 0x73, 0x31, 0x33, 0x20, 0x00 }; | 
|  | #else | 
|  | static const unsigned char label_prefix[] = "tls13 "; | 
|  | #endif | 
|  | EVP_KDF *kdf = EVP_KDF_fetch(s->ctx->libctx, OSSL_KDF_NAME_HKDF, | 
|  | s->ctx->propq); | 
|  | EVP_KDF_CTX *kctx; | 
|  | OSSL_PARAM params[5], *p = params; | 
|  | int mode = EVP_PKEY_HKDEF_MODE_EXPAND_ONLY; | 
|  | const char *mdname = EVP_MD_get0_name(md); | 
|  | int ret; | 
|  | size_t hkdflabellen; | 
|  | size_t hashlen; | 
|  | /* | 
|  | * 2 bytes for length of derived secret + 1 byte for length of combined | 
|  | * prefix and label + bytes for the label itself + 1 byte length of hash | 
|  | * + bytes for the hash itself | 
|  | */ | 
|  | unsigned char hkdflabel[sizeof(uint16_t) + sizeof(uint8_t) | 
|  | + (sizeof(label_prefix) - 1) + TLS13_MAX_LABEL_LEN | 
|  | + 1 + EVP_MAX_MD_SIZE]; | 
|  | WPACKET pkt; | 
|  |  | 
|  | kctx = EVP_KDF_CTX_new(kdf); | 
|  | EVP_KDF_free(kdf); | 
|  | if (kctx == NULL) | 
|  | return 0; | 
|  |  | 
|  | if (labellen > TLS13_MAX_LABEL_LEN) { | 
|  | if (fatal) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | } else { | 
|  | /* | 
|  | * Probably we have been called from SSL_export_keying_material(), | 
|  | * or SSL_export_keying_material_early(). | 
|  | */ | 
|  | ERR_raise(ERR_LIB_SSL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); | 
|  | } | 
|  | EVP_KDF_CTX_free(kctx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | hashlen = EVP_MD_get_size(md); | 
|  |  | 
|  | if (!WPACKET_init_static_len(&pkt, hkdflabel, sizeof(hkdflabel), 0) | 
|  | || !WPACKET_put_bytes_u16(&pkt, outlen) | 
|  | || !WPACKET_start_sub_packet_u8(&pkt) | 
|  | || !WPACKET_memcpy(&pkt, label_prefix, sizeof(label_prefix) - 1) | 
|  | || !WPACKET_memcpy(&pkt, label, labellen) | 
|  | || !WPACKET_close(&pkt) | 
|  | || !WPACKET_sub_memcpy_u8(&pkt, data, (data == NULL) ? 0 : datalen) | 
|  | || !WPACKET_get_total_written(&pkt, &hkdflabellen) | 
|  | || !WPACKET_finish(&pkt)) { | 
|  | EVP_KDF_CTX_free(kctx); | 
|  | WPACKET_cleanup(&pkt); | 
|  | if (fatal) | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | else | 
|  | ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *p++ = OSSL_PARAM_construct_int(OSSL_KDF_PARAM_MODE, &mode); | 
|  | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, | 
|  | (char *)mdname, 0); | 
|  | *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, | 
|  | (unsigned char *)secret, hashlen); | 
|  | *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, | 
|  | hkdflabel, hkdflabellen); | 
|  | *p++ = OSSL_PARAM_construct_end(); | 
|  |  | 
|  | ret = EVP_KDF_derive(kctx, out, outlen, params) <= 0; | 
|  |  | 
|  | EVP_KDF_CTX_free(kctx); | 
|  |  | 
|  | if (ret != 0) { | 
|  | if (fatal) | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | else | 
|  | ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); | 
|  | } | 
|  |  | 
|  | return ret == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a |secret| generate a |key| of length |keylen| bytes. Returns 1 on | 
|  | * success  0 on failure. | 
|  | */ | 
|  | int tls13_derive_key(SSL *s, const EVP_MD *md, const unsigned char *secret, | 
|  | unsigned char *key, size_t keylen) | 
|  | { | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const unsigned char keylabel[] ={ 0x6B, 0x65, 0x79, 0x00 }; | 
|  | #else | 
|  | static const unsigned char keylabel[] = "key"; | 
|  | #endif | 
|  |  | 
|  | return tls13_hkdf_expand(s, md, secret, keylabel, sizeof(keylabel) - 1, | 
|  | NULL, 0, key, keylen, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a |secret| generate an |iv| of length |ivlen| bytes. Returns 1 on | 
|  | * success  0 on failure. | 
|  | */ | 
|  | int tls13_derive_iv(SSL *s, const EVP_MD *md, const unsigned char *secret, | 
|  | unsigned char *iv, size_t ivlen) | 
|  | { | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const unsigned char ivlabel[] = { 0x69, 0x76, 0x00 }; | 
|  | #else | 
|  | static const unsigned char ivlabel[] = "iv"; | 
|  | #endif | 
|  |  | 
|  | return tls13_hkdf_expand(s, md, secret, ivlabel, sizeof(ivlabel) - 1, | 
|  | NULL, 0, iv, ivlen, 1); | 
|  | } | 
|  |  | 
|  | int tls13_derive_finishedkey(SSL *s, const EVP_MD *md, | 
|  | const unsigned char *secret, | 
|  | unsigned char *fin, size_t finlen) | 
|  | { | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const unsigned char finishedlabel[] = { 0x66, 0x69, 0x6E, 0x69, 0x73, 0x68, 0x65, 0x64, 0x00 }; | 
|  | #else | 
|  | static const unsigned char finishedlabel[] = "finished"; | 
|  | #endif | 
|  |  | 
|  | return tls13_hkdf_expand(s, md, secret, finishedlabel, | 
|  | sizeof(finishedlabel) - 1, NULL, 0, fin, finlen, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given the previous secret |prevsecret| and a new input secret |insecret| of | 
|  | * length |insecretlen|, generate a new secret and store it in the location | 
|  | * pointed to by |outsecret|. Returns 1 on success  0 on failure. | 
|  | */ | 
|  | int tls13_generate_secret(SSL *s, const EVP_MD *md, | 
|  | const unsigned char *prevsecret, | 
|  | const unsigned char *insecret, | 
|  | size_t insecretlen, | 
|  | unsigned char *outsecret) | 
|  | { | 
|  | size_t mdlen, prevsecretlen; | 
|  | int mdleni; | 
|  | int ret; | 
|  | EVP_KDF *kdf; | 
|  | EVP_KDF_CTX *kctx; | 
|  | OSSL_PARAM params[5], *p = params; | 
|  | int mode = EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY; | 
|  | const char *mdname = EVP_MD_get0_name(md); | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const char derived_secret_label[] = { 0x64, 0x65, 0x72, 0x69, 0x76, 0x65, 0x64, 0x00 }; | 
|  | #else | 
|  | static const char derived_secret_label[] = "derived"; | 
|  | #endif | 
|  | unsigned char preextractsec[EVP_MAX_MD_SIZE]; | 
|  |  | 
|  | kdf = EVP_KDF_fetch(s->ctx->libctx, OSSL_KDF_NAME_HKDF, s->ctx->propq); | 
|  | kctx = EVP_KDF_CTX_new(kdf); | 
|  | EVP_KDF_free(kdf); | 
|  | if (kctx == NULL) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mdleni = EVP_MD_get_size(md); | 
|  | /* Ensure cast to size_t is safe */ | 
|  | if (!ossl_assert(mdleni >= 0)) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | EVP_KDF_CTX_free(kctx); | 
|  | return 0; | 
|  | } | 
|  | mdlen = (size_t)mdleni; | 
|  |  | 
|  | if (insecret == NULL) { | 
|  | insecret = default_zeros; | 
|  | insecretlen = mdlen; | 
|  | } | 
|  | if (prevsecret == NULL) { | 
|  | prevsecret = default_zeros; | 
|  | prevsecretlen = 0; | 
|  | } else { | 
|  | EVP_MD_CTX *mctx = EVP_MD_CTX_new(); | 
|  | unsigned char hash[EVP_MAX_MD_SIZE]; | 
|  |  | 
|  | /* The pre-extract derive step uses a hash of no messages */ | 
|  | if (mctx == NULL | 
|  | || EVP_DigestInit_ex(mctx, md, NULL) <= 0 | 
|  | || EVP_DigestFinal_ex(mctx, hash, NULL) <= 0) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | EVP_MD_CTX_free(mctx); | 
|  | EVP_KDF_CTX_free(kctx); | 
|  | return 0; | 
|  | } | 
|  | EVP_MD_CTX_free(mctx); | 
|  |  | 
|  | /* Generate the pre-extract secret */ | 
|  | if (!tls13_hkdf_expand(s, md, prevsecret, | 
|  | (unsigned char *)derived_secret_label, | 
|  | sizeof(derived_secret_label) - 1, hash, mdlen, | 
|  | preextractsec, mdlen, 1)) { | 
|  | /* SSLfatal() already called */ | 
|  | EVP_KDF_CTX_free(kctx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | prevsecret = preextractsec; | 
|  | prevsecretlen = mdlen; | 
|  | } | 
|  |  | 
|  | *p++ = OSSL_PARAM_construct_int(OSSL_KDF_PARAM_MODE, &mode); | 
|  | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, | 
|  | (char *)mdname, 0); | 
|  | *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, | 
|  | (unsigned char *)insecret, | 
|  | insecretlen); | 
|  | *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT, | 
|  | (unsigned char *)prevsecret, | 
|  | prevsecretlen); | 
|  | *p++ = OSSL_PARAM_construct_end(); | 
|  |  | 
|  | ret = EVP_KDF_derive(kctx, outsecret, mdlen, params) <= 0; | 
|  |  | 
|  | if (ret != 0) | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  |  | 
|  | EVP_KDF_CTX_free(kctx); | 
|  | if (prevsecret == preextractsec) | 
|  | OPENSSL_cleanse(preextractsec, mdlen); | 
|  | return ret == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given an input secret |insecret| of length |insecretlen| generate the | 
|  | * handshake secret. This requires the early secret to already have been | 
|  | * generated. Returns 1 on success  0 on failure. | 
|  | */ | 
|  | int tls13_generate_handshake_secret(SSL *s, const unsigned char *insecret, | 
|  | size_t insecretlen) | 
|  | { | 
|  | /* Calls SSLfatal() if required */ | 
|  | return tls13_generate_secret(s, ssl_handshake_md(s), s->early_secret, | 
|  | insecret, insecretlen, | 
|  | (unsigned char *)&s->handshake_secret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given the handshake secret |prev| of length |prevlen| generate the master | 
|  | * secret and store its length in |*secret_size|. Returns 1 on success  0 on | 
|  | * failure. | 
|  | */ | 
|  | int tls13_generate_master_secret(SSL *s, unsigned char *out, | 
|  | unsigned char *prev, size_t prevlen, | 
|  | size_t *secret_size) | 
|  | { | 
|  | const EVP_MD *md = ssl_handshake_md(s); | 
|  |  | 
|  | *secret_size = EVP_MD_get_size(md); | 
|  | /* Calls SSLfatal() if required */ | 
|  | return tls13_generate_secret(s, md, prev, NULL, 0, out); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generates the mac for the Finished message. Returns the length of the MAC or | 
|  | * 0 on error. | 
|  | */ | 
|  | size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen, | 
|  | unsigned char *out) | 
|  | { | 
|  | const char *mdname = EVP_MD_get0_name(ssl_handshake_md(s)); | 
|  | unsigned char hash[EVP_MAX_MD_SIZE]; | 
|  | unsigned char finsecret[EVP_MAX_MD_SIZE]; | 
|  | unsigned char *key = NULL; | 
|  | size_t len = 0, hashlen; | 
|  | OSSL_PARAM params[2], *p = params; | 
|  |  | 
|  | /* Safe to cast away const here since we're not "getting" any data */ | 
|  | if (s->ctx->propq != NULL) | 
|  | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_PROPERTIES, | 
|  | (char *)s->ctx->propq, | 
|  | 0); | 
|  | *p = OSSL_PARAM_construct_end(); | 
|  |  | 
|  | if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (str == s->method->ssl3_enc->server_finished_label) { | 
|  | key = s->server_finished_secret; | 
|  | } else if (SSL_IS_FIRST_HANDSHAKE(s)) { | 
|  | key = s->client_finished_secret; | 
|  | } else { | 
|  | if (!tls13_derive_finishedkey(s, ssl_handshake_md(s), | 
|  | s->client_app_traffic_secret, | 
|  | finsecret, hashlen)) | 
|  | goto err; | 
|  | key = finsecret; | 
|  | } | 
|  |  | 
|  | if (!EVP_Q_mac(s->ctx->libctx, "HMAC", s->ctx->propq, mdname, | 
|  | params, key, hashlen, hash, hashlen, | 
|  | /* outsize as per sizeof(peer_finish_md) */ | 
|  | out, EVP_MAX_MD_SIZE * 2, &len)) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | err: | 
|  | OPENSSL_cleanse(finsecret, sizeof(finsecret)); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There isn't really a key block in TLSv1.3, but we still need this function | 
|  | * for initialising the cipher and hash. Returns 1 on success or 0 on failure. | 
|  | */ | 
|  | int tls13_setup_key_block(SSL *s) | 
|  | { | 
|  | const EVP_CIPHER *c; | 
|  | const EVP_MD *hash; | 
|  |  | 
|  | s->session->cipher = s->s3.tmp.new_cipher; | 
|  | if (!ssl_cipher_get_evp(s->ctx, s->session, &c, &hash, NULL, NULL, NULL, | 
|  | 0)) { | 
|  | /* Error is already recorded */ | 
|  | SSLfatal_alert(s, SSL_AD_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ssl_evp_cipher_free(s->s3.tmp.new_sym_enc); | 
|  | s->s3.tmp.new_sym_enc = c; | 
|  | ssl_evp_md_free(s->s3.tmp.new_hash); | 
|  | s->s3.tmp.new_hash = hash; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int derive_secret_key_and_iv(SSL *s, int sending, const EVP_MD *md, | 
|  | const EVP_CIPHER *ciph, | 
|  | const unsigned char *insecret, | 
|  | const unsigned char *hash, | 
|  | const unsigned char *label, | 
|  | size_t labellen, unsigned char *secret, | 
|  | unsigned char *key, unsigned char *iv, | 
|  | EVP_CIPHER_CTX *ciph_ctx) | 
|  | { | 
|  | size_t ivlen, keylen, taglen; | 
|  | int hashleni = EVP_MD_get_size(md); | 
|  | size_t hashlen; | 
|  |  | 
|  | /* Ensure cast to size_t is safe */ | 
|  | if (!ossl_assert(hashleni >= 0)) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); | 
|  | return 0; | 
|  | } | 
|  | hashlen = (size_t)hashleni; | 
|  |  | 
|  | if (!tls13_hkdf_expand(s, md, insecret, label, labellen, hash, hashlen, | 
|  | secret, hashlen, 1)) { | 
|  | /* SSLfatal() already called */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | keylen = EVP_CIPHER_get_key_length(ciph); | 
|  | if (EVP_CIPHER_get_mode(ciph) == EVP_CIPH_CCM_MODE) { | 
|  | uint32_t algenc; | 
|  |  | 
|  | ivlen = EVP_CCM_TLS_IV_LEN; | 
|  | if (s->s3.tmp.new_cipher != NULL) { | 
|  | algenc = s->s3.tmp.new_cipher->algorithm_enc; | 
|  | } else if (s->session->cipher != NULL) { | 
|  | /* We've not selected a cipher yet - we must be doing early data */ | 
|  | algenc = s->session->cipher->algorithm_enc; | 
|  | } else if (s->psksession != NULL && s->psksession->cipher != NULL) { | 
|  | /* We must be doing early data with out-of-band PSK */ | 
|  | algenc = s->psksession->cipher->algorithm_enc; | 
|  | } else { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); | 
|  | return 0; | 
|  | } | 
|  | if (algenc & (SSL_AES128CCM8 | SSL_AES256CCM8)) | 
|  | taglen = EVP_CCM8_TLS_TAG_LEN; | 
|  | else | 
|  | taglen = EVP_CCM_TLS_TAG_LEN; | 
|  | } else { | 
|  | ivlen = EVP_CIPHER_get_iv_length(ciph); | 
|  | taglen = 0; | 
|  | } | 
|  |  | 
|  | if (!tls13_derive_key(s, md, secret, key, keylen) | 
|  | || !tls13_derive_iv(s, md, secret, iv, ivlen)) { | 
|  | /* SSLfatal() already called */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (EVP_CipherInit_ex(ciph_ctx, ciph, NULL, NULL, NULL, sending) <= 0 | 
|  | || !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL) | 
|  | || (taglen != 0 && !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_TAG, | 
|  | taglen, NULL)) | 
|  | || EVP_CipherInit_ex(ciph_ctx, NULL, NULL, key, NULL, -1) <= 0) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int tls13_change_cipher_state(SSL *s, int which) | 
|  | { | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const unsigned char client_early_traffic[]       = {0x63, 0x20, 0x65, 0x20,       /*traffic*/0x74, 0x72, 0x61, 0x66, 0x66, 0x69, 0x63, 0x00}; | 
|  | static const unsigned char client_handshake_traffic[]   = {0x63, 0x20, 0x68, 0x73, 0x20, /*traffic*/0x74, 0x72, 0x61, 0x66, 0x66, 0x69, 0x63, 0x00}; | 
|  | static const unsigned char client_application_traffic[] = {0x63, 0x20, 0x61, 0x70, 0x20, /*traffic*/0x74, 0x72, 0x61, 0x66, 0x66, 0x69, 0x63, 0x00}; | 
|  | static const unsigned char server_handshake_traffic[]   = {0x73, 0x20, 0x68, 0x73, 0x20, /*traffic*/0x74, 0x72, 0x61, 0x66, 0x66, 0x69, 0x63, 0x00}; | 
|  | static const unsigned char server_application_traffic[] = {0x73, 0x20, 0x61, 0x70, 0x20, /*traffic*/0x74, 0x72, 0x61, 0x66, 0x66, 0x69, 0x63, 0x00}; | 
|  | static const unsigned char exporter_master_secret[] = {0x65, 0x78, 0x70, 0x20,                    /* master*/  0x6D, 0x61, 0x73, 0x74, 0x65, 0x72, 0x00}; | 
|  | static const unsigned char resumption_master_secret[] = {0x72, 0x65, 0x73, 0x20,                  /* master*/  0x6D, 0x61, 0x73, 0x74, 0x65, 0x72, 0x00}; | 
|  | static const unsigned char early_exporter_master_secret[] = {0x65, 0x20, 0x65, 0x78, 0x70, 0x20,  /* master*/  0x6D, 0x61, 0x73, 0x74, 0x65, 0x72, 0x00}; | 
|  | #else | 
|  | static const unsigned char client_early_traffic[] = "c e traffic"; | 
|  | static const unsigned char client_handshake_traffic[] = "c hs traffic"; | 
|  | static const unsigned char client_application_traffic[] = "c ap traffic"; | 
|  | static const unsigned char server_handshake_traffic[] = "s hs traffic"; | 
|  | static const unsigned char server_application_traffic[] = "s ap traffic"; | 
|  | static const unsigned char exporter_master_secret[] = "exp master"; | 
|  | static const unsigned char resumption_master_secret[] = "res master"; | 
|  | static const unsigned char early_exporter_master_secret[] = "e exp master"; | 
|  | #endif | 
|  | unsigned char *iv; | 
|  | unsigned char key[EVP_MAX_KEY_LENGTH]; | 
|  | unsigned char secret[EVP_MAX_MD_SIZE]; | 
|  | unsigned char hashval[EVP_MAX_MD_SIZE]; | 
|  | unsigned char *hash = hashval; | 
|  | unsigned char *insecret; | 
|  | unsigned char *finsecret = NULL; | 
|  | const char *log_label = NULL; | 
|  | EVP_CIPHER_CTX *ciph_ctx; | 
|  | size_t finsecretlen = 0; | 
|  | const unsigned char *label; | 
|  | size_t labellen, hashlen = 0; | 
|  | int ret = 0; | 
|  | const EVP_MD *md = NULL; | 
|  | const EVP_CIPHER *cipher = NULL; | 
|  | #if !defined(OPENSSL_NO_KTLS) && defined(OPENSSL_KTLS_TLS13) | 
|  | ktls_crypto_info_t crypto_info; | 
|  | BIO *bio; | 
|  | #endif | 
|  |  | 
|  | if (which & SSL3_CC_READ) { | 
|  | if (s->enc_read_ctx != NULL) { | 
|  | EVP_CIPHER_CTX_reset(s->enc_read_ctx); | 
|  | } else { | 
|  | s->enc_read_ctx = EVP_CIPHER_CTX_new(); | 
|  | if (s->enc_read_ctx == NULL) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | ciph_ctx = s->enc_read_ctx; | 
|  | iv = s->read_iv; | 
|  |  | 
|  | RECORD_LAYER_reset_read_sequence(&s->rlayer); | 
|  | } else { | 
|  | s->statem.enc_write_state = ENC_WRITE_STATE_INVALID; | 
|  | if (s->enc_write_ctx != NULL) { | 
|  | EVP_CIPHER_CTX_reset(s->enc_write_ctx); | 
|  | } else { | 
|  | s->enc_write_ctx = EVP_CIPHER_CTX_new(); | 
|  | if (s->enc_write_ctx == NULL) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | ciph_ctx = s->enc_write_ctx; | 
|  | iv = s->write_iv; | 
|  |  | 
|  | RECORD_LAYER_reset_write_sequence(&s->rlayer); | 
|  | } | 
|  |  | 
|  | if (((which & SSL3_CC_CLIENT) && (which & SSL3_CC_WRITE)) | 
|  | || ((which & SSL3_CC_SERVER) && (which & SSL3_CC_READ))) { | 
|  | if (which & SSL3_CC_EARLY) { | 
|  | EVP_MD_CTX *mdctx = NULL; | 
|  | long handlen; | 
|  | void *hdata; | 
|  | unsigned int hashlenui; | 
|  | const SSL_CIPHER *sslcipher = SSL_SESSION_get0_cipher(s->session); | 
|  |  | 
|  | insecret = s->early_secret; | 
|  | label = client_early_traffic; | 
|  | labellen = sizeof(client_early_traffic) - 1; | 
|  | log_label = CLIENT_EARLY_LABEL; | 
|  |  | 
|  | handlen = BIO_get_mem_data(s->s3.handshake_buffer, &hdata); | 
|  | if (handlen <= 0) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_HANDSHAKE_LENGTH); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (s->early_data_state == SSL_EARLY_DATA_CONNECTING | 
|  | && s->max_early_data > 0 | 
|  | && s->session->ext.max_early_data == 0) { | 
|  | /* | 
|  | * If we are attempting to send early data, and we've decided to | 
|  | * actually do it but max_early_data in s->session is 0 then we | 
|  | * must be using an external PSK. | 
|  | */ | 
|  | if (!ossl_assert(s->psksession != NULL | 
|  | && s->max_early_data == | 
|  | s->psksession->ext.max_early_data)) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  | sslcipher = SSL_SESSION_get0_cipher(s->psksession); | 
|  | } | 
|  | if (sslcipher == NULL) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_PSK); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to calculate the handshake digest using the digest from | 
|  | * the session. We haven't yet selected our ciphersuite so we can't | 
|  | * use ssl_handshake_md(). | 
|  | */ | 
|  | mdctx = EVP_MD_CTX_new(); | 
|  | if (mdctx == NULL) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This ups the ref count on cipher so we better make sure we free | 
|  | * it again | 
|  | */ | 
|  | if (!ssl_cipher_get_evp_cipher(s->ctx, sslcipher, &cipher)) { | 
|  | /* Error is already recorded */ | 
|  | SSLfatal_alert(s, SSL_AD_INTERNAL_ERROR); | 
|  | EVP_MD_CTX_free(mdctx); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | md = ssl_md(s->ctx, sslcipher->algorithm2); | 
|  | if (md == NULL || !EVP_DigestInit_ex(mdctx, md, NULL) | 
|  | || !EVP_DigestUpdate(mdctx, hdata, handlen) | 
|  | || !EVP_DigestFinal_ex(mdctx, hashval, &hashlenui)) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | EVP_MD_CTX_free(mdctx); | 
|  | goto err; | 
|  | } | 
|  | hashlen = hashlenui; | 
|  | EVP_MD_CTX_free(mdctx); | 
|  |  | 
|  | if (!tls13_hkdf_expand(s, md, insecret, | 
|  | early_exporter_master_secret, | 
|  | sizeof(early_exporter_master_secret) - 1, | 
|  | hashval, hashlen, | 
|  | s->early_exporter_master_secret, hashlen, | 
|  | 1)) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!ssl_log_secret(s, EARLY_EXPORTER_SECRET_LABEL, | 
|  | s->early_exporter_master_secret, hashlen)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  | } else if (which & SSL3_CC_HANDSHAKE) { | 
|  | insecret = s->handshake_secret; | 
|  | finsecret = s->client_finished_secret; | 
|  | finsecretlen = EVP_MD_get_size(ssl_handshake_md(s)); | 
|  | label = client_handshake_traffic; | 
|  | labellen = sizeof(client_handshake_traffic) - 1; | 
|  | log_label = CLIENT_HANDSHAKE_LABEL; | 
|  | /* | 
|  | * The handshake hash used for the server read/client write handshake | 
|  | * traffic secret is the same as the hash for the server | 
|  | * write/client read handshake traffic secret. However, if we | 
|  | * processed early data then we delay changing the server | 
|  | * read/client write cipher state until later, and the handshake | 
|  | * hashes have moved on. Therefore we use the value saved earlier | 
|  | * when we did the server write/client read change cipher state. | 
|  | */ | 
|  | hash = s->handshake_traffic_hash; | 
|  | } else { | 
|  | insecret = s->master_secret; | 
|  | label = client_application_traffic; | 
|  | labellen = sizeof(client_application_traffic) - 1; | 
|  | log_label = CLIENT_APPLICATION_LABEL; | 
|  | /* | 
|  | * For this we only use the handshake hashes up until the server | 
|  | * Finished hash. We do not include the client's Finished, which is | 
|  | * what ssl_handshake_hash() would give us. Instead we use the | 
|  | * previously saved value. | 
|  | */ | 
|  | hash = s->server_finished_hash; | 
|  | } | 
|  | } else { | 
|  | /* Early data never applies to client-read/server-write */ | 
|  | if (which & SSL3_CC_HANDSHAKE) { | 
|  | insecret = s->handshake_secret; | 
|  | finsecret = s->server_finished_secret; | 
|  | finsecretlen = EVP_MD_get_size(ssl_handshake_md(s)); | 
|  | label = server_handshake_traffic; | 
|  | labellen = sizeof(server_handshake_traffic) - 1; | 
|  | log_label = SERVER_HANDSHAKE_LABEL; | 
|  | } else { | 
|  | insecret = s->master_secret; | 
|  | label = server_application_traffic; | 
|  | labellen = sizeof(server_application_traffic) - 1; | 
|  | log_label = SERVER_APPLICATION_LABEL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(which & SSL3_CC_EARLY)) { | 
|  | md = ssl_handshake_md(s); | 
|  | cipher = s->s3.tmp.new_sym_enc; | 
|  | if (!ssl3_digest_cached_records(s, 1) | 
|  | || !ssl_handshake_hash(s, hashval, sizeof(hashval), &hashlen)) { | 
|  | /* SSLfatal() already called */; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save the hash of handshakes up to now for use when we calculate the | 
|  | * client application traffic secret | 
|  | */ | 
|  | if (label == server_application_traffic) | 
|  | memcpy(s->server_finished_hash, hashval, hashlen); | 
|  |  | 
|  | if (label == server_handshake_traffic) | 
|  | memcpy(s->handshake_traffic_hash, hashval, hashlen); | 
|  |  | 
|  | if (label == client_application_traffic) { | 
|  | /* | 
|  | * We also create the resumption master secret, but this time use the | 
|  | * hash for the whole handshake including the Client Finished | 
|  | */ | 
|  | if (!tls13_hkdf_expand(s, ssl_handshake_md(s), insecret, | 
|  | resumption_master_secret, | 
|  | sizeof(resumption_master_secret) - 1, | 
|  | hashval, hashlen, s->resumption_master_secret, | 
|  | hashlen, 1)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check whether cipher is known */ | 
|  | if(!ossl_assert(cipher != NULL)) | 
|  | goto err; | 
|  |  | 
|  | if (!derive_secret_key_and_iv(s, which & SSL3_CC_WRITE, md, cipher, | 
|  | insecret, hash, label, labellen, secret, key, | 
|  | iv, ciph_ctx)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (label == server_application_traffic) { | 
|  | memcpy(s->server_app_traffic_secret, secret, hashlen); | 
|  | /* Now we create the exporter master secret */ | 
|  | if (!tls13_hkdf_expand(s, ssl_handshake_md(s), insecret, | 
|  | exporter_master_secret, | 
|  | sizeof(exporter_master_secret) - 1, | 
|  | hash, hashlen, s->exporter_master_secret, | 
|  | hashlen, 1)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!ssl_log_secret(s, EXPORTER_SECRET_LABEL, s->exporter_master_secret, | 
|  | hashlen)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  | } else if (label == client_application_traffic) | 
|  | memcpy(s->client_app_traffic_secret, secret, hashlen); | 
|  |  | 
|  | if (!ssl_log_secret(s, log_label, secret, hashlen)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (finsecret != NULL | 
|  | && !tls13_derive_finishedkey(s, ssl_handshake_md(s), secret, | 
|  | finsecret, finsecretlen)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!s->server && label == client_early_traffic) | 
|  | s->statem.enc_write_state = ENC_WRITE_STATE_WRITE_PLAIN_ALERTS; | 
|  | else | 
|  | s->statem.enc_write_state = ENC_WRITE_STATE_VALID; | 
|  | #ifndef OPENSSL_NO_KTLS | 
|  | # if defined(OPENSSL_KTLS_TLS13) | 
|  | if (!(which & SSL3_CC_WRITE) | 
|  | || !(which & SSL3_CC_APPLICATION) | 
|  | || (s->options & SSL_OP_ENABLE_KTLS) == 0) | 
|  | goto skip_ktls; | 
|  |  | 
|  | /* ktls supports only the maximum fragment size */ | 
|  | if (ssl_get_max_send_fragment(s) != SSL3_RT_MAX_PLAIN_LENGTH) | 
|  | goto skip_ktls; | 
|  |  | 
|  | /* ktls does not support record padding */ | 
|  | if (s->record_padding_cb != NULL) | 
|  | goto skip_ktls; | 
|  |  | 
|  | /* check that cipher is supported */ | 
|  | if (!ktls_check_supported_cipher(s, cipher, ciph_ctx)) | 
|  | goto skip_ktls; | 
|  |  | 
|  | bio = s->wbio; | 
|  |  | 
|  | if (!ossl_assert(bio != NULL)) { | 
|  | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* All future data will get encrypted by ktls. Flush the BIO or skip ktls */ | 
|  | if (BIO_flush(bio) <= 0) | 
|  | goto skip_ktls; | 
|  |  | 
|  | /* configure kernel crypto structure */ | 
|  | if (!ktls_configure_crypto(s, cipher, ciph_ctx, | 
|  | RECORD_LAYER_get_write_sequence(&s->rlayer), | 
|  | &crypto_info, NULL, iv, key, NULL, 0)) | 
|  | goto skip_ktls; | 
|  |  | 
|  | /* ktls works with user provided buffers directly */ | 
|  | if (BIO_set_ktls(bio, &crypto_info, which & SSL3_CC_WRITE)) | 
|  | ssl3_release_write_buffer(s); | 
|  | skip_ktls: | 
|  | # endif | 
|  | #endif | 
|  | ret = 1; | 
|  | err: | 
|  | if ((which & SSL3_CC_EARLY) != 0) { | 
|  | /* We up-refed this so now we need to down ref */ | 
|  | ssl_evp_cipher_free(cipher); | 
|  | } | 
|  | OPENSSL_cleanse(key, sizeof(key)); | 
|  | OPENSSL_cleanse(secret, sizeof(secret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int tls13_update_key(SSL *s, int sending) | 
|  | { | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const unsigned char application_traffic[] = { 0x74, 0x72 ,0x61 ,0x66 ,0x66 ,0x69 ,0x63 ,0x20 ,0x75 ,0x70 ,0x64, 0x00}; | 
|  | #else | 
|  | static const unsigned char application_traffic[] = "traffic upd"; | 
|  | #endif | 
|  | const EVP_MD *md = ssl_handshake_md(s); | 
|  | size_t hashlen = EVP_MD_get_size(md); | 
|  | unsigned char key[EVP_MAX_KEY_LENGTH]; | 
|  | unsigned char *insecret, *iv; | 
|  | unsigned char secret[EVP_MAX_MD_SIZE]; | 
|  | EVP_CIPHER_CTX *ciph_ctx; | 
|  | int ret = 0; | 
|  |  | 
|  | if (s->server == sending) | 
|  | insecret = s->server_app_traffic_secret; | 
|  | else | 
|  | insecret = s->client_app_traffic_secret; | 
|  |  | 
|  | if (sending) { | 
|  | s->statem.enc_write_state = ENC_WRITE_STATE_INVALID; | 
|  | iv = s->write_iv; | 
|  | ciph_ctx = s->enc_write_ctx; | 
|  | RECORD_LAYER_reset_write_sequence(&s->rlayer); | 
|  | } else { | 
|  | iv = s->read_iv; | 
|  | ciph_ctx = s->enc_read_ctx; | 
|  | RECORD_LAYER_reset_read_sequence(&s->rlayer); | 
|  | } | 
|  |  | 
|  | if (!derive_secret_key_and_iv(s, sending, ssl_handshake_md(s), | 
|  | s->s3.tmp.new_sym_enc, insecret, NULL, | 
|  | application_traffic, | 
|  | sizeof(application_traffic) - 1, secret, key, | 
|  | iv, ciph_ctx)) { | 
|  | /* SSLfatal() already called */ | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | memcpy(insecret, secret, hashlen); | 
|  |  | 
|  | s->statem.enc_write_state = ENC_WRITE_STATE_VALID; | 
|  | ret = 1; | 
|  | err: | 
|  | OPENSSL_cleanse(key, sizeof(key)); | 
|  | OPENSSL_cleanse(secret, sizeof(secret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int tls13_alert_code(int code) | 
|  | { | 
|  | /* There are 2 additional alerts in TLSv1.3 compared to TLSv1.2 */ | 
|  | if (code == SSL_AD_MISSING_EXTENSION || code == SSL_AD_CERTIFICATE_REQUIRED) | 
|  | return code; | 
|  |  | 
|  | return tls1_alert_code(code); | 
|  | } | 
|  |  | 
|  | int tls13_export_keying_material(SSL *s, unsigned char *out, size_t olen, | 
|  | const char *label, size_t llen, | 
|  | const unsigned char *context, | 
|  | size_t contextlen, int use_context) | 
|  | { | 
|  | unsigned char exportsecret[EVP_MAX_MD_SIZE]; | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const unsigned char exporterlabel[] = {0x65, 0x78, 0x70, 0x6F, 0x72, 0x74, 0x65, 0x72, 0x00}; | 
|  | #else | 
|  | static const unsigned char exporterlabel[] = "exporter"; | 
|  | #endif | 
|  | unsigned char hash[EVP_MAX_MD_SIZE], data[EVP_MAX_MD_SIZE]; | 
|  | const EVP_MD *md = ssl_handshake_md(s); | 
|  | EVP_MD_CTX *ctx = EVP_MD_CTX_new(); | 
|  | unsigned int hashsize, datalen; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ctx == NULL || !ossl_statem_export_allowed(s)) | 
|  | goto err; | 
|  |  | 
|  | if (!use_context) | 
|  | contextlen = 0; | 
|  |  | 
|  | if (EVP_DigestInit_ex(ctx, md, NULL) <= 0 | 
|  | || EVP_DigestUpdate(ctx, context, contextlen) <= 0 | 
|  | || EVP_DigestFinal_ex(ctx, hash, &hashsize) <= 0 | 
|  | || EVP_DigestInit_ex(ctx, md, NULL) <= 0 | 
|  | || EVP_DigestFinal_ex(ctx, data, &datalen) <= 0 | 
|  | || !tls13_hkdf_expand(s, md, s->exporter_master_secret, | 
|  | (const unsigned char *)label, llen, | 
|  | data, datalen, exportsecret, hashsize, 0) | 
|  | || !tls13_hkdf_expand(s, md, exportsecret, exporterlabel, | 
|  | sizeof(exporterlabel) - 1, hash, hashsize, | 
|  | out, olen, 0)) | 
|  | goto err; | 
|  |  | 
|  | ret = 1; | 
|  | err: | 
|  | EVP_MD_CTX_free(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int tls13_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, | 
|  | const char *label, size_t llen, | 
|  | const unsigned char *context, | 
|  | size_t contextlen) | 
|  | { | 
|  | #ifdef CHARSET_EBCDIC | 
|  | static const unsigned char exporterlabel[] = {0x65, 0x78, 0x70, 0x6F, 0x72, 0x74, 0x65, 0x72, 0x00}; | 
|  | #else | 
|  | static const unsigned char exporterlabel[] = "exporter"; | 
|  | #endif | 
|  | unsigned char exportsecret[EVP_MAX_MD_SIZE]; | 
|  | unsigned char hash[EVP_MAX_MD_SIZE], data[EVP_MAX_MD_SIZE]; | 
|  | const EVP_MD *md; | 
|  | EVP_MD_CTX *ctx = EVP_MD_CTX_new(); | 
|  | unsigned int hashsize, datalen; | 
|  | int ret = 0; | 
|  | const SSL_CIPHER *sslcipher; | 
|  |  | 
|  | if (ctx == NULL || !ossl_statem_export_early_allowed(s)) | 
|  | goto err; | 
|  |  | 
|  | if (!s->server && s->max_early_data > 0 | 
|  | && s->session->ext.max_early_data == 0) | 
|  | sslcipher = SSL_SESSION_get0_cipher(s->psksession); | 
|  | else | 
|  | sslcipher = SSL_SESSION_get0_cipher(s->session); | 
|  |  | 
|  | md = ssl_md(s->ctx, sslcipher->algorithm2); | 
|  |  | 
|  | /* | 
|  | * Calculate the hash value and store it in |data|. The reason why | 
|  | * the empty string is used is that the definition of TLS-Exporter | 
|  | * is like so: | 
|  | * | 
|  | * TLS-Exporter(label, context_value, key_length) = | 
|  | *     HKDF-Expand-Label(Derive-Secret(Secret, label, ""), | 
|  | *                       "exporter", Hash(context_value), key_length) | 
|  | * | 
|  | * Derive-Secret(Secret, Label, Messages) = | 
|  | *       HKDF-Expand-Label(Secret, Label, | 
|  | *                         Transcript-Hash(Messages), Hash.length) | 
|  | * | 
|  | * Here Transcript-Hash is the cipher suite hash algorithm. | 
|  | */ | 
|  | if (EVP_DigestInit_ex(ctx, md, NULL) <= 0 | 
|  | || EVP_DigestUpdate(ctx, context, contextlen) <= 0 | 
|  | || EVP_DigestFinal_ex(ctx, hash, &hashsize) <= 0 | 
|  | || EVP_DigestInit_ex(ctx, md, NULL) <= 0 | 
|  | || EVP_DigestFinal_ex(ctx, data, &datalen) <= 0 | 
|  | || !tls13_hkdf_expand(s, md, s->early_exporter_master_secret, | 
|  | (const unsigned char *)label, llen, | 
|  | data, datalen, exportsecret, hashsize, 0) | 
|  | || !tls13_hkdf_expand(s, md, exportsecret, exporterlabel, | 
|  | sizeof(exporterlabel) - 1, hash, hashsize, | 
|  | out, olen, 0)) | 
|  | goto err; | 
|  |  | 
|  | ret = 1; | 
|  | err: | 
|  | EVP_MD_CTX_free(ctx); | 
|  | return ret; | 
|  | } |