|  | /* | 
|  | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include "internal/cryptlib.h" | 
|  | #include "bn_lcl.h" | 
|  |  | 
|  | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) | 
|  | /* | 
|  | * Here follows specialised variants of bn_add_words() and bn_sub_words(). | 
|  | * They have the property performing operations on arrays of different sizes. | 
|  | * The sizes of those arrays is expressed through cl, which is the common | 
|  | * length ( basically, min(len(a),len(b)) ), and dl, which is the delta | 
|  | * between the two lengths, calculated as len(a)-len(b). All lengths are the | 
|  | * number of BN_ULONGs...  For the operations that require a result array as | 
|  | * parameter, it must have the length cl+abs(dl). These functions should | 
|  | * probably end up in bn_asm.c as soon as there are assembler counterparts | 
|  | * for the systems that use assembler files. | 
|  | */ | 
|  |  | 
|  | BN_ULONG bn_sub_part_words(BN_ULONG *r, | 
|  | const BN_ULONG *a, const BN_ULONG *b, | 
|  | int cl, int dl) | 
|  | { | 
|  | BN_ULONG c, t; | 
|  |  | 
|  | assert(cl >= 0); | 
|  | c = bn_sub_words(r, a, b, cl); | 
|  |  | 
|  | if (dl == 0) | 
|  | return c; | 
|  |  | 
|  | r += cl; | 
|  | a += cl; | 
|  | b += cl; | 
|  |  | 
|  | if (dl < 0) { | 
|  | for (;;) { | 
|  | t = b[0]; | 
|  | r[0] = (0 - t - c) & BN_MASK2; | 
|  | if (t != 0) | 
|  | c = 1; | 
|  | if (++dl >= 0) | 
|  | break; | 
|  |  | 
|  | t = b[1]; | 
|  | r[1] = (0 - t - c) & BN_MASK2; | 
|  | if (t != 0) | 
|  | c = 1; | 
|  | if (++dl >= 0) | 
|  | break; | 
|  |  | 
|  | t = b[2]; | 
|  | r[2] = (0 - t - c) & BN_MASK2; | 
|  | if (t != 0) | 
|  | c = 1; | 
|  | if (++dl >= 0) | 
|  | break; | 
|  |  | 
|  | t = b[3]; | 
|  | r[3] = (0 - t - c) & BN_MASK2; | 
|  | if (t != 0) | 
|  | c = 1; | 
|  | if (++dl >= 0) | 
|  | break; | 
|  |  | 
|  | b += 4; | 
|  | r += 4; | 
|  | } | 
|  | } else { | 
|  | int save_dl = dl; | 
|  | while (c) { | 
|  | t = a[0]; | 
|  | r[0] = (t - c) & BN_MASK2; | 
|  | if (t != 0) | 
|  | c = 0; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  |  | 
|  | t = a[1]; | 
|  | r[1] = (t - c) & BN_MASK2; | 
|  | if (t != 0) | 
|  | c = 0; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  |  | 
|  | t = a[2]; | 
|  | r[2] = (t - c) & BN_MASK2; | 
|  | if (t != 0) | 
|  | c = 0; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  |  | 
|  | t = a[3]; | 
|  | r[3] = (t - c) & BN_MASK2; | 
|  | if (t != 0) | 
|  | c = 0; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  |  | 
|  | save_dl = dl; | 
|  | a += 4; | 
|  | r += 4; | 
|  | } | 
|  | if (dl > 0) { | 
|  | if (save_dl > dl) { | 
|  | switch (save_dl - dl) { | 
|  | case 1: | 
|  | r[1] = a[1]; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  | /* fall thru */ | 
|  | case 2: | 
|  | r[2] = a[2]; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  | /* fall thru */ | 
|  | case 3: | 
|  | r[3] = a[3]; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  | } | 
|  | a += 4; | 
|  | r += 4; | 
|  | } | 
|  | } | 
|  | if (dl > 0) { | 
|  | for (;;) { | 
|  | r[0] = a[0]; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  | r[1] = a[1]; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  | r[2] = a[2]; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  | r[3] = a[3]; | 
|  | if (--dl <= 0) | 
|  | break; | 
|  |  | 
|  | a += 4; | 
|  | r += 4; | 
|  | } | 
|  | } | 
|  | } | 
|  | return c; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef BN_RECURSION | 
|  | /* | 
|  | * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of | 
|  | * Computer Programming, Vol. 2) | 
|  | */ | 
|  |  | 
|  | /*- | 
|  | * r is 2*n2 words in size, | 
|  | * a and b are both n2 words in size. | 
|  | * n2 must be a power of 2. | 
|  | * We multiply and return the result. | 
|  | * t must be 2*n2 words in size | 
|  | * We calculate | 
|  | * a[0]*b[0] | 
|  | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | 
|  | * a[1]*b[1] | 
|  | */ | 
|  | /* dnX may not be positive, but n2/2+dnX has to be */ | 
|  | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | 
|  | int dna, int dnb, BN_ULONG *t) | 
|  | { | 
|  | int n = n2 / 2, c1, c2; | 
|  | int tna = n + dna, tnb = n + dnb; | 
|  | unsigned int neg, zero; | 
|  | BN_ULONG ln, lo, *p; | 
|  |  | 
|  | # ifdef BN_MUL_COMBA | 
|  | #  if 0 | 
|  | if (n2 == 4) { | 
|  | bn_mul_comba4(r, a, b); | 
|  | return; | 
|  | } | 
|  | #  endif | 
|  | /* | 
|  | * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete | 
|  | * [steve] | 
|  | */ | 
|  | if (n2 == 8 && dna == 0 && dnb == 0) { | 
|  | bn_mul_comba8(r, a, b); | 
|  | return; | 
|  | } | 
|  | # endif                         /* BN_MUL_COMBA */ | 
|  | /* Else do normal multiply */ | 
|  | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); | 
|  | if ((dna + dnb) < 0) | 
|  | memset(&r[2 * n2 + dna + dnb], 0, | 
|  | sizeof(BN_ULONG) * -(dna + dnb)); | 
|  | return; | 
|  | } | 
|  | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | 
|  | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | 
|  | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); | 
|  | zero = neg = 0; | 
|  | switch (c1 * 3 + c2) { | 
|  | case -4: | 
|  | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | 
|  | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | 
|  | break; | 
|  | case -3: | 
|  | zero = 1; | 
|  | break; | 
|  | case -2: | 
|  | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | 
|  | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ | 
|  | neg = 1; | 
|  | break; | 
|  | case -1: | 
|  | case 0: | 
|  | case 1: | 
|  | zero = 1; | 
|  | break; | 
|  | case 2: | 
|  | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ | 
|  | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | 
|  | neg = 1; | 
|  | break; | 
|  | case 3: | 
|  | zero = 1; | 
|  | break; | 
|  | case 4: | 
|  | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); | 
|  | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); | 
|  | break; | 
|  | } | 
|  |  | 
|  | # ifdef BN_MUL_COMBA | 
|  | if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take | 
|  | * extra args to do this well */ | 
|  | if (!zero) | 
|  | bn_mul_comba4(&(t[n2]), t, &(t[n])); | 
|  | else | 
|  | memset(&t[n2], 0, sizeof(*t) * 8); | 
|  |  | 
|  | bn_mul_comba4(r, a, b); | 
|  | bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); | 
|  | } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could | 
|  | * take extra args to do | 
|  | * this well */ | 
|  | if (!zero) | 
|  | bn_mul_comba8(&(t[n2]), t, &(t[n])); | 
|  | else | 
|  | memset(&t[n2], 0, sizeof(*t) * 16); | 
|  |  | 
|  | bn_mul_comba8(r, a, b); | 
|  | bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); | 
|  | } else | 
|  | # endif                         /* BN_MUL_COMBA */ | 
|  | { | 
|  | p = &(t[n2 * 2]); | 
|  | if (!zero) | 
|  | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | 
|  | else | 
|  | memset(&t[n2], 0, sizeof(*t) * n2); | 
|  | bn_mul_recursive(r, a, b, n, 0, 0, p); | 
|  | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); | 
|  | } | 
|  |  | 
|  | /*- | 
|  | * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) | 
|  | */ | 
|  |  | 
|  | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | 
|  |  | 
|  | if (neg) {                  /* if t[32] is negative */ | 
|  | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | 
|  | } else { | 
|  | /* Might have a carry */ | 
|  | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | 
|  | } | 
|  |  | 
|  | /*- | 
|  | * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) | 
|  | * c1 holds the carry bits | 
|  | */ | 
|  | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | 
|  | if (c1) { | 
|  | p = &(r[n + n2]); | 
|  | lo = *p; | 
|  | ln = (lo + c1) & BN_MASK2; | 
|  | *p = ln; | 
|  |  | 
|  | /* | 
|  | * The overflow will stop before we over write words we should not | 
|  | * overwrite | 
|  | */ | 
|  | if (ln < (BN_ULONG)c1) { | 
|  | do { | 
|  | p++; | 
|  | lo = *p; | 
|  | ln = (lo + 1) & BN_MASK2; | 
|  | *p = ln; | 
|  | } while (ln == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * n+tn is the word length t needs to be n*4 is size, as does r | 
|  | */ | 
|  | /* tnX may not be negative but less than n */ | 
|  | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, | 
|  | int tna, int tnb, BN_ULONG *t) | 
|  | { | 
|  | int i, j, n2 = n * 2; | 
|  | int c1, c2, neg; | 
|  | BN_ULONG ln, lo, *p; | 
|  |  | 
|  | if (n < 8) { | 
|  | bn_mul_normal(r, a, n + tna, b, n + tnb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | 
|  | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | 
|  | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); | 
|  | neg = 0; | 
|  | switch (c1 * 3 + c2) { | 
|  | case -4: | 
|  | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | 
|  | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | 
|  | break; | 
|  | case -3: | 
|  | case -2: | 
|  | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | 
|  | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ | 
|  | neg = 1; | 
|  | break; | 
|  | case -1: | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ | 
|  | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | 
|  | neg = 1; | 
|  | break; | 
|  | case 3: | 
|  | case 4: | 
|  | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); | 
|  | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * The zero case isn't yet implemented here. The speedup would probably | 
|  | * be negligible. | 
|  | */ | 
|  | # if 0 | 
|  | if (n == 4) { | 
|  | bn_mul_comba4(&(t[n2]), t, &(t[n])); | 
|  | bn_mul_comba4(r, a, b); | 
|  | bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); | 
|  | memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2)); | 
|  | } else | 
|  | # endif | 
|  | if (n == 8) { | 
|  | bn_mul_comba8(&(t[n2]), t, &(t[n])); | 
|  | bn_mul_comba8(r, a, b); | 
|  | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); | 
|  | memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb)); | 
|  | } else { | 
|  | p = &(t[n2 * 2]); | 
|  | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | 
|  | bn_mul_recursive(r, a, b, n, 0, 0, p); | 
|  | i = n / 2; | 
|  | /* | 
|  | * If there is only a bottom half to the number, just do it | 
|  | */ | 
|  | if (tna > tnb) | 
|  | j = tna - i; | 
|  | else | 
|  | j = tnb - i; | 
|  | if (j == 0) { | 
|  | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), | 
|  | i, tna - i, tnb - i, p); | 
|  | memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2)); | 
|  | } else if (j > 0) {     /* eg, n == 16, i == 8 and tn == 11 */ | 
|  | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), | 
|  | i, tna - i, tnb - i, p); | 
|  | memset(&(r[n2 + tna + tnb]), 0, | 
|  | sizeof(BN_ULONG) * (n2 - tna - tnb)); | 
|  | } else {                /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | 
|  |  | 
|  | memset(&r[n2], 0, sizeof(*r) * n2); | 
|  | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL | 
|  | && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); | 
|  | } else { | 
|  | for (;;) { | 
|  | i /= 2; | 
|  | /* | 
|  | * these simplified conditions work exclusively because | 
|  | * difference between tna and tnb is 1 or 0 | 
|  | */ | 
|  | if (i < tna || i < tnb) { | 
|  | bn_mul_part_recursive(&(r[n2]), | 
|  | &(a[n]), &(b[n]), | 
|  | i, tna - i, tnb - i, p); | 
|  | break; | 
|  | } else if (i == tna || i == tnb) { | 
|  | bn_mul_recursive(&(r[n2]), | 
|  | &(a[n]), &(b[n]), | 
|  | i, tna - i, tnb - i, p); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*- | 
|  | * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) | 
|  | */ | 
|  |  | 
|  | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | 
|  |  | 
|  | if (neg) {                  /* if t[32] is negative */ | 
|  | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | 
|  | } else { | 
|  | /* Might have a carry */ | 
|  | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | 
|  | } | 
|  |  | 
|  | /*- | 
|  | * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | 
|  | * r[10] holds (a[0]*b[0]) | 
|  | * r[32] holds (b[1]*b[1]) | 
|  | * c1 holds the carry bits | 
|  | */ | 
|  | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | 
|  | if (c1) { | 
|  | p = &(r[n + n2]); | 
|  | lo = *p; | 
|  | ln = (lo + c1) & BN_MASK2; | 
|  | *p = ln; | 
|  |  | 
|  | /* | 
|  | * The overflow will stop before we over write words we should not | 
|  | * overwrite | 
|  | */ | 
|  | if (ln < (BN_ULONG)c1) { | 
|  | do { | 
|  | p++; | 
|  | lo = *p; | 
|  | ln = (lo + 1) & BN_MASK2; | 
|  | *p = ln; | 
|  | } while (ln == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*- | 
|  | * a and b must be the same size, which is n2. | 
|  | * r needs to be n2 words and t needs to be n2*2 | 
|  | */ | 
|  | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | 
|  | BN_ULONG *t) | 
|  | { | 
|  | int n = n2 / 2; | 
|  |  | 
|  | bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); | 
|  | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { | 
|  | bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); | 
|  | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | 
|  | bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); | 
|  | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | 
|  | } else { | 
|  | bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); | 
|  | bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); | 
|  | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | 
|  | bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); | 
|  | } | 
|  | } | 
|  | #endif                          /* BN_RECURSION */ | 
|  |  | 
|  | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | 
|  | { | 
|  | int ret = bn_mul_fixed_top(r, a, b, ctx); | 
|  |  | 
|  | bn_correct_top(r); | 
|  | bn_check_top(r); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | int top, al, bl; | 
|  | BIGNUM *rr; | 
|  | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | 
|  | int i; | 
|  | #endif | 
|  | #ifdef BN_RECURSION | 
|  | BIGNUM *t = NULL; | 
|  | int j = 0, k; | 
|  | #endif | 
|  |  | 
|  | bn_check_top(a); | 
|  | bn_check_top(b); | 
|  | bn_check_top(r); | 
|  |  | 
|  | al = a->top; | 
|  | bl = b->top; | 
|  |  | 
|  | if ((al == 0) || (bl == 0)) { | 
|  | BN_zero(r); | 
|  | return 1; | 
|  | } | 
|  | top = al + bl; | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | if ((r == a) || (r == b)) { | 
|  | if ((rr = BN_CTX_get(ctx)) == NULL) | 
|  | goto err; | 
|  | } else | 
|  | rr = r; | 
|  |  | 
|  | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | 
|  | i = al - bl; | 
|  | #endif | 
|  | #ifdef BN_MUL_COMBA | 
|  | if (i == 0) { | 
|  | # if 0 | 
|  | if (al == 4) { | 
|  | if (bn_wexpand(rr, 8) == NULL) | 
|  | goto err; | 
|  | rr->top = 8; | 
|  | bn_mul_comba4(rr->d, a->d, b->d); | 
|  | goto end; | 
|  | } | 
|  | # endif | 
|  | if (al == 8) { | 
|  | if (bn_wexpand(rr, 16) == NULL) | 
|  | goto err; | 
|  | rr->top = 16; | 
|  | bn_mul_comba8(rr->d, a->d, b->d); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | #endif                          /* BN_MUL_COMBA */ | 
|  | #ifdef BN_RECURSION | 
|  | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { | 
|  | if (i >= -1 && i <= 1) { | 
|  | /* | 
|  | * Find out the power of two lower or equal to the longest of the | 
|  | * two numbers | 
|  | */ | 
|  | if (i >= 0) { | 
|  | j = BN_num_bits_word((BN_ULONG)al); | 
|  | } | 
|  | if (i == -1) { | 
|  | j = BN_num_bits_word((BN_ULONG)bl); | 
|  | } | 
|  | j = 1 << (j - 1); | 
|  | assert(j <= al || j <= bl); | 
|  | k = j + j; | 
|  | t = BN_CTX_get(ctx); | 
|  | if (t == NULL) | 
|  | goto err; | 
|  | if (al > j || bl > j) { | 
|  | if (bn_wexpand(t, k * 4) == NULL) | 
|  | goto err; | 
|  | if (bn_wexpand(rr, k * 4) == NULL) | 
|  | goto err; | 
|  | bn_mul_part_recursive(rr->d, a->d, b->d, | 
|  | j, al - j, bl - j, t->d); | 
|  | } else {            /* al <= j || bl <= j */ | 
|  |  | 
|  | if (bn_wexpand(t, k * 2) == NULL) | 
|  | goto err; | 
|  | if (bn_wexpand(rr, k * 2) == NULL) | 
|  | goto err; | 
|  | bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); | 
|  | } | 
|  | rr->top = top; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | #endif                          /* BN_RECURSION */ | 
|  | if (bn_wexpand(rr, top) == NULL) | 
|  | goto err; | 
|  | rr->top = top; | 
|  | bn_mul_normal(rr->d, a->d, al, b->d, bl); | 
|  |  | 
|  | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | 
|  | end: | 
|  | #endif | 
|  | rr->neg = a->neg ^ b->neg; | 
|  | rr->flags |= BN_FLG_FIXED_TOP; | 
|  | if (r != rr && BN_copy(r, rr) == NULL) | 
|  | goto err; | 
|  |  | 
|  | ret = 1; | 
|  | err: | 
|  | bn_check_top(r); | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | 
|  | { | 
|  | BN_ULONG *rr; | 
|  |  | 
|  | if (na < nb) { | 
|  | int itmp; | 
|  | BN_ULONG *ltmp; | 
|  |  | 
|  | itmp = na; | 
|  | na = nb; | 
|  | nb = itmp; | 
|  | ltmp = a; | 
|  | a = b; | 
|  | b = ltmp; | 
|  |  | 
|  | } | 
|  | rr = &(r[na]); | 
|  | if (nb <= 0) { | 
|  | (void)bn_mul_words(r, a, na, 0); | 
|  | return; | 
|  | } else | 
|  | rr[0] = bn_mul_words(r, a, na, b[0]); | 
|  |  | 
|  | for (;;) { | 
|  | if (--nb <= 0) | 
|  | return; | 
|  | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); | 
|  | if (--nb <= 0) | 
|  | return; | 
|  | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); | 
|  | if (--nb <= 0) | 
|  | return; | 
|  | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); | 
|  | if (--nb <= 0) | 
|  | return; | 
|  | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); | 
|  | rr += 4; | 
|  | r += 4; | 
|  | b += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | 
|  | { | 
|  | bn_mul_words(r, a, n, b[0]); | 
|  |  | 
|  | for (;;) { | 
|  | if (--n <= 0) | 
|  | return; | 
|  | bn_mul_add_words(&(r[1]), a, n, b[1]); | 
|  | if (--n <= 0) | 
|  | return; | 
|  | bn_mul_add_words(&(r[2]), a, n, b[2]); | 
|  | if (--n <= 0) | 
|  | return; | 
|  | bn_mul_add_words(&(r[3]), a, n, b[3]); | 
|  | if (--n <= 0) | 
|  | return; | 
|  | bn_mul_add_words(&(r[4]), a, n, b[4]); | 
|  | r += 4; | 
|  | b += 4; | 
|  | } | 
|  | } |