| /* | 
 |  * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * | 
 |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <stdio.h> | 
 | #include <openssl/bn.h> | 
 | #include "bn_lcl.h" | 
 |  | 
 | /* X9.31 routines for prime derivation */ | 
 |  | 
 | /* | 
 |  * X9.31 prime derivation. This is used to generate the primes pi (p1, p2, | 
 |  * q1, q2) from a parameter Xpi by checking successive odd integers. | 
 |  */ | 
 |  | 
 | static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, | 
 |                              BN_GENCB *cb) | 
 | { | 
 |     int i = 0, is_prime; | 
 |     if (!BN_copy(pi, Xpi)) | 
 |         return 0; | 
 |     if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) | 
 |         return 0; | 
 |     for (;;) { | 
 |         i++; | 
 |         BN_GENCB_call(cb, 0, i); | 
 |         /* NB 27 MR is specified in X9.31 */ | 
 |         is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb); | 
 |         if (is_prime < 0) | 
 |             return 0; | 
 |         if (is_prime) | 
 |             break; | 
 |         if (!BN_add_word(pi, 2)) | 
 |             return 0; | 
 |     } | 
 |     BN_GENCB_call(cb, 2, i); | 
 |     return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2 | 
 |  * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they | 
 |  * will be returned too: this is needed for testing. | 
 |  */ | 
 |  | 
 | int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, | 
 |                             const BIGNUM *Xp, const BIGNUM *Xp1, | 
 |                             const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, | 
 |                             BN_GENCB *cb) | 
 | { | 
 |     int ret = 0; | 
 |  | 
 |     BIGNUM *t, *p1p2, *pm1; | 
 |  | 
 |     /* Only even e supported */ | 
 |     if (!BN_is_odd(e)) | 
 |         return 0; | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     if (p1 == NULL) | 
 |         p1 = BN_CTX_get(ctx); | 
 |  | 
 |     if (p2 == NULL) | 
 |         p2 = BN_CTX_get(ctx); | 
 |  | 
 |     t = BN_CTX_get(ctx); | 
 |  | 
 |     p1p2 = BN_CTX_get(ctx); | 
 |  | 
 |     pm1 = BN_CTX_get(ctx); | 
 |  | 
 |     if (pm1 == NULL) | 
 |         goto err; | 
 |  | 
 |     if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) | 
 |         goto err; | 
 |  | 
 |     if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) | 
 |         goto err; | 
 |  | 
 |     if (!BN_mul(p1p2, p1, p2, ctx)) | 
 |         goto err; | 
 |  | 
 |     /* First set p to value of Rp */ | 
 |  | 
 |     if (!BN_mod_inverse(p, p2, p1, ctx)) | 
 |         goto err; | 
 |  | 
 |     if (!BN_mul(p, p, p2, ctx)) | 
 |         goto err; | 
 |  | 
 |     if (!BN_mod_inverse(t, p1, p2, ctx)) | 
 |         goto err; | 
 |  | 
 |     if (!BN_mul(t, t, p1, ctx)) | 
 |         goto err; | 
 |  | 
 |     if (!BN_sub(p, p, t)) | 
 |         goto err; | 
 |  | 
 |     if (p->neg && !BN_add(p, p, p1p2)) | 
 |         goto err; | 
 |  | 
 |     /* p now equals Rp */ | 
 |  | 
 |     if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) | 
 |         goto err; | 
 |  | 
 |     if (!BN_add(p, p, Xp)) | 
 |         goto err; | 
 |  | 
 |     /* p now equals Yp0 */ | 
 |  | 
 |     for (;;) { | 
 |         int i = 1; | 
 |         BN_GENCB_call(cb, 0, i++); | 
 |         if (!BN_copy(pm1, p)) | 
 |             goto err; | 
 |         if (!BN_sub_word(pm1, 1)) | 
 |             goto err; | 
 |         if (!BN_gcd(t, pm1, e, ctx)) | 
 |             goto err; | 
 |         if (BN_is_one(t)) { | 
 |             /* | 
 |              * X9.31 specifies 8 MR and 1 Lucas test or any prime test | 
 |              * offering similar or better guarantees 50 MR is considerably | 
 |              * better. | 
 |              */ | 
 |             int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb); | 
 |             if (r < 0) | 
 |                 goto err; | 
 |             if (r) | 
 |                 break; | 
 |         } | 
 |         if (!BN_add(p, p, p1p2)) | 
 |             goto err; | 
 |     } | 
 |  | 
 |     BN_GENCB_call(cb, 3, 0); | 
 |  | 
 |     ret = 1; | 
 |  | 
 |  err: | 
 |  | 
 |     BN_CTX_end(ctx); | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits | 
 |  * parameter is sum of number of bits in both. | 
 |  */ | 
 |  | 
 | int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) | 
 | { | 
 |     BIGNUM *t; | 
 |     int i; | 
 |     /* | 
 |      * Number of bits for each prime is of the form 512+128s for s = 0, 1, | 
 |      * ... | 
 |      */ | 
 |     if ((nbits < 1024) || (nbits & 0xff)) | 
 |         return 0; | 
 |     nbits >>= 1; | 
 |     /* | 
 |      * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits | 
 |      * - 1. By setting the top two bits we ensure that the lower bound is | 
 |      * exceeded. | 
 |      */ | 
 |     if (!BN_priv_rand(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) | 
 |         goto err; | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     t = BN_CTX_get(ctx); | 
 |     if (t == NULL) | 
 |         goto err; | 
 |  | 
 |     for (i = 0; i < 1000; i++) { | 
 |         if (!BN_priv_rand(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) | 
 |             goto err; | 
 |  | 
 |         /* Check that |Xp - Xq| > 2^(nbits - 100) */ | 
 |         if (!BN_sub(t, Xp, Xq)) | 
 |             goto err; | 
 |         if (BN_num_bits(t) > (nbits - 100)) | 
 |             break; | 
 |     } | 
 |  | 
 |     BN_CTX_end(ctx); | 
 |  | 
 |     if (i < 1000) | 
 |         return 1; | 
 |  | 
 |     return 0; | 
 |  | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and | 
 |  * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the | 
 |  * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| > | 
 |  * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the | 
 |  * previous function and supplied as input. | 
 |  */ | 
 |  | 
 | int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, | 
 |                               BIGNUM *Xp1, BIGNUM *Xp2, | 
 |                               const BIGNUM *Xp, | 
 |                               const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) | 
 | { | 
 |     int ret = 0; | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     if (Xp1 == NULL) | 
 |         Xp1 = BN_CTX_get(ctx); | 
 |     if (Xp2 == NULL) | 
 |         Xp2 = BN_CTX_get(ctx); | 
 |     if (Xp1 == NULL || Xp2 == NULL) | 
 |         goto error; | 
 |  | 
 |     if (!BN_priv_rand(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) | 
 |         goto error; | 
 |     if (!BN_priv_rand(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) | 
 |         goto error; | 
 |     if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) | 
 |         goto error; | 
 |  | 
 |     ret = 1; | 
 |  | 
 |  error: | 
 |     BN_CTX_end(ctx); | 
 |  | 
 |     return ret; | 
 |  | 
 | } |